Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet
|
|
- Ahti Jokinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Johdtus L A TEXiin 3. Mtemtiikk I Mrkus Hrju Mtemttiset tieteet
2 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin)
3 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin) Näitä tiloj on khdenlisi: rivimtemtiikktil näyttömtemtiikktil
4 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin) Näitä tiloj on khdenlisi: rivimtemtiikktil näyttömtemtiikktil Rivimtemtiikktil loitetn j päätetään symbolill $. Esim. syöte Funktio $f(x)$ on jtkuv j joukko $F$ on voin. tulost: Funktio f(x) on jtkuv j joukko F on voin.
5 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin) Näitä tiloj on khdenlisi: rivimtemtiikktil näyttömtemtiikktil Rivimtemtiikktil loitetn j päätetään symbolill $. Esim. syöte Funktio $f(x)$ on jtkuv j joukko $F$ on voin. tulost: Funktio f(x) on jtkuv j joukko F on voin. Pieninkin mtemttinen ilmisu tulee sijoitt mtemtiikktiln!
6 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _.
7 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _. Molempi käytettäessä järjestyksellä ei väliä
8 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _. Molempi käytettäessä järjestyksellä ei väliä Yhtä merkkiä pidemmät indeksit ltosulkujen {} väliin
9 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _. Molempi käytettäessä järjestyksellä ei väliä Yhtä merkkiä pidemmät indeksit ltosulkujen {} väliin Sisäkkäisyys ltosuluill ryhmittelemällä
10 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _. Molempi käytettäessä järjestyksellä ei väliä Yhtä merkkiä pidemmät indeksit ltosulkujen {} väliin Sisäkkäisyys ltosuluill ryhmittelemällä Esim. $xˆ2$ x 2 $xˆ{2n+1}$ x 2n+1 $_1$ 1 $_{1,1}$ 1,1 $x_1ˆ2$ x 2 1 $xˆ{yˆz}$ x yz $xˆ2_1$ x 2 1 $x_{n_k}$ x nk
11 3. Mtemtiikk I Johdtus LTeXiin (3/12) Indeksit j juuret Ylä- j lindeksit merkinnöillä ˆ j _. Molempi käytettäessä järjestyksellä ei väliä Yhtä merkkiä pidemmät indeksit ltosulkujen {} väliin Sisäkkäisyys ltosuluill ryhmittelemällä Esim. $xˆ2$ x 2 $xˆ{2n+1}$ x 2n+1 $_1$ 1 $_{1,1}$ 1,1 $x_1ˆ2$ x 2 1 $xˆ{yˆz}$ x yz $xˆ2_1$ x 2 1 $x_{n_k}$ x nk Juurilusekkeet komennoll \sqrt[n]{rg}. Esim. $\sqrt{2}$ 2 $\sqrt[3]{2}$ 3 2 $\sqrt{ˆ2+bˆ2}$ 2 + b 2 3 $\sqrt[3]{2+\sqrt{2}}$ 2 + 2
12 3. Mtemtiikk I Johdtus LTeXiin (4/12) Kolme pistettä Kolme pistettä tulee tulost komennoll \ldots. Esim. $x_1,\ldots,x_n$ x 1,..., x n
13 3. Mtemtiikk I Johdtus LTeXiin (4/12) Kolme pistettä Kolme pistettä tulee tulost komennoll \ldots. Esim. $x_1,\ldots,x_n$ x 1,..., x n Keskitetyt pisteet s komennoll \cdots. Esim. $x_1\cdots x_n$ x 1 x n
14 3. Mtemtiikk I Johdtus LTeXiin (4/12) Kolme pistettä Kolme pistettä tulee tulost komennoll \ldots. Esim. $x_1,\ldots,x_n$ x 1,..., x n Keskitetyt pisteet s komennoll \cdots. Esim. $x_1\cdots x_n$ x 1 x n Pystysuorille j vinottisille pisteille on lisäksi komennot \vdots j \ddots. Ne tulostvt. j...
15 Kolme pistettä Kolme pistettä tulee tulost komennoll \ldots. Esim. $x_1,\ldots,x_n$ x 1,..., x n Keskitetyt pisteet s komennoll \cdots. Esim. $x_1\cdots x_n$ x 1 x n Pystysuorille j vinottisille pisteille on lisäksi komennot \vdots j \ddots. Ne tulostvt. j... Näistä neljästä komennost \ldots j \vdots toimivt myös tekstitilss. 3. Mtemtiikk I Johdtus LTeXiin (4/12)
16 3. Mtemtiikk I Johdtus LTeXiin (5/12) Kreikkliset kirjimet, pienet Kreikkliset kirjimet s yhdistämällä kenoviivn kirjimen englnninkielisen nimen eteen.
17 3. Mtemtiikk I Johdtus LTeXiin (5/12) Kreikkliset kirjimet, pienet Kreikkliset kirjimet s yhdistämällä kenoviivn kirjimen englnninkielisen nimen eteen. α \lph θ \thet o o τ \tu β \bet ϑ \vrthet π \pi υ \upsilon γ \gmm ι \iot ϖ \vrpi φ \phi δ \delt κ \kpp ρ \rho ϕ \vrphi ɛ \epsilon λ \lmbd ϱ \vrrho χ \chi ε \vrepsilon µ \mu σ \sigm ψ \psi ζ \zet ν \nu ς \vrsigm ω \omeg η \et ξ \xi
18 3. Mtemtiikk I Johdtus LTeXiin (5/12) Kreikkliset kirjimet, pienet Kreikkliset kirjimet s yhdistämällä kenoviivn kirjimen englnninkielisen nimen eteen. α \lph θ \thet o o τ \tu β \bet ϑ \vrthet π \pi υ \upsilon γ \gmm ι \iot ϖ \vrpi φ \phi δ \delt κ \kpp ρ \rho ϕ \vrphi ɛ \epsilon λ \lmbd ϱ \vrrho χ \chi ε \vrepsilon µ \mu σ \sigm ψ \psi ζ \zet ν \nu ς \vrsigm ω \omeg η \et ξ \xi Huom kksi erilist ulkosu epsilonille, thetlle, piille, roolle, sigmlle j fiille
19 3. Mtemtiikk I Johdtus LTeXiin (6/12) Isot kirjimet Isojen kreikklisten kirjimien komennot lkvt vstvll isoll kirjimell. Tässä on kikki: Γ \Gmm Λ \Lmbd Σ \Sigm Ψ \Psi \Delt Ξ \Xi Υ \Upsilon Ω \Omeg Θ \Thet Π \Pi Φ \Phi
20 Isot kirjimet Isojen kreikklisten kirjimien komennot lkvt vstvll isoll kirjimell. Tässä on kikki: Γ \Gmm Λ \Lmbd Σ \Sigm Ψ \Psi \Delt Ξ \Xi Υ \Upsilon Ω \Omeg Θ \Thet Π \Pi Φ \Phi Isot kunokirjimet komennoll \mthcl{}. Näitä on 26 kpplett: A \mthcl{a} B \mthcl{b}... Z \mthcl{z} 3. Mtemtiikk I Johdtus LTeXiin (6/12)
21 Isot kirjimet Isojen kreikklisten kirjimien komennot lkvt vstvll isoll kirjimell. Tässä on kikki: Γ \Gmm Λ \Lmbd Σ \Sigm Ψ \Psi \Delt Ξ \Xi Υ \Upsilon Ω \Omeg Θ \Thet Π \Pi Φ \Phi Isot kunokirjimet komennoll \mthcl{}. Näitä on 26 kpplett: A \mthcl{a} B \mthcl{b}... Z \mthcl{z} Liitutulukirjsimet komennoll \mthbb{}, jot vrten on ldttv msfonts pketti: \usepckge{msfonts} R \mthbb{r} N \mthbb{n} Z \mthbb{z} 3. Mtemtiikk I Johdtus LTeXiin (6/12)
22 Funktionnimet Alkeisfunktioiden j muiden usein käytettyjen operttoreiden nimet tulee lto pystykirjimin seurvill komennoill: \rccos \rcsin \rctn \rg \cos \cosh \tn \cot \coth \csc \deg \det \dim \tnh \exp \gcd \hom \inf \ker \lg \lim \liminf \limsup \ln \log \mx \min \Pr \sec \sin \sinh \sup 3. Mtemtiikk I Johdtus LTeXiin (7/12)
23 Funktionnimet Alkeisfunktioiden j muiden usein käytettyjen operttoreiden nimet tulee lto pystykirjimin seurvill komennoill: \rccos \rcsin \rctn \rg \cos \cosh \tn \cot \coth \csc \deg \det \dim \tnh \exp \gcd \hom \inf \ker \lg \lim \liminf \limsup \ln \log \mx \min \Pr \sec \sin \sinh \sup Eli $sin x$ (sinx) on väärin j $\sin x$ (sin x) on oikein! 3. Mtemtiikk I Johdtus LTeXiin (7/12)
24 3. Mtemtiikk I Johdtus LTeXiin (7/12) Funktionnimet Alkeisfunktioiden j muiden usein käytettyjen operttoreiden nimet tulee lto pystykirjimin seurvill komennoill: \rccos \rcsin \rctn \rg \cos \cosh \tn \cot \coth \csc \deg \det \dim \tnh \exp \gcd \hom \inf \ker \lg \lim \liminf \limsup \ln \log \mx \min \Pr \sec \sin \sinh \sup Eli $sin x$ (sinx) on väärin j $\sin x$ (sin x) on oikein! Modulomerkintää mod vrten on kksi komento: binäärireltio \bmod j suluttv \pmod{}. Esim. mod b $ \bmod b$ x y (mod + b) $x \equiv y \pmod{+b}$
25 3. Mtemtiikk I Johdtus LTeXiin (7/12) Funktionnimet Alkeisfunktioiden j muiden usein käytettyjen operttoreiden nimet tulee lto pystykirjimin seurvill komennoill: \rccos \rcsin \rctn \rg \cos \cosh \tn \cot \coth \csc \deg \det \dim \tnh \exp \gcd \hom \inf \ker \lg \lim \liminf \limsup \ln \log \mx \min \Pr \sec \sin \sinh \sup Eli $sin x$ (sinx) on väärin j $\sin x$ (sin x) on oikein! Modulomerkintää mod vrten on kksi komento: binäärireltio \bmod j suluttv \pmod{}. Esim. mod b $ \bmod b$ x y (mod + b) $x \equiv y \pmod{+b}$ Omi funktionnimiä voi luod esittelyosss seurvsti: \usepckge{msmth} \DeclreMthOpertor{\syt}{syt}
26 3. Mtemtiikk I Johdtus LTeXiin (8/12) Aksentit Mtemtiikktilss on käytössä seurvt ksenttimerkinnät: â \ht{} ă \breve{} à \grve{} ǎ \check{} á \cute{} ã \tilde{} ȧ \dot{} ä \ddot{} å \mthring{} ā \br{} \vec{}
27 3. Mtemtiikk I Johdtus LTeXiin (8/12) Aksentit Mtemtiikktilss on käytössä seurvt ksenttimerkinnät: â \ht{} ă \breve{} à \grve{} ǎ \check{} á \cute{} ã \tilde{} ȧ \dot{} ä \ddot{} å \mthring{} ā \br{} \vec{} Kirjimist i j j on syytä poist pisteet ennen ksentin lisäämistä. Tämä tehdään komennoill \imth j \jmth. Esim. $\vec{\imth}+\tilde{\jmth}$ ı + j
28 3. Mtemtiikk I Johdtus LTeXiin (8/12) Aksentit Mtemtiikktilss on käytössä seurvt ksenttimerkinnät: â \ht{} ă \breve{} à \grve{} ǎ \check{} á \cute{} ã \tilde{} ȧ \dot{} ä \ddot{} å \mthring{} ā \br{} \vec{} Kirjimist i j j on syytä poist pisteet ennen ksentin lisäämistä. Tämä tehdään komennoill \imth j \jmth. Esim. $\vec{\imth}+\tilde{\jmth}$ ı + j Httu- j mtomerkinnästä (tilde) on trjoll myös leveämmät versiot \wideht{} j \widetilde{}. Esim. $\wideht{f+g}$ f + g $\widetilde{ab}$ ÃB
29 3. Mtemtiikk I Johdtus LTeXiin (9/12) Binäärioperttorit ± \pm \mp \cdot \times / / \div \st \str \circ \bullet \cup \cp \sqcup \sqcp \oplus \ominus \otimes \oslsh \odot \vee \wedge \ \setminus \dgger \ddgger \dimond \tringleleft \bigcirc \wr \bigtringleup \uplus \mlg \bigtringledown
30 1 \usepckge{mssymb} 3. Mtemtiikk I Johdtus LTeXiin (10/12) Reltiot = = \neq \equiv. = \doteq < < > > \leq \geq \prec \succ \preceq \succeq \subset \sqsupset 1 \subseteq \sqsubseteq \supset \sqsubset 1 \supseteq \sqsupseteq \in \ni / \notin \propto \pprox \symp \sim \simeq \mid, \perp = \models \prllel,\ \ll \gg \vdsh \dshv = \cong \smile \frown \bowtie Vstvt negtiot s lisäämällä eteen komennon \not. Esim: x y $x\not<y$ A B $A\not\subset B$
31 3. Mtemtiikk I Johdtus LTeXiin (11/12) Nuolet \leftrrow,\gets \to, \rightrrow \uprrow \Leftrrow \Rightrrow \Uprrow \longleftrrow \longrightrrow \downrrow = \Longleftrrow = \Longrightrrow \Downrrow \leftrightrrow \longleftrightrrow \updownrrow \Leftrightrrow \Longleftrightrrow \Updownrrow \mpsto \longmpsto \nerrow \hookleftrrow \hookrightrrow \serrow \lefthrpoonup \righthrpoonup \swrrow \lefthrpoondown \righthrpoondown \nwrrow \rightlefthrpoons
32 3. Mtemtiikk I Johdtus LTeXiin (12/12) Seklisi symboleit \infty \prtil \nbl \emptyset \forll \exists \surd \neg \prime \top \bot \ \bckslsh R \Re I \Im l \ell \wp ℵ \leph \hbr ı \imth j \jmth \flt \nturl \shrp \ngle \clubsuit \dimondsuit \hertsuit \spdesuit
Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 3. Mtemtiikk I Mrkus Hrju Mtemttiset tieteet 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin)
Talousmatematiikan perusteet, L2 Kertaus Aiheet
Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-
Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.
Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.
MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1
MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 PEKKA SALMI Tämä dokumentti on johdatus matemaattisten termien kirjoittamiseen L A TEXilla. Tarkoituksena on esitellä yksinkertaisia matemaattisia konstruktioita
Talousmatematiikan perusteet, L2 Kertaus Aiheet
Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-
Fysiikan laboratoriotyöt 1: Johdatus L A TEXiin
Fysiikn lbortoriotyöt 1: Johdtus L A TEXiin Mrkus Hrju Mtemttiset tieteet L A TEXist L A TEX[ lteh] on ldontohjelm, joll voidn helposti tuott (ldukkit) mtemttisi merkintöjä sisältäviä dokumenttej (esim.
Word Taulukko-ominaisuus
Word Taulukko-ominaisuus Koulutusmateriaalin tiivistelmä 17.3.2014 JAO Seuranen Valtteri Valtteri Seuranen Tehtävä 1[1] Sisällys Taulukon luominen Word-ohjelmalla... 2 Taulukon muokkaaminen... 7 Rakenne
Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 6. Omt komennot j luseympäristöt Mrkus Hrju Mtemttiset tieteet 6. Omt komennot j luseympäristöt Johdtus LTeXiin (2/10) Omt komennot I L A TEXin vlmiiden komentojen lisäksi kirjoittj
! #! %! & #!!!!! ()) +
! #! %! & #!!!!! ()) + Tiedekunta/Osasto Fakultet/Sektion Faculty Humanistinen tiedekunta Laitos Institution Department Taiteiden tutkimuksen laitos Tekijä Författare Author Matti Pesonen Työn nimi Arbetets
Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA. Karoliina Ljungberg
Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA Karoliina Ljungberg 16.04.2009 Ohjaajat: Ari Venäläinen, Jouni Räisänen
Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 5. Ristiviittuksist, monirivisistä kvoist j vähän muustkin Mrkus Hrju Mtemttiset tieteet Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee
Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto
Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...
M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n
ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,
sin θ θ θ r 2 sin 2 θ φ 2 = 0.
Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin
GeoGebra ja L A TEX matematiikan sähköisessä ylioppilaskokeessa
GeoGebra ja L A TEX matematiikan sähköisessä ylioppilaskokeessa Mikko Rautiainen Savitaipaleen lukio 11. lokakuuta 2017 Sisältö 1 Johdanto 1 2 GeoGebran asetuksista 2 3 LaTeXin perusteet 2 3.1 Yhtäsuuruusmerkkien
K2 AAKKOSET. K KREIKKA, (genfibeta.weebly.com/ muuttuu myöhemmin gen.fi/-osoitteeksi)
K2 AAKKOSET K KREIKKA, https://genfibeta.weebly.com/k.html (genfibeta.weebly.com/ muuttuu myöhemmin gen.fi/-osoitteeksi) K2 YLEISTÄ, https://genfibeta.weebly.com/k4.html K2 Aakkoset, https://genfibeta.weebly.com/k2-aakkoset.html
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollinen laadunvalvonta
TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollie laauvalvota Shewharti muuttujakartat ARL I = α ARL II = β x-kartta x = x + + x Ex =µ ja Vx = µ ± k Φx = π x e t t α = Φk β =Φk Φ k S-kartta S = x
Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 2. Dokumentin rkenne Mrkus Hrju Mtemttiset tieteet 2. Dokumentin rkenne Johdtus LTeXiin (2/10) Dokumenttiluokist L A TEXin perusdokumenttiluokt ovt rticle, report j book. Ne otetn käyttöön
Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 2. Dokumentin rkenne Mrkus Hrju Mtemttiset tieteet 2. Dokumentin rkenne Johdtus LTeXiin (2/10) Dokumenttiluokist L A TEXin perusdokumenttiluokt ovt rticle, report j book. Dokumenttiluokist
d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
Integroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
a x a y I xi y i I xyi x i I xyi + y i I yi
Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ º ØÓÙ Ó ÙÙØ ¾¼½¾ ÄÙ Ù ½ Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ Ó ½ ½º½ à ÖÖÓ Ø ÐÓ ÎÒØ [ Ixi I xi I xi ÂÓ ÐÐ Ô ÖØ ÐÐ ÔØ Ii ][ a x a ] = [ xi I xi i I xi x i I xi + i I i ]. ½º½µ I
Fysiikan matematiikka P
Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
2 Epäoleellinen integraali
ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...
4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
Funktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
Älä tee mitään merkintöjä kaavakokoelmaan!
AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()
6. Sovelluksia stokastiselle integroinnille
92 STOKASTISET DIFFERENTIAALIYHTÄLÖT 6. Sovelluksia stokastiselle integroinnille 6.1. Uusia martingaaleja. Tähän mennessä olemme löytäneet vain kourallisen martingaaleja eli tiedämme, että B t on martingaali,
2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mari Herranen Ultratulo Informaatiotieteiden yksikkö Matematiikka Marraskuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö HERRANEN, MARI: Ultratulo Pro
3. Differen*aalilaskenta
3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on
1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista
Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),
Kreikka'(10'op)' Avoin&yliopisto,&kesä&2014& TT,&MA&Ulla&Tervahauta&&&TM&Nina&Nikki& & KÄYTÄNNÖN'ASIOITA'
Kreikka'(10'op)' Avoinyliopisto,kesä2014 TT,MAUllaTervahautaTMNinaNikki KÄYTÄNNÖN'ASIOITA' Yleistä' Luennot: 15.5.A27.5.sekä2.6.A18.6.2014,maAto16.15A18.45/Tervahauta 30.7.A28.8.2014maAtoklo16.15A18.45/Nikki
5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)
XFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
7.lk matematiikka. Geometria 1
7.lk mtemtiikk 1 Htnpään koulu 7B j 7C Kevät 2017 2 Sisällys 1. Koordintisto... 4 2. Kulmien nimeäminen j luokittelu... 8 3. Kulmien mittminen j piirtäminen... 10 4. Ristikulmt j vieruskulmt... 14 5. Suort,
TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Luotettavuusteoria
TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Luoeavuueoria Dekripiivinen luoeavuu R() =P(T>) R(x ) =P(T>+ x T>) r() = f() R() R() =e R(x ) =e r() d +x r() d F () R() f() r() F () R() f() F () df () d R()
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
JYVÄSKYLÄN YLIOPISTO. 5. Olkoon f : [0, 1] R kasvava. Osoita, että joukko. {x [0, 1] f ei ole jatkuva pisteessä x} on numeroituva. [Vihje: Lause 1.2.
Harjoitukset 1 16.9.25 1. Merkitään Z + = {x Z x > }. Osoita, että f : Z + Z + Z +, f(x, y) = 2 x 1 (2y 1), on bijektio. Piirrä kuva. Perinteisempi kuvaus Z + Z + Z + on (x, y) (x + y 1)(x + y)/2 (x 1).
Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 7. Tulukot j kuvt Mrkus Hrju Mtemttiset tieteet 7. Tulukot j kuvt Johdtus LTeXiin (2/11) Tulukot I Tulukkomiset rkenteet tehdään ympäristöllä tbulr Tulukot I Tulukkomiset rkenteet tehdään
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava
VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Äärettömät raja-arvot
Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet
Johdtus L A TEXiin 7. Tulukot j kuvt Mrkus Hrju Mtemttiset tieteet 7. Tulukot j kuvt Johdtus LTeXiin (2/) Tulukot I Tulukkomiset rkenteet tehdään ympäristöllä tbulr Ympäristön rgumentiksi nnetn srkemäärittely,
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
Harjoitus 1, tehtävä 1
Heikki Kallasjoki, 66H, htkallas@cc.hut.fi /34 Harjoitus, tehtävä Oletetaan, että f C(R) on π-jaksollinen funktio ja a R. Näytä, että f(t + a) dt f(t) dt a+π f(t) dt. a () () (3) Tarkastellaan ensin lauseketta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
MEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on
Tiheyspistelauseita. Petteri Salovaara. Pro Gradu tutkielma
Tiheyspistelauseita Petteri Salovaara Pro Gradu tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2006 1 2 Sisältö 1. LUKU: Esitietoja 3 2. LUKU: Mittojen derivointia ja tiheyspistelause
6 Eksponentti- ja logaritmifunktio
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n
Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille
Harjoitus 1, 30.10.2015 1. Olkoon f : A! [0, 1] mitallinen ja ma) < 1. Näytä, että josonp>1javakio Mt} apple M 2. Olkoon f 2 L 1 A). Näytä, että 2 kaikilla
Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Harjoitus 7 -- Ratkaisut
Harjoitus 7 -- Ratkaisut 1 Solve osaa ratkaista polynomiyhtälöitä, ainakin astelukuun 4 asti. Erikoistapauksissa korkeammankin asteen yhtälöt ratkeavat. Clear a, b, c, d, e, x ; Solve a x 3 b x 2 c 0,
Materiaalien mekaniikka
Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =