SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset
|
|
- Iivari Kapulainen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen R napjen suhteen, eli pistetaan R (krvataan avimella haaralla) ja krvataan jäljelle jäävä kytkentä jännitelähteen E ja vastuksen R sarjaankytkennällä eveninin lähdejännite E n tarkasteltavien napjen välinen tyhjäkäyntijännite, ja eveninin resistanssi R n kytkennän kknaisresistanssi navista katsttuna Muutetaan V:n jännitelähde virtalähteeksi 4 Ω:n vastus tulee virtalähteen rinnalle, ja virtalähteen lähdevirraksi saadaan /4 A 5 A Lähdevirran suunta n ylöspäin, kska jännitelähdekin syöttää virtaa ylöspäin (plusnavasta khti miinusnapaa piirin kautta) Yhdistetään sitten rinnakkain levat Ω:n ja 4 Ω:n vastukset Yhdistetyksi reistanssiksi R saadaan 4 R Ω 8 Ω + 4 Myös A:n ja 5 A:n virtalähteet vat rinnakkain Rinnakkain levat virtalähteet vidaan Kirchhffin virtalain perusteella yhdistää summaamalla Kska mlemmat lähteet syöttävät virtaa ylöspäin, yhdistetyn virtalähteen ylöspäin syöttämäksi virraksi saadaan + 5 A 5 A Nyt siis kytkennässä n rinnakkain 5 A:n virtalähde (virta ylöspäin) ja 8 Ω:n vastus Tämän rinnankytkennän kanssa n sarjassa Ω:n vastus Muutetaan virtalähde jännitelähteeksi R tulee jännitelähteen kanssa sarjaan, ja lähdejännitteeksi E saadaan E 5 8 V V Jtta virran suunta säilyy muuttumattmana, lähteen plusnavan n ltava ylhäällä ja miinusnavan alhaalla Nyt R ja Ω vat sarjassa, jten niiden yhdistetyksi resistanssiksi R saadaan R 8 + Ω Ω R Mudstettu eveninin ekvivalentti näyttää seuraavalta Palautetaan sitten R paikalleen ja lasketaan V ja : E E R + R, V R (i) R Ω A, V V (ii) R 6 Ω 75 A, V 45 V (iii) R 5 Ω 48 A, V 7 V (iv) R 3 Ω 3 A, V 9 V (v) R 7 Ω 5 A, V 5 V 64 Mudstetaan kytkennälle eveninin ekvivalentti napjen a ja b suhteen eveninin lähdejännite E n napjen a ja b välinen tyhjäkäyntijännite ja eveninin resistanssi R n kytkennän kknaisresistanssi navista a ja b katsttuna
2 Käytetään silmukkavirtamenetelmää E :n ratkaisemiseen Sijitetaan myötäpäivään kiertävät silmukkavirrat sekä ylempään ( ) että alempaan ( ) silmukkaan Silmukkavirta n suraan lähdevirta 6 A, ja alemmasta silmukasta saadaan ( ) A 8 Napjen a ja b väliseksi jännitteeksi E saadaan täten E V 56 V Lasketaan vielä navista a ja b katsttu kytkennän kknaisresistanssi R Pistetaan selvyyden vuksi kytkennän lähteet, eli krvataan virtalähde avimella haaralla ja jännitelähde iksululla Tällöin havaitaan, että Ω ja 6 Ω vat rinnakkain, ja 5 Ω n tähän rinnankytkennän kanssa sarjassa Navista näkyväksi kknaisresistanssiksi saadaan siis R Ω Ω Nrtnin ekvivalentissa alkuperäinen kytkentä krvataan tietyistä navista katsttuna vastuksen ja virtalähteen rinnankytkennällä Muunnetaan jännitelähde E virtalähteeksi Vastus R tulee virtalähteen rinnalle ja lähdevirraksi saadaan E/R 5/5 A 5 A Lähdevirran suunta n ylöspäin, kska myös jännitelähde E syöttää virtaa ylöspäin Nyt vastukset R ja R vat rinnakkain, jten yhdistetyksi resistanssiksi R saadaan R R R 5 Ω 4 Ω R + R 5 + Virtalähteet ja J vat rinnakkain, jten ne vidaan yhdistää Kirchhffin virtalain njalla Kska mlemmat syöttävät virtaa ylöspäin, yhdistetyn virtalähteen lähdevirraksi J tt saadaan J tt + J A 8 A Muunnetaan mudstunut virtalähde takaisin jännitelähteeksi, jtta saadaan yhdistettyä vastukset R ja R 3 Virtalähteen J tt rinnalla leva R tulee jännitelähteen E tt kanssa sarjaan, ja lähdejännitteeksi saadaan E tt R J tt 4 8 V 3 V Nyt R ja R 3 vat sarjassa, jten niiden yhdistetyksi resistanssiksi R tt saadaan R tt R + R Ω 8 Ω Nyt n mudstettu kytkennän evenin ekvivalentti Mutta kska kysyttiin Nrtnin ekvivalenttia, muunnetaan jännitelähde vielä virtalähteeksi Nrtnin lähdevirraksi J N ja resistanssiksi R N saadaan siis R Ett 3 Ω, J N Ω 4 A R 8 N Rtt 8 tt
3 74 Yleisesti sinimutiselle jännitteelle u(t) pätee u ( t ) uˆ sin ( t φ ) +, jssa û n jännitteen huippuarv, φ u n nllavaihekulma, ja n kulmataajuus, jka saadaan taajuudesta f lausekkeella u t 5sin t + π πf Tässä tehtävässä sinimutinen jännite nudattaa lauseketta Jännitteen tehllisarv U rms (rt-mean-square) määritellään lausekkeella u T U [ ] rms u( t) dt T, jssa T n yhteen sinin jaksn kuluva aika sekunneissa Sinin jaks (eli t) n radiaaneissa π, mutta yllä levaan integraaliin tarvitaan siis yhteen jaksn kuluva aika sekunneissa: T π T π Tarkasteltavan jännitteen tehllisarvksi saadaan: π 5sin ( π ) U rms t + dt π π 5 + 4π [ cs( t π )] dt π cs( x) sin ( x) 5 cs( t + π ) dt π cs( x) sin ( x) π / 5 t sin( t + π ) 4π 5 π π 5 π sin( + π ) sin( π ) 4π sin(6 π ) + sin( π ) 4π 5 π uˆ V (Yleisesti sinimutiselle jännitteelle pätee U rms ) 4π 4 75 Kndensaattri ja käämi vat rinnakkain Tästä vidaan päätellä, että kndensaattrin ja käämin yli n sama jännite Käämin virta i L (t) n annettu, jten lasketaan ensin käämin yli leva jännite u L (t): i ( t) 5sin( t) A L, L u t L L t L ( t ) L di ( t) 5 cs 5 cs V dt Kndensaattrin yli leva jännite u c (t) n siis sama kuin u L (t) Lasketaan kndensaattrin virta i c (t): ( ), c i t C C L t LC ( t ) u ( t) 5 L cs t V c 8 i a) φ c du ( t) ( 5 sin ) 5 sin A dt r φ re r csφ + j sinφ r csφ + jr sinφ 3
4 b) y y x + jy x + jy arctan x + y arctan x x j 3cs 55 + j3sin j j + 7 j c) d) j j5 ( 3 ) 7 + ( ) arctan ( 3 )( 7 j) j ( 5945 ) 84 ( )
5 86 5
6 87 Valitaan kytkennän vasempaan silmukkaan myötäpäivään kiertävä silmukkavirta ja ikeaan silmukkaan vastapäivään kiertävä silmukkavirta Silmukkavirtayhtälöpariksi saadaan tällöin j5 + + j5 + j j57 Ratkaistaan ratkaisemalla alemmasta yhtälöstä ja sijittamalla ylempään: + j57 ( j ) + j j57 j57) j57 Yllä levassa yhtälössä murtlauseke n lavennettu nimittäjän kmpleksiknjugaatilla, jtta nimittäjästä saadaan reaalinen ja jaklasku saadaan suritettua Tinen vaihteht lisi llut muuttaa murtlausekkeen termit plaarimutn Jka tapauksessa nyt saadaan: ( j ) ( 4 )( j57) ( + j57)( j57) j j68 + j j34 + j34 j 46 4 j j68 + j j j j56 cs 3 + jsin 3 + j j j j + j Silmukkavirraksi saadaan nyt: ( j ) A j j + j57 + j57 + j57 + j j j + j Kysytty virta n silmukkavirtjen summa: j3 A A 88 Ratkaistaan tehtävä slmupistemenetelmällä, mikä tarkittaa sitä, että ensin n selvitettävä kytkennästä löytyvien erisuurten ptentiaalien lukumäärä Kun kytkentä mukataan alla levaan mutn, humataan, että tuntemattmia ptentiaaleja löytyy klme kappaletta 6
7 Kun kytkennän alareunaan valitaan referenssiptentiaali V, ja kun ptentiaalit V ja V valitaan kuvan mukaisesti, Kirchhffin virtalain mukaisiksi slmupisteyhtälöiksi saadaan: V V V V j V V 533 j V V V V j V + j + V j4 4 j ( 4 j8)( 4 + j8) j V V j V V j8 3 3 V + j + V V + j V V 5V 533 5V V Kysyttiin impedanssin j4 Ω virtaa, jten kiinnstava ptentiaali n V Ratkaistaan V alemmasta yhtälöstä ja sijitetaan ylempään: V V V sij V 5V V 5V V 5V 533 j5 V 5V j5 V 533 V Täten kysytyksi virraksi saadaan V V j A 8 Vaihtsähköpiirien eveninin ekvivalentti mudstetaan täsmälleen samalla tavalla kuin tasasähköpiireillekin Kska ekvivalentti mudstetaan napjen a ja b suhteen, asetetaan navat tyhjäkäyntiin pistamalla impedanssi Z 4 7
8 Muunnetaan jännitelähde E virtalähteeksi J mpedanssi Z tulee virtalähteen rinnalle, ja lähdevirraksi J saadaan E 5 5 J A A A Z 5 + j J:n suunta n ylöspäin, kska myös jännitelähde E syöttää psitiivista virtaa ylöspäin mpedanssit Z ja Z vat nyt rinnakkain, jten niiden yhdistetyksi impedanssiksi Z saadaan: Z arctan Z Z 5 + cs 9 + sin j Z Z j Ω 5 Virtalähteet ja J vat rinnakkain, ja mlemmat syöttävät virtaa ylöspäin Kirchhffin virtalain perusteella yhdistetyn virtalähteen lähdevirta tt (virta ylöspäin) n tt + J A j j36 A Muunnetaan sitten virtalähde tt jännitelähteeksi E, jtta saadaan yhdistettyä impedanssit Z ja Z 3 Lähdejännitteeksi (plus ylhäällä) saadaan E Z tt V Z ja Z 3 vat sarjassa, jten niiden yhdistetyksi impedanssiksi Z saadaan Z Z + Z 3 8 j + j 8 Ω Nyt n mudstettu kytkennän eveninin ekvivalentti napjen a ja b suhteen Mititetaan vielä impedanssi Z 4 siten, että sen virta n /8 A: E Z Z E Z4 E Z Z + Z j ( 3 j3) 4 j4 Ω 8 8
( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
LisätiedotSATE1140 Piirianalyysi, osa 1 kevät /9 Laskuharjoitus 4: Kerrostamis- ja silmukkamenetelmä
ST1140 Piirianalyysi, osa 1 kevät 018 1 /9 Tehtävä 1. Määritä alla esitetyssä piirissä kuormassa (vastuksessa) R L lämmöksi kuluva teho käyttäen hyväksi kerrostamismenetelmää. 0 kω, R 5 kω, R 0 kω, 0 kω,
Lisätiedot2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )
DEE- Piirianalyysi, kesäkurssi, harjoitus (3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t t () ()()
LisätiedotHarjoitus 5 / viikko 7
DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet
LisätiedotLuento 4 / 12. SMG-1100 Piirianalyysi I Risto Mikkonen
SMG-00 Piirianalyysi I Luento 4 / Kerrostamismenetelmä Lineaarisuus = Additiivisuus u u y y u + Homogeenisuus u y y Jos verkossa on useita energialähteitä, voidaan jokaisen lähteen vaikutus laskea erikseen
LisätiedotSilmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2 Verkon systemaattinen ratkaisu Muodostetaan
LisätiedotErään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä
LisätiedotJännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:
DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16
LisätiedotLuento 6. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä
LisätiedotFy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6
Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
LisätiedotLisämateriaalia: tilayhtälön ratkaisu, linearisointi. Matriisimuuttujan eksponenttifunktio:
Lisämateriaalia: tilayhtälön ratkaisu, linearisinti Matriisimuuttujan ekspnenttifunkti: Kun A n neliömatriisi, niin määritellään 1 1 1 e I ta t A t A t A 2 6 i! At 2 2 3 3 i i jnka vidaan tdistaa knvergivan
LisätiedotVIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
Lisätiedot1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
LisätiedotSATE.1040 Piirianalyysi IB syksy /8 Laskuharjoitus 1: Ohjatut lähteet
STE. iirianalyysi syksy 6 /8 Tehtävä. Laske jännite alla olevassa kuvassa esitetyssä piirissä. Ω, Ω, Ω,, E V, E V E E Kuva. iirikaavio tehtävään. atkaisu silmukkamenetelmällä: E E Kuva. Tehtävän piirikaavio
LisätiedotDEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä
DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,
LisätiedotAktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
Lisätiedot2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?
SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee
Lisätiedotpienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on
5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,
Lisätiedot14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
LisätiedotSähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
LisätiedotKatso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
LisätiedotSÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotLuento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotC 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat
S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
LisätiedotSÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotThéveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2
Théveninin teoreema Vesa Linja-aho 3.0.204 (versio.0) Johdanto Portti eli napapari tarkoittaa kahta piirissä olevaa napaa eli sellaista solmua, johon voidaan kytkeä joku toinen piiri. simerkiksi auton
LisätiedotKuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt
LisätiedotKolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015
Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä
LisätiedotSMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)
LisätiedotELEC-C3230 Elektroniikka 1. Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit)
1 ELEC-C3230 Elektroniikka 1 Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit) 1 luennon pääaiheet Motivointi Piirianalyysin kertaus Vahvistinmallinnus (liuku 2. luentoon) 2 https://www.statista.com/outlook/251/100/consumer-electronics/worldwide
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotRISTIKKO. Määritelmä:
RISTIKKO Määritelmä: Kitkattmilla nivelillä tisiinsa yhdistettyjen sauvjen mudstamaa rakennetta santaan ristikksi. Ristikn sauvat vat rakennesia, jtka ttavat vastaan vain vet tai puristusrasituksen. Js
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotTehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
LisätiedotKun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotKirchhoffin jännitelain perusteella. U ac = U ab +U bc U ac = U ad +U dc. U ac = R 1 I 12 +R 2 I 12 U ac = R 3 I 34 +R 4 I 34, ja I 34 = U ac
1.1 a U ac b U bd c voimessa siltakytkennässä tunnetaan resistanssit,, ja sekä jännite U ac. Laske jännite U bd kun 30 Ω 40 Ω 40 Ω 30 Ω U ac 5V. d U ab U ac U bc Kirchhoffin jännitelain perusteella I 12
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
LisätiedotFYSP1082/3 Vaihtovirtakomponentit
Sami Antero Yrjänheikki sami.a.yrjanheikki@student.jyu.fi 14.5.1999 FYSP1082/3 Vaihtovirtakomponentit Työ mitattu: 17.5.2019 Ohjaava assistentti: Artturi Pensasmaa Työ jätetty tarkastettavaksi: Abstract:
LisätiedotOmnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotRCL-vihtovirtapiiri: resonanssi
CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
LisätiedotHarjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
LisätiedotLuento 2. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
Lisätiedot1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
LisätiedotSinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
LisätiedotHarjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
LisätiedotSUORAN SAUVAN VETO TAI PURISTUS
SUORAN SAUVAN VETO TAI PURISTUS Kuva esittää puhtaan vedn tai puristuksen alaista suraa sauvaa Jännityskentän resultantti n N ( y, z)da Tietyin edellytyksin n pikkileikkauksen jännityskenttä tasainen,
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä
Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotSähkömagneettinen induktio
Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches
LisätiedotELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla
Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
LisätiedotTA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11
TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11 Vesa Linja-aho Metropolia 7. syyskuuta 2011 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta 2011 1 / 123 Sisällysluettelo
LisätiedotFlash ActionScript osa 2
Liiketalus syksy 2012 Flash ActinScript sa 2 Scripti-kieli Skriptikieli n tarkitettu skriptien eli kmentsarjjen tekemiseen. lyhyitä hjeita, siitä kuinka svelluksen tulisi timia Skripteillä autmatisidaan
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotLuento 2. SMG-2100 Sähkötekniikka Risto Mikkonen
SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien
SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä
LisätiedotElektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia
Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin
LisätiedotFC HONKA AKATEMIAN ARVOT
FC HONKA AKATEMIAN ARVOT JOHDANTO... 3 FC HONKA AKATEMIAN ARVOT... 4 YHTEISÖLLISYYS & YKSILÖ... 5 MEIDÄN SEURA, TOIMIMME YHDESSÄ, VOITAMME YHDESSÄ... 5 YKSILÖN KEHITYS JA YKSILÖN ONNISTUMISET PARANTAVAT
Lisätiedot3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa
. Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa
LisätiedotR 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta.
D-000 Pranalyys Harjotus 3 / vkko 5 4.4 Laske kuvan vrta käyttäen energalähteden muunnoksa. Tarkotuksena on saada energalähteden muutokslla ja yhdstämsllä akaan yksnkertanen pr, josta vo Ohmn lan avulla
LisätiedotTEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
LisätiedotPieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.
Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotMonisilmukkainen vaihtovirtapiiri
virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen
LisätiedotDEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
LisätiedotMagneettikenttä ja sähkökenttä
Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon
Lisätiedot( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
Lisätiedot