Kenguru 2011 Student (lukion 2. ja 3. vuosi)
|
|
- Marja Juusonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kengurulikan pituus: Irrta tämä vastauslmake tehtävämnisteesta. Merkitse tehtävän numern alle valitsemasi vastausvaihteht. Jätä ruutu tyhjäksi, js et halua vastata jhnkin kysymykseen. Arvata ei kannata, väärästä vastauksesta tulee miinuspisteitä 1/4 tehtävän pistemäärästä! TEHTÄVÄ VASTAUS TEHTÄVÄ VASTAUS TEHTÄVÄ VASTAUS
2 sivu / 8 3 pistettä 1. Jalkapallseura FC Kangar teki klmessa ttelussa yhteensä klme maalia. Vastustajat tekivät näissä tteluissa yhteensä vain yhden maalin. Kangar vitti näistä tteluista yhden, hävisi yhden ja pelasi yhden tasan. Mikä li tuls siinä ttelussa, jnka Kangar vitti? (A) -0 (B) 3-0 (C) 1-0 (D) -1 (E) 3-1. Kuvin kirjitetaan luku jkaisen pisteen paikalle siten, että jkaisen janan päätepisteissä levien lukujen summa n sama. Kaksi lukua n kirjitettu valmiiksi. Mikä luku tulee x:n paikalle? (A) 1 (B) 3 (C) 4 (D) 5 (E) tarvitaan lisätietja 3. Klme kuljettajaa sallistui kilpa-ajn: Michael, Fernand ja Sebastian. Heti lähdön jälkeen Michael li jhdssa, Fernand tisena ja Sebastian klmantena. Kilpailun aikana Michaelin ja Fernandn keskinäinen paremmuusjärjestys vaihtui 9 kertaa, Fernandn ja Sebastianin 10 kertaa sekä Michaelin ja Sebastianin 11 kertaa. Missä järjestyksessä kuljettajat tulivat maaliin? (A) Michael, Fernand, Sebastian (B) Fernand, Sebastian, Michael (C) Sebastian, Michael, Fernand (D) Sebastian, Fernand, Michael (E) Fernand, Michael, Sebastian 4. Jkainen kuvan alue väritetään yhdellä värillä jk punaiseksi (P), vihreäksi (V), siniseksi (S) tai keltaiseksi (K). Klme aluetta n j väritetty. Tisissaan kiinni levat alueet vat aina erivärisiä. Mikä väri tulee kirjaimella X merkittyyn alueeseen? (A) punainen (B) sininen (C) vihreä (D) keltainen (E) ei vi päätellä näillä tiedilla
3 sivu 3 / 8 5. Tiedetään, että 15 x y ja Kuinka paljn n xy? (A) 5 (B) lg 15 lg15 3 (C) lg 47 (D) 7 (E) Ollessaan laivamatkalla Jni yritti piirtää kartan ktikylästään, mutta merenkäynti li kvaa ja laiva keinui. Hän nnistui piirtämään neljä katua, niiden seitsemän risteystä ja ystäviensä talt. Oikeasti Nulikatu, Naulakatu ja Viivainkatu vat kuitenkin aivan suria. Neljäs katu n Mutkatie. Kuka asuu Mutkatiellä? (A) David (B) Jere (C) Mikk (D) Sami (E) ei vida tietää tämän kartan perusteella 7. Kaikki nelinumeriset luvut, jiden numeriden summa n 4, luetellaan suurimmasta pienimpään. Kuinka mnes luku listassa n 011? (A) 6. (B) 7. (C) 8. (D) 9. (E) Oheinen kuvi kstuu säännöllisestä kuusikulmista, jnka sivun pituus n yksi, sekä kuudesta klmista ja kuudesta neliöstä. Mikä n kuvin piiri? 3 (A) 6(1 ) (B) 6(1 ) (C) 1 (D) 6 3 (E) 9
4 sivu 4 / lasta lähti perheineen lmamatkalle laskettelemaan. Kuudella heistä li mukanaan täsmälleen yksi sisarus, yhdeksällä täsmälleen kaksi sisarusta ja neljällä täsmälleen klme sisarusta. Muilla lapsilla ei llut sisaruksia mukanaan. Kuinka mnta perhettä matkalle lähti yhteensä? (A) 19 (B) 5 (C) 31 (D) 36 (E) Surakulmin mutinen paperinpala kierretään suran ympyrälieriön ympärille. Sitten paperi ja lieriö leikataan kuvan mukaisesti taslla, jka kulkee pisteiden X ja Y kautta. Paperin alempi pulisk levitetään. Miltä näistä se visi näyttää? (A) (B) (C) (D) (E) 4 pistettä 11. Jesse kirjitti taululle parittmat luvut luvusta 1 lukuun 011. Bb pyyhki pis kaikki klmella jalliset. Kuinka mnta lukua taululle jäi? (A) 335 (B) 336 (C) 671 (D) 1005 (E) Veljekset Andrej ja Bran kuuluvat shakkikerhn. He kertvat (ttuudenmukaisesti) seuraavaa: Andrej: Kaikki kerhmme jäsenet viittä lukuun ttamatta vat pikia. Bran: Jkaisessa kerhn jäsenistä mudstetussa kuuden hengen ryhmässä n ainakin neljä tyttöä. Kuinka mnta jäsentä kerhssa n? (A) 6 (B) 7 (C) 8 (D) 1 (E) 18
5 sivu 5 / Ämpärissä n pallja, jihin n kuhunkin kirjitettu eri psitiivinen kknaisluku. 30 pallssa n kuudella jallinen luku, 0 pallssa seitsemällä jallinen luku ja 10 pallssa n 4:lla jallinen luku. Kuinka mnta pallja n vähintään? (A) 30 (B) 40 (C) 53 (D) 54 (E) Kuvassa n nelikulmi PQRS, jlle pätee PS =SR, ja ST = 5. Mikä n nelikulmin PQRS pinta-ala? (A) 0 (B),5 (C) 5 (D) 7,5 (E) Klmesta surakulmista halutaan rakentaa ilman aukkja tai päällekkäisyyksiä suurempi surakulmi. Yhden surakulmin mitat vat 7 x 11 ja tisen 4 x 8. Klmannesta surakulmista halutaan alaltaan mahdllisimman suuri. Mitkä vat sen mitat? (A) 1 x 11 (B) 3 x 4 (C) 3 x 8 (D) 7 x 8 (E) 7 x Lentyhtiö ei laskuta tiettyyn kilrajaan asti matkatavarista mitään. Jkaisesta tämän ylittävästä kilsta maksetaan kiinteä hinta. Herra ja ruva Matka maksivat 60 kg matkatavaristaan yhteensä 3 eura. Herra Kulkuri jutui maksamaan samasta kilmäärästä 10,50. Kuinka paljn matkatavarita yksin matkustava saa viedä ilmaiseksi? (A) 10 kg (B) 18 kg (C) 0 kg (D) 5 kg (E) 39 kg 17. Max ja Hug heittivät kurallisen nppia selvittääkseen, kumpi tiskaa. Js ei tule yhtään kuutsta, Max tiskaa; js kuutsia tulee tasan yksi, Hug tiskaa; muussa tapauksessa ei tiskata llenkaan. Kuinka mntaa nppaa pitää heittää, jtta kummallakin lisi yhtä suuri tdennäköisyys päätyä tiskaamaan? (A) 3 (B) 5 (C) 8 (D) 9 (E) 17
6 sivu 6 / Mike haluaa kirjittaa 3 x 3 ruudukn jka ruutuun kknaisluvun siten, että jkaisen x ruudukn lukujen summa n 10. Neljä numera n j kirjitettu. Mikä seuraavista visi lla puuttuvien lukujen summa? (A) 9 (B) 10 (C) 1 (D) 13 (E) ei mikään edellä mainituista 19. Kuvassa n klme vaakasuraa suraa ja klme niitä leikkaavaa, keskenään yhdensuuntaista suraa. Kumpikin kuvan ympyrä sivuaa neljää suraa kuvan mukaisesti. Varjstettujen alueiden alat vat kuvan mukaisesti X, Y ja Z. Kk suunnikkaan PQRS ala n W. Mikä n pienin lukumäärä alja X, Y, Z ja W, jiden tietäminen riittää alan T selvittämiseen? (A) 1 (B) (C) 3 (D) 4 (E) alaa T ei vi päätellä alista X, Y, Z ja W. 0. Kuinka mni yhtälöiden,,,,,,, kuvaajista esiintyy alle levassa krdinaatistssa? (A) ei yksikään (B) (C) 4 (D) 6 (E) kaikki 8
7 sivu 7 / 8 5 pistettä 1. Autn takalasin pyyhkijä kstuu sulasta RW ja sen kanssa yhtä pitkästä varresta OR, jiden välinen kulma n vaki α. Pyyhkijä kääntyy akselinsa O ympäri kuvan mukaisesti ja puhdistaa tummennetun alueen. Kuinka suuri n puhdistetun alueen ikean reunan ja nurkkaan piirretyn kaarevan san tangentin välinen kulma β? (A) 70 (B) 180 (C) 70 (D) 90 (E) 180. Kuusikulmin sivut PQ, QR, RS, ST, TU ja UP vat kaikki saman ympyrän tangentteja. Sivujen PQ, QR, RS, ST ja TU pituudet vat tässä järjestyksessä 4, 5, 6, 7 ja 8. Kuinka pitkä n sivu UP? (A) 9 (B) 8 (C) 7 (D) 6 (E) ei vida päätellä näillä tiedilla 3. Anni piirsi tavanmaiseen y ax -tasn pisteen A = (1, -10) ja sen kautta kulkevan paraabelin bx c. Sitten hän repi paperin ja jäljellä jäi vain kuvassa näkyvä palanen. Mikä seuraavista väittämistä visi lla väärä? (A) a > 0 (B) b < 0 (C) a + b + c < 0 (D) b 4ac (E) c < 0 4. Tutkitaan lukua 100 pienempiä psitiivisia kknaislukuja x, jille pätee, että x 81 n jallinen luvulla 100. Mikä n kaikkien tällaisten lukujen summa? (A) 00 (B) 100 (C) 90 (D) 81 (E) 50
8 sivu 8 / 8 5. Lauseke K A N G A R O O G A M E n kahden tuln samäärä, jssa eri kirjaimet vastaavat eri numerita. Samaa kirjainta vastaa jka khdassa sama numer. Mikään numerista ei le nlla. Mikä n pienin psitiivinen kknaislukuarv, jka lausekkeella vi lla? (A) 1 (B) (C) 3 (D) 5 (E) 7 6. Funktijn f1 ( x) x ja tteuttaa seuraavat kaksi ehta: 1 fn 1( x). Minkä arvn saa f 011(011)? 1 f ( x) n (A) 011 (B) (C) (D) 1 (E) Olkt a, b ja c psitiivisia kknaislukuja, jille pätee luvulla abc n vähintään (mukaan lukien 1 ja abc)? a 3 b 3c 5. Kuinka mnta jakajaa (A) 30 (B) 49 (C) 60 (D) 77 (E) x 5 -ruudukkn kirjitetaan kaksikymmentä keskenään erisuurta psitiivista kknaislukua kukin maan ruutuunsa. Kahdella vierekkäisellä luvulla (eli luvuilla, jiden ruuduilla n yhteinen sivu) tulee lla aina yhteinen tekijä, jka n suurempi kuin 1. Merkitään kirjaimella n suurinta taulukkn tulevaa lukua. Mikä n luvun n pienin mahdllinen arv? (A) 1 (B) 4 (C) 6 (D) 7 (E) Laatikssa n punaisia ja vihreitä pallja. Js tamme laatiksta sattumanvaraisesti kaksi palla, ne vat samaa väriä tdennäköisyydellä 1. Mikä seuraavista visi lla palljen kknaismäärä? (A) 81 (B) 101 (C) 1000 (D) 011 (E) Suuri 3 x 3 x 3 -kuuti kstuu 7 identtisestä pikkukuutista. Kuuti leikataan taslla, jka kulkee suuren kuutin keskipisteen kautta ja n khtisurassa yhtä sen avaruuslävistäjää vastaan. Kuinka mntaa pikkukuutita tas leikkaa? (A) 17 (B) 18 (C) 19 (D) 0 (E) 1
Kenguru 2011 Student RATKAISUT (lukion 2. ja 3. vuosi)
sivu 1 / 14 3 pistettä 1. Jalkapalloseura FC Kangaroo teki kolmessa ottelussa yhteensä kolme maalia. Vastustajat tekivät näissä otteluissa yhteensä vain yhden maalin. Kangaroo voitti näistä otteluista
LisätiedotKenguru 2011 Junior (lukion 1. vuosi)
sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
LisätiedotKenguru 2011 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
LisätiedotGeometrinen piirtäminen
Gemetrinen piirtäminen Nimet: Piirtäkää gemetrisesti nelikulmi, jnka kaikki sivut vat yhtä pitkät. Valmistautukaa selittämään muille, miksi piirtämistapa timii. Opettajalle Ehdtus tunnin rakenteesta: Alustusvaihe
LisätiedotKenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
LisätiedotOngelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?
Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse
LisätiedotOngelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?
Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse
Lisätiedotpienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on
5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,
LisätiedotKenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)
Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotKenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
LisätiedotFy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6
Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen
LisätiedotAMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan ke 5.6.014 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Keaika n tuntia (kl 1:00 14:00). Kkeesta saa pistua aikaisintaan kl 1:30..
LisätiedotMAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB
MAA5 HARJOITUKSIA 1 Olkn ABCD mielivaltainen nelikulmi Merkitse siihen vektrit a) AB, b) CA ja DB 2 Neljäkäs eli vinneliö n suunnikkaan erikistapaus Mitkä seuraavista väitteistä vat tsia neljäkkäässä ABCD:
LisätiedotTehtävä 1 2 3 4 5 6 7 Vastaus
Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos
LisätiedotKenguru 2017 Benjamin (6. ja 7. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saat 3, 4 tai 5 pistettä.
LisätiedotKenguru 2019 Cadet (8. ja 9. luokka)
Sivu 0 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Tunnistekoodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse vastaus tehtävän numeron alle. Oikeasta vastauksesta saa 3, 4 tai
LisätiedotKenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotHarjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????
MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä
LisätiedotKenguru 2012 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotKenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotKenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5
Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
LisätiedotKenguru 2016 Cadet (8. ja 9. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotRISTIKKO. Määritelmä:
RISTIKKO Määritelmä: Kitkattmilla nivelillä tisiinsa yhdistettyjen sauvjen mudstamaa rakennetta santaan ristikksi. Ristikn sauvat vat rakennesia, jtka ttavat vastaan vain vet tai puristusrasituksen. Js
LisätiedotVIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
LisätiedotLisää unkarilaisia matematiikan tehtäviä koululaisille
Lisää unkarilaisia matematiikan tehtäviä kululaisille Käännös: Meri Kähkönen. Gemetria. Paperista leikatun klmin sivujen pituudet vat 8 cm, 0 cm ja cm. Klmi taitetaan pitkin yhden kulman läpi kulkevaa
LisätiedotONLINE-MATIKKALUOKKA YLÄKOULULAISILLE
MIKÄ ON ONLINE-MATIKKALUOKKA? Online-lukka n kerran viikssa kkntuva ryhmä, jssa kerrataan verkn välityksellä yläkulun matematiikan asiita. Jkaisella tapaamiskerralla n ma teemansa, jhn paneudutaan kkeneen
LisätiedotKenguru 2015 Cadet (8. ja 9. luokka)
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotONLINE-MATIKKALUOKKA YLÄKOULULAISILLE
MIKÄ ON ONLINE-MATIKKALUOKKA? Online-lukka n kerran viikssa kkntuva ryhmä, jssa kerrataan verkn välityksellä yläkulun matematiikan asiita. Jkaisella tapaamiskerralla n ma teemansa, jhn paneudutaan kkeneen
Lisätiedot102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
LisätiedotKenguru 2019 Benjamin 6. ja 7. luokka
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai
LisätiedotPERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotKenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5
Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotKenguru 2015 Student (lukiosarja)
sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotExcel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä
Excel 2013:n käyttö kirjallisen raprtin, esim. työselstuksen tekemisessä Sisällysluettel EXCEL-TAULUKKOLASKENTAOHJELMAN PERUSTEET... 2 1. PERUSASIOITA... 2 2. TEKSTIN KIRJOITTAMINEN TAULUKKOON... 3 3.
LisätiedotKenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa
Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Lisätiedot3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa
. Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa
LisätiedotKenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)
Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotKenguru 2017 Student lukio
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
Lisätiedot4. Oheisessa 4x4 ruudukossa jokainen merkki tarkoittaa jotakin lukua. Mikä lukua salmiakki vastaa?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 30.1.2015 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
LisätiedotKenguru 2013 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
LisätiedotKenguru 2019 Ecolier 4. ja 5. luokka
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Tunnistekoodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
LisätiedotLieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen
LisätiedotKenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)
Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotTämä ruutu näkyy ainoastaan esikatselutilassa.
FINLAND_Decisin_Making_March_3_4cuntry_study(1) Tämä kysely n sa neljän maan vertailututkimusta, jssa tutkitaan päätöksenteka lastensujelussa Nrjassa, Sumessa, Englannissa ja Yhdysvallissa. Samat kysymykset
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotFlash ActionScript osa 2
Liiketalus syksy 2012 Flash ActinScript sa 2 Scripti-kieli Skriptikieli n tarkitettu skriptien eli kmentsarjjen tekemiseen. lyhyitä hjeita, siitä kuinka svelluksen tulisi timia Skripteillä autmatisidaan
Lisätiedot4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
LisätiedotLisämateriaalia: tilayhtälön ratkaisu, linearisointi. Matriisimuuttujan eksponenttifunktio:
Lisämateriaalia: tilayhtälön ratkaisu, linearisinti Matriisimuuttujan ekspnenttifunkti: Kun A n neliömatriisi, niin määritellään 1 1 1 e I ta t A t A t A 2 6 i! At 2 2 3 3 i i jnka vidaan tdistaa knvergivan
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
Lisätiedot1 Geometrian käsitteitä 3. Suorat ja kulmat 3. Yksikönmuunnokset ja pyöristäminen 13. Yhdenmuotoisuus 19. Kolmiot 34. Kertaustehtäviä 47
Sisällysluettel Gemetrian käsitteitä Surat ja kulmat Yksikönmuunnkset ja pyöristäminen Yhdenmutisuus 9 Klmit 4 Kertaustehtäviä 47 Taskuvit 5 Pythagraan lause 5 Trignmetriaa 67 Mnikulmit 78 Ympyrä 9 Sektri
LisätiedotKenguru 2011 Benjamin (6. ja 7. luokka)
sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotAjankohtaiskatsaus, Peltotuki 2016.1
Ajankhtaiskatsaus, Pelttuki 2016.1 Sftsal Oy huhtikuu 2016 Seuraa Pelttuen alkuruudun Tiedtteet-timinta ja sivustn www.sftsal.fi ajankhtaistiedtteita! Lyhyesti Muista palauttaa 5 vuden viljelysuunnitelma
LisätiedotME-C2400 Vuorovaikutustekniikan studio
Luent 22.11.2016 ME-C2400 Vurvaikutustekniikan studi Tilastanalyysiä (liittyen tehtävään 2A): Kuinka tarkkaa n viivan piirtäminen? Tapi Takala http://www.cs.hut.fi/~tta/ Input-menetelmän tutkiminen Kuinka
LisätiedotKenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)
Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotKenguru 2016 Benjamin (6. ja 7. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotMAA 9. HARJOITUSTEHTÄVIÄ
MAA 9. HARJOITUSTEHTÄVIÄ 1. Surakulmaisessa klmissa n 7. kulma ja tämän vastainen kateetti n 5 mm. Laske hyptenuusa ja viereinen kateetti.. Surakulmaisessa klmissa n 74 kulma ja tämän viereinen kateetti
LisätiedotKenguru 2019 Cadet ratkaisut (8. ja 9. luokka)
Sivu 0 / 16 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse vastaus tehtävän numeron alle. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä. Jokaisessa tehtävässä
LisätiedotToimitsijaohjeet. Kilpailusäännöt 34 Toimitsijat. Kilpailusäännöt 35 Pelaajaluettelo. Kilpailusäännöt 36 Ottelupöytäkirja
Timitsijahjeet Kilpailusäännöt 34 Timitsijat Vastuujukkueen n nimettävä kuhunkin tteluun pätevät, 15 vutta täyttäneet timitsijat, jista vähintään yksi n käynyt liitn timitsijakulutuksen. Liitn timitsijakulutuksen
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotKenguru 2016 Student lukiosarja
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotKenguru 2018 Cadet (8. ja 9. luokka)
sivu 0 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
LisätiedotKenguru 2015 Cadet Ratkaisut
sivu 1 / 16 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotKenguru 2013 Benjamin sivu 1 / 7 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa
Kenguru 2013 Benjamin sivu 1 / 7 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotFysiikan labra Powerlandissa
Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät
LisätiedotPubMed pikaopas. 1. Yksinkertainen haku, haku vapain sanoin
PubMed pikapas 1. Yksinkertainen haku 2. Rajaukset 3. Advanced Search 4. Haku MeSH-termein 5. Hakutulksen käsittely, tulstus ja lajittelu 6. Tietyn viitteen etsiminen 1. Yksinkertainen haku, haku vapain
LisätiedotKenguru 2012 Ecolier sivu 1 / 7 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa
Kenguru 2012 Ecolier sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotKenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)
sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa
LisätiedotKenguru 2017 Benjamin (6. ja 7. luokka)
sivu 1 / 15 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saat 3, 4 tai 5
LisätiedotHelsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13
Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3
Lisätiedot27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
LisätiedotKenguru 2018 Student lukio
sivu 0 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
Lisätiedota b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
LisätiedotKenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6
Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotKaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 1.2.2013 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
LisätiedotCMU 119 CMU 128 CMU 119 +N CMU 155 CMU 128 +N. Asennusohje Ohjelmoitavat terrestiaalipäävahvistimet. SSTL n:o 75 631 58
Asennushje Ohjelmitavat terrestiaalipäävahvistimet CU 119 SSTL n: 75 631 58 CU 128 CU 119 N SSTL n: 75 631 60 SSTL n: 75 631 59 CU 155 CU 128 N SSTL n: 75 631 62 SSTL n: 75 631 61 13 14 4 5 3 2 6 7 295
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotHilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
LisätiedotMAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92
MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,
LisätiedotHelsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
LisätiedotC. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
Lisätiedot