Generoivat funktiot, Poisson- ja eksponenttijakaumat
|
|
- Pertti Jokinen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin liittyviä laskutehtäviä. Tuntitehtävät 4A1 Satunnaiskävelyn kulkuaika origoon. Tarkastellaan symmetristä satunnaiskävelyä X (X t ) t Z+ kokonaisluvuilla, eli äärettömän tilajoukon S Z Markov-prosessia siirtymätodennäköisyyksin p x,x+1 1, p x,x 1 1, ja p x,y 0 kun y x 1. Olkoon { } min t 0 X t 0 satunnaiskävelyn kulkuaika origoon 0 Z. Tässä tehtävässä lasketaan todennäköisyydet generoivat funktiot (z) z j P [ j X 0 x ] j0 kulkuajalle lähtien eri tilosta x Z. Oletetaan alla, että z 1, jolloin potenssisarjojen teoriasta tiedetään, että (z):n määrittelevä sarja suppenee. (a) Laske aluksi generoiva funktio φ (0) (z). Ratkaisu. φ (0) (z) j0 zj P[ j X 0 0] 1, sillä P[ j X 0 0] saa arvon 1 kun j 0, muuten arvon 0. (b) Osoita ensiaskelanalyysillä, että kun x 0, pätee kaava (z) z ( ) φ (x+1) T 0 (z) + φ (x 1) (z). Ratkaisu. 1 / 8
2 Kun x 0: (z) z j P [ j X0 x ] (1) j0 z j P [ j X0 x ] () j1 ( 1 z j P[ j X 0 x, X 1 x 1 ] + 1 P[ j X 0 x, X 1 x + 1 ]) j1 (3) z z ( j 1 P [ j 1 X0 x 1 ] + P [ j 1 X0 x + 1 ]) (4) j1 ( z z j 1 P [ j 1 X0 x 1 ] + z j 1 P [ j 1 X0 x + 1 ]) j1 ( z z k P [ k X0 x 1 ] + k0 z ( ) φ (x+1) T 0 (z) + φ (x 1) (z) j0 (5) z k P [ k X0 x + 1 ]) (6) k0 Lauseke () saatiin, koska P [ 0 X0 x ] 0 kun x 0. Kolmas lauseke saatiin ehdollistamalla, siinä 1 P[X 1 x 1 X 0 x] P[X 1 x + 1 X 0 x]. Lauseke (4) saadaan, kun huomataan että kulkuaika origoon riippuu historiasta vain nykytilan kautta, kun tiedetään, ettei origossa vielä olla käyty (eli X 0 0); ja vaihtamalla aikatilojen ideksointia. Tiedetään, että kaikki lausekkeiden (4) ja (5) potenssisarjat suppenevat, joten hajottaminen kahdeksi potenssisarjaksi oli luvallista. Toiseksi viimeisessä vaiheessa vaihdettiin indeksointia sijoittamalla j k + 1. (c) Etsi kaikki sellaiset luvut α R, joille kaavan f(x) α x ) määrittelemä funktio f : Z R toteuttaa yhtälön f(x) ( z f(x + 1) + f(x 1). Ratkaisu. Jos z 0, niin differenssiyhtälön ainoa ratkaisu f on identtisesti nolla. Jos z 0, saadaan α x z (αx+1 +α x 1 ). Tutkitaan tapausta α 0. Yhtälö saadaan muotoon α α + 1 0, jolle ratkaisut ovat z α z z, α 1 1 z. z Huomaa, että selvästi α 1 > 1 ja toisaalta α 1 ja α ovat yhtälön 1 z (α1 + α 1 ) ratkaisuja, joten α α 1 1 ja näin ollen α < 1. (d) Käytä (c)-kohdan tulosta ratkaistaksesi (b)-kohdan yhtälö (a)-kohdan alkuehdolla, ja löydä siten kaava generoivalle funktiolle. (7) / 8
3 Vihje: Kaikista mahdollisista (b)-kohdan yhtälöiden ratkaisuista vain harvoilla ja valituilla on samanlainen käyttäytyminen kun x ± kuin etsityllä generoivalla funktiolla. Ratkaisu. Kun z 0, niin nähdään suoraan määritelmästä, että { 1, x 0 (z 0) δ x,0 0, x 0. Tutkitaan siis jatkossa tilannetta z 0. Toisen asteen homogeenisille differenssiyhtälöille (siis muotoa f(x + ) + af(x + 1) + bf(x) 0 oleville) pätee, että kun yhtälölle α + aα + b löytyi kaksi erisuurta ratkaisua α, kaikki differenssiyhtälön ratkaisut ovat muotoa f(x) C 1 α1 x + C α. x Vakiot C 1, C määrittyvät sen välin reuna-arvoista, jolla differenssiyhtälö pätee. Tutkitaan seuraavaksi reunaehtoja. Differenssiyhtälöä johdettaessa oletettiin, että x 0, eli se pätee (z):lle väleillä...,, 1 sekä 1,,... Tutkitaan jatkossa tapausta x > 0 eli määritetään reunaehdot nollassa ja äärettömissä tapaus x < 0 saadaan symmetrian perusteella: (z) φ ( x) (z). Näin ollen tiedetään, että välillä 0, 1,,... pätee (z) C 1 α x 1 + C α x joillakin vakioilla C 1 ja C. Edellä α 1 ja α ovat kohdan (c) ratkaisut. Kohdan (a) tuloksesta φ (0) (z) 1 saadaan ensimmäinen reunaehto f(0) 1, eli C 1 + C 1. Tutkitaan reunaehtoa x. Nyt (z) E(z X 0 x) E( z X 0 x) E( z X 0 X 0 x), sillä aina X 0. Nyt E( z X 0 X 0 x) z x 0, kun x. Siis reunaehdoksi saadaan (z) 0, kun x. Huomataan, että α1 x ja α x 0, kun x. Siis C 1 0. Yhdistämällä reunaehdot saadaan C 1 0 ja C 1. Käyttämällä symmetriaehtoa (z) φ ( x) (z) saadaan siis lopulta generoiva funktio kun z 0. (z) ( ) x 1 1 z, z 3 / 8
4 Kotitehtävät (palautettava kirjallisina pe klo 10:15 mennessä) 4A Riippumattomien Poisson-jakautuneiden satunnaislukujen summa. Olkoon N satunnaisluku, joka noudattaa Poisson-jakaumaa parametrilla λ > 0, eli P [ N k ] λ λk e, kun k! k Z + {0, 1,,...}. (a) Laske satunnaisluvun N todennäköisyysgeneroiva funktio φ N (z) E [ z N]. Ratkaisu. Muistetaan Poisson-jakauman pistetodennäköisyydet, P(N k) λ λk e. Näitä käyttäen saadaan k! φ N (z) E[z N ] z k P(N k) k0 e λ k0 e λ e λz e λ(z 1). z k λk k! Olkoot sitten N 1 ja N riippumattomia satunnaislukuja, jotka noudattavat Poissonjakaumaa vastaavilla parametreilla λ 1 > 0 ja λ > 0. (b) Laske satunnaisluvun N 1 +N todennäköisyysgeneroiva funktio φ N1 +N (z) E [ ] z N 1+N. Ratkaisu. Käyttäen riippumattomuutta ja kohtaa (a) saadaan φ N1 +N (z) E [ z N 1+N ] E [ ] [ ] z1 N E z N φ N1 (z)φ N1 (z) e λ 1(z 1) e λ (z 1) e (λ 1+λ )(z 1). (c) Mitä voit päätellä satunnaisluvun N 1 + N jakaumasta? Ratkaisu. Olkoon N 3 Poisson-jakautunut parametrillä (λ 1 + λ ) > 0. Kohdan (a) mukaan φ N3 (z) e (λ 1+λ )(z 1). Siispä φ N3 φ N1 +N. Koska todennäköisyydet generoiva funktio määrää Z + -arvoisen satunnaismuuttujan jakauman (pistetodennäköisyydet saadaan generoivan funktion derivaattoina), voidaan päätellä, että (N 1 + N ) on Poisson-jakautunut parametrillä (λ 1 + λ ) > 0. 4 / 8
5 4A3 Taka-Pajulan kaupunki aikoo järjestää jouluvalaistuksen. Kaupunki kilpailuttaa kaksi lamppuvalmistajaa: A ja B, joilta saadut tarjoukset ovat joko sattumalta tai kartellin johdosta lamppujen yksikköhinnalta samat. Valmistajien lamput eroavat kuitenkin laadultaan: valmistajan A lamppujen käyttöiät ovat eksponenttijakautuneita parametrilla ja valmistajan B parametrilla, ja kaikkien lamppujen käyttöiät ovat toisistaan riippumattomia. Parametreja, ei tunneta, joten kaupungin etevät virkamiehet keksivät käyttää tilastotieteen osaamistaan tilauspäätöksen tekemiseksi. Molemmilta valmistajilta tilataan lamppu testikäyttöön ja vertaillaan, kumpi lampuista kestää pidempään. Testi toistetaan, kunnes toinen valmistajista on saavuttanut viisi testivoittoa enemmän kuin toinen. Lamput tilataan tältä valmistajalta. (a) Laske todennäköisyys, että valmistajan A lamppu kestää yksittäisessä testissä pidempään. Ratkaisu. Lamppujen eliniän T, jossa {A, B}, tiheysfunktio on eksponenttijakauman mukaan f T (t) I t>0 λ exp( λ t) ja riippumattomuuden perusteella niiden yhteistiheysfuktio on näiden tulo. Näin ollen Symmetrisesti P[A:n lamppu poksahtaa ennen B:n lamppua] P[T A < T B ] f TA,T B (t A, t B )dt A dt B {t A <t B } tb t B 0 t B 0 t A 0 f TA (t A )f TB (t B )dt A dt B f TB (t B )[1 exp( t B )]dt B P[B:n lamppu poksahtaa ennen A:n lamppua] +. Oletetaan parametreille arvot 0.04 ja 0.06 (yksikköinä 1/vrk). (b) Millä todennäköisyydellä tilaus päädytään lopulta tekemään valmistajalta A? Ratkaisu. Olkoon nyt X t A:n voitot miinus B:n voitot t:n testin jälkeen. Jos X t ±5, asetetaan X t+1 X t, koska testejä ei enää tehdä. Riippumattomuusoletusten mukaan X t on Markov-ketju, ja sen siirtymäkaavio on 5 / 8
6 Kyseessä on siis uhkapelurin vararikko-ongelma etenemistodennäköisyydellä +. Tehtävänannon perusteella X 0 0 ja halutaan selvittää tn, että A voittaa eli Markov-ketju X t osuu absorboivaan tilaan 5. Muistetaan (esim. Kytölä: Vuoden 016 luentomuistiinpanot, sivut 40 43), että osumatodennäköisyys f uhkapelurin vararikko-ongelmassa toteuttaa rekursion Kun 1/, ratkaisut ovat muotoa f(j) (1 )f(j 1) + f(j + 1). ( ) j 1 f(j) α + β α ( λa ) j + β, jossa vakiot α ja β määritetään reunaehdoista. Tässä reunaehdot ovat { f( 5) 0 f(5) 1 ( ) 5 λ α A + β 0 ( ) 5 λ α A + β 1 1 α ( ) λa 5 ( ) λb 5 λb ( ) λa 5 λ β α B λa joten lopulta kiinnostava suure on f(0) α + β ( 1 ( ) 5 λa ) 5 ( ) 5. (8) λa Sijoittamalla yllä saatuun kaavaan 0.04 ja 0.06 saadaan f(0) 1 (3/)5 (/3) 5 (3/) Lisäys. Symmetrian perusteella pitäisi päteä f(0) 1/, kun / 1. Osoita tämä yhtälöstä (8). 6 / 8
7 (c) Kuinka monta testiä odotusarvoisesti tarvitaan? Vihje: Ratkaisun löytämiseksi palauta ensinnäkin mieleesi, että kaavan g(k) α k määrittelemä funktio toteuttaa yhtälön g(k) g(k + 1) (1 ) g(k 1) 0 sopivasti valituilla parametrin α arvoilla. Lisäksi huomaa, että kaavan g 0 (k) k määrittelemä funktio toteuttaa yhtälön g(k) g(k + 1) (1 ) g(k 1) C eräällä vakion C arvolla. Lineaarikombinaatioilla näistä saat ratkaistua tarvittavat yhtälöryhmät. Ratkaisu. Kulkuaikoja uhkapelurin vararikko-ongelmaan ei ole ratkaistu luentomuistiinpanoissa, joten tehdään se tässä. Olkoon g(x) odotettu kulkuaika joukkoon { 5, 5} alkaen tilasta x. Tällöin g toteuttaa { g( 5) g(5) 0 g(k) g(k + 1) + (1 ) g(k 1) + 1, 4 k 4. Jälkimmäinen yhtälö saadaan muotoon g(k) g(k + 1) (1 ) g(k 1) 1. Vihjeen mukaisesti muistetaan, että vastaavan homogeenisen ongelman f(k) f(k + 1) (1 ) f(k 1) 0 toteuttavat (kun 1/) osumatodennäköisyydet ( ) k 1 f(k) α + β. Toisaalta kaavan g 0 (k) k määrittelemä funktio toteuttaa yhtälön g 0 (k) g 0 (k + 1) (1 ) g 0 (k 1) 1, joten kun 1/ toteuttavat funktiot differenssiyhtälön g(k) f(k) g 0(k) α ( 1 ) k + β + k 1 g(k) g(k + 1) + (1 ) g(k 1) 1. Tässä tehtävässä haluttu odotettu kulkuaika on g(0) α + β. Jäljellä on vakioiden α, β määritys. Reunaehdoista saadaan ( ) 5 g( 5) 5 + α β 0 α ( 10 (1 ) ( 1 ) 5 ( ( ) 5 ( ) 5 g(5) 5 + α β 0 β α. 1 ) 5) 7 / 8
8 Näin saadaan kulkuajaksi g(0) α + β ( ( ) ) α ( ( ) ) (1 ) ( ( 1 10 ) 5 ( 1 ) 5 ). Muistetaan, että /( + ). Sijoitetaan vielä lukuarvot 0.06, jolloin 0.6 ja ylläoleva riemukaava antaa 0.04 ja g(0) Odotusarvoisesti Taka-Pajulan viisaat virkamiehet saavat siis tehdä lampunpolttokoetta. Huh huh! Lisäys. (Tapaus 1/.) Tutkitaan vielä uhkapelurin kulkuaikoja tapauksessa 1/. Tällöin odotusarvoiset kulkuajat g toteuttavat differenssiyhtälön g(k) 1 g(k + 1) 1 g(k 1) 1. (9) Ylläolevaa ratkaisutapaa toistaen havaitaan, että osumatodennäköisyys f(k) αk + β toteutta vastaavan homogeenisen yhtälön f(k) 1 f(k + 1) 1 f(k 1) 0. Toisaalta g:lle kirjoitettu differenssiyhtälö (9) on toisen derivaatan diskretisaatio 1 g (k) 1. Tästä teemme valistuneen arvauksen, että g 0 (k) k voisi toteuttaa myös vastaavan diskereetin yhtälön (9). Ja tosiaan: Näin ollen g 0 (k) 1 g 0(k + 1) 1 g 0(k 1) 1. g(k) αk + β k ovat yhtälön (9) ratkaisuja, jotka voidaan sovittaa reunaehtoihin valitsemalla sopivat α ja β. 8 / 8
Markov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
Markov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Markov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Martingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Erilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
Valintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Jatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Markov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Martingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
Sarjoja ja analyyttisiä funktioita
3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Jatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Lineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
Markov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Matematiikan tukikurssi: kurssikerta 12
Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Matemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo
Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5 1. Näytä, että X t := Bt 3 3tB t on martingaali Brownin liikkeen B historian suhteen. Ratkaisuehdotus:
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
Dierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Dierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Sovellettu todennäköisyslasku
Sovellettu todennäköisyslasku Työpäiväkirja 16.12.2001 Espoo Teknillinen korkeakoulu Systeemianalyysin laboratorio Jussi Matti Aleksi Jokelainen jussi.jokelainen@hut.fi Opiskelijanumero 123456A Sovellettu
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
k = 1,...,r. L(x 1 (t), x
Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat
Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Satunnaismuuttujat ja jakaumat
Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
JAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Tilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016