DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

Koko: px
Aloita esitys sivulta:

Download "DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi"

Transkriptio

1 DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

2 LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa. Suhteellisen liikkeen yhtälöt. Jäykän kappaleen partikkelin nopeus ja kiihtyvyys. Jäykän kappaleen suhteellinen liike.

3 KERTAUS

4 KERTAUS: JÄYKKÄ KAPPALE Kappalekoordinaatisto (kuvassa akselit x, y ja z) on sidottu liikkuvaan kappaleeseen, joten sen kanta ei ole vakio (origo nk. mielivaltaisessa siirtopisteessä). Kappaleen yleinen siirtymä voidaan esittää suorittamalla sen (1) siirtopisteen translaatio ja (2) rotaatio siirtopisteen kautta kulkevan suoran ympäri. z Z C ρ CP y r C Y x P r = r C + ρ CP X

5 KERTAUS: JÄYKKÄ KAPPALE Kappalekoordinaatisto helpottaa kappaleeseen vaikuttavien voimien, kuten esimerkiksi ilmanvastuksen tai lentokoneen nosteen kuvaamista. Jatkossa myös huomataan: jäykän kappaleen liikeyhtälöiden käsittely helpottuu erittäin paljon oikein valitun kappalekoordinaatiston avulla. z Z C ρ CP y r C Y x P r = r C + ρ CP X

6 KERTAUS: KULMA-ASEMA Kulma-asema (ei ole vekori): 3 parametria: esim. kuvan ϕ, θ, Ψ Kulmanopeus (vektori): ω = ω(ϕ, θ, Ψ, ϕ, θ, Ψ) Kulmakiihtyvyys (vektori): α = α(ϕ, θ, Ψ, ϕ, θ, Ψ) (= ω) ϕ = phi θ = theta Ψ = psi ξ = xi η = eta ζ = zeta

7 KERTAUS: EULERIN KULMAT JA 1. ROTAATIO (PRESESSIO) Z, z Perusrotaatio Z-akselin ympäri: y cos ϕ sin ϕ 0 L(ϕ) Z = sin ϕ cos ϕ ϕ Apukoordinaatisto x y z (i j k -kanta): Y Käytetään apuna rotaatioiden konstruoimisessa. x ja y säilyvät xy-tasossa. X x i j k I = L(ϕ)Z J K

8 KERTAUS: EULERIN KULMAT JA 2. ROTAATIO (NUTAATIO) ζ θ η Perusrotaatio x -akselin ympäri: L(θ) x = 0 cos θ sin θ 0 sin θ cos θ e ξ e η e ζ x, ξ = L(θ) x i j k Välikoordinaatisto ξηζ (e ξ e ηe ζ -kanta): Ajatellaan yleensä kiinnitetyksi tarkasteltavaan kappaleeseen. ζ-akseli yhtyy usein kappaleen symmetria-akseliin. Helpottaa usein liikkeen kuvaamista. I = L(θ) x L(ϕ) Z J K (huomaa, että L(θ) x tekee perusrotaation L(ϕ) Z :n kääntämässä koordinaatistossa.)

9 KERTAUS: EULERIN KULMAT JA 3. ROTAATIO (SPINNI) ζ, z y η Perusrotaatio ζ-akselin ympäri: cos Ψ sin Ψ 0 L(Ψ) ζ = sin Ψ cos Ψ Ψ i j = L(Ψ) ζ k e ξ e η e ζ ξ x Kappalekoordinaatisto xyz (ijk-kanta): = L(Ψ) ζl(θ) x ajatellaan yleensä kiinnitetyksi tarkasteltavaan kappaleeseen. z-akseli yhtyy usein kappaleen symmetria-akseliin. välikoordinaatisto ei spinnaa, kappale spinnaa. i j k x- ja y-akselit pysyvät ξη-tasossa. I = L(Ψ) ζl(θ) x L(ϕ) Z J K

10 KERTAUS: EULERIN KULMAT JA KAIKKI ROTAATIOT ζ, z θ ϕ y Ψ x η Saatiin kokonaisuudessaan kappaleja inertiaalikoordinaatiston välinen yhteys: i I j = L(Ψ) ζl(θ) x L(ϕ) Z J k K Kertomalla matriisit auki, saadaan alla esitetty yhteys koordinaatistojen välille. ξ i cϕcψ cθsϕsψ cψsϕ cθcϕsψ sψsθ I j = cθcψsϕ cϕsψ cθcψcϕ sϕsψ cψsθ J k sϕsθ cϕsθ cθ K

11 KERTAUS: EULERIN KULMAT JA KULMANOPEUDET ζ,z Ψ θ φ y η φ Ψ θ ξ x Kappaleen kulmanopeus ω = ω( Ψ, θ, ϕ, Ψ, θ, ϕ) on puolestaan eri kannoissa: ω =( θ Φ + Ψ θ φ) +( θ φ Ψ θ φ) +( φ + Ψ θ) Inertiaali-k: ω =( θcφ + Ψsθsϕ)I ω = + θ ξ ( + φ θ η +( Ψ + φ θ) + ( ϕ ζ + Ψcθ)K Väli-k: ω = θe ω =( θ Ψ + φ θ Ψ) +( φ θ Ψ θ Ψ) +( φ θ + Ψ), ξ + ϕsθe η + ( Ψ + ϕcθ)e ζ Kappale-k: ω =( θcψ + ϕsθsψ)i + ( ϕsθcψ θsψ)j + ( ϕcθ + Ψ)k. Nämä esitykset saadaan kantavektoreiden välisiä yhteyksiä (edellä olleet L:t).

12 KERTAUS: ESIMERKKI Oheisen kuvan sauvaan kiinnitetty levy on nivelöity kitkattomasti pisteeseen O. Kappale pyörii symmetria-akselinsa ympäri vakiokulmanopeudella ω s ja pystyakselin ympäri vakiokulmanopeudella ω p. Esitä kappaleen kulmanopeus ja -kiihtyvyys Eulerin kulmiin liittyvässä välikoordinaatistossa ξηζ.

13 DYNAMIIKKA II: L4: JÄYKÄN KAPPALEEN KINEMATIIKKA Arttu Polojärvi

14 OPPIMISTAVOITTEET Tämän luennon jälkeen opiskelija: Ymmärtää kuinka saadaan johdettua yhteys toistensa suhteen liikkeessä olevista koordinaatistoista tehdyt havainnot muutosnopeuksista. Osaa ratkaista suhteellisen liikkeen kaavoja käyttäen aboluuttisen nopeuden ja kiihtyvyyden partikkelille, jonka nopeus ja kiihtyvyys tunnetaan liikkuvassa koordinaatistossa. Osaa soveltaa jäykän kappaleen suhteellisen liikkeen kaavoja ratkaistakseen jäykän kappaleen kulmanopeuden ja -kiihtyvyyden suhteellisiin havaintoihin perustuen.

15 SUHTEELLINEN LIIKE

16 SUHTEELLINEN LIIKE: INVARIANSSI Skalaarit: suuruus säilyy kaikissa kannoissa (esim. massa ei riipu kannasta). Skalaarin aikaderivaatta: ei myöskään riipu kannasta ( ) ( ) da da = (tässä ja jatkossa derivaatta (d/) A on havaitsijan ottama A jne.) A Vektorit: voidaan aina kirjoittaa missä tahansa kannassa ja sen suunta ja suuruus säilyvät vaikkakin komponentit muuttuvat aina valitun kannan mukaan a = a X I + a Y J + a Z K = a x i + a y j + a z k Vektorin aikaderivaatta: voi riippua kannasta (tarkemmin: niiden liikkeestä) ( ) ( ) da da A Huomaa: vektorin komponenttien kertoimet (a X, a x,...) ovat skalaareita. Suhteellinen näkemys: helpottaa usein monimutkaisten systeemien tarkastelua. B B

17 SUHTEELLINEN LIIKE: MUUTOSNOPEUDEN HAVAINNOT Suhteellisen liikkeen tarkastelu yhdistää eri koordinaatistoista tehdyt havainnot: saadaan myös relaatio suhteellisen ja absoluuttisen muutosnopeuden välille. Tarvittavat työkalut: vakiovektorin muutosnopeus ė = ω e, tulon derivointi ja vektorin ja skalaarin invarianssi koordinaatiston muuunnoksen suhteen. Huomaa tässä ensin oletettavan ainoastaan, että havaitsija ajattelee kantansa olevan vakio mjtta ei välttämättä inertiaalikanta (ei oteta vielä liikelakeihin kantaa).

18 SUHTEELLINEN LIIKE: MUUTOSNOPEUDEN HAVAINNOT Ongelma: muodosta yhteys vektorin a muutosnopeuden eri kannoista tehtyjen havaintojen ( ) ( ) da da ja A B välille. Tässä oletetaan A:n ja B:n kannat ovat liikkeessä toistensa suhteen (B:n kannan kulmanopeus Ω A:n kannan suhteen).

19 SUHTEELLINEN LIIKE: MUUTOSNOPEUDEN HAVAINNOT Kirjoitetaan tarkasteltava vektori a kahdessa kannassa IJK ja ijk a = a X I + a Y J + a Z K = a x i + a y j + a z k. Nyt A olettaa IJK-kantansa vakioksi ja derivoi edellistä esitystä ȧ = ȧ X I + ȧ Y J + ȧ Z K = ȧ x i + ȧ y j + ȧ z k + a x i + ay j + az k = ȧ xi + ȧ yj + ȧ zk + a x(ω i) + a y(ω j) + a z(ω k) = ȧ xi + ȧ yj + ȧ zk + ω (a xi + a yj + a zk) }{{}}{{} =(da/) B =ω a ( ) da = A ) + ω a ( da B Viimeisestä yhtälöstä saat myös havainnon (da/) B - vaikuttaako tulos järkevältä?

20 SUHTEELLINEN LIIKE: ABSOLUUTTINEN HAVAINTO A:n ollessa oikeasti inertaalikoordinaatisto, voidaan muutosnopeuden yhtälössä käyttää merkintöjä jossa ȧ = ( ) da A ȧ = ȧ r + ω a, ja ȧ r = ( ) da B ja alaindeksi r viittaa suhteelliseen havaintoon. Usein myös merkitään Ω suhteellisen havainnon koordinatiston kulmanopeudelle inertiaalikoordinaatiston suhteen.

21 SUHTEELLINEN LIIKE: YHTÄLÖT Suhteellisen liikkeen yhtälöt vastaavat seuraavaan ongelmaan: z Z ω C ρ y r C Y x r = r C + ρ P X Pisteen P paikka (paikkavektori ρ), nopeus ja kiihtyvyys mitataan liikkuvassa koordinaatistossa (akselit xyz, ijk-kanta). Tunnettakoon liikkuvan koordinaatiston origon paikka ja liike (paikkavektori r C, kulmanopeus ω) inertiaalikoordinaatistossa (akselit XY Z, IJK-kanta). Mitkä ovat pisteen P absoluuttisen nopeuden ja kiihtyvyyden esitykset?

22 SUHTEELLINEN LIIKE: YHTÄLÖT z Z ω ρ y x Y = + ρ X Derivoimalla edeltä esitystä r = r C + ρ saadaan (kannattaa johtaa ) XY Z ρ Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt Nopeus: Kiihtyvyys: v = ṙ C + ρ r + ω ρ a = r C + ρ r + ω ρ + ω (ω ρ) + 2ω ρ r (alaviite r viittaa suhteellisiin derivaattoihin)

23 SUHTEELLINEN LIIKE: YHTÄLÖIDEN JOHTO Nopeus: v = ṙ = d (r C + ρ) = ṙ Cx I + ṙ Cy J + ṙ Cz K + ρ x i + ρ y j + ρ z k + ρ x i + ρy j + ρz k = ṙ CxI + ṙ CyJ + ṙ CzK + ρ xi + ρ yj + ρ zk + ω (ρ xi + ρ yj + ρ zk) }{{}}{{}}{{} ṙ C ρ r ω ρ eli Kiihtyvyys: v = ṙ C + ρ r + ω ρ a = r = d (ṙ C + ρ r + ω ρ) = r C + ( ρ x i + ρ y j + ρ z k) + ( ρ x i + ρy j + ρz k) + ω (ρ x i + ρ y j + ρ z k) + }{{}}{{}}{{} = ρ r =ω ρ r = ω ρ ω ( ρ xi + ρ yj + ρ zk) + ω (ρ x i + ρy j + ρz k) }{{}}{{} =ω ρ r =ω (ω ρ) eli a = r C + ρ r + ω ρ + ω (ω ρ) + 2ω ρ r

24 SUHTEELLINEN LIIKE: TAPAUS JÄYKKÄ KAPPALE z Z ω ρ y Y x = + ρ X Eli siis jäykälle kappaleelle kappalekoordinaatistosta havainnoituna ρ CP = 0, koska kappaleen partikkeleiden C ja P etäisyys on vakio. Toisin sanoen ρ r = 0 jäykälle kappaleelle.

25 SUHTEELLINEN LIIKE: TAPAUS JÄYKKÄ KAPPALE z Z ω ρ y Y x = + ρ X Koska jäykälle kappaleelle kappalekoordinaatistossa ρ r = 0 Jäykän kappaleen partikkelin partikkelin nopeus ja kiihtyvyys asema: r = r C + ρ CP nopeus: v = ṙ C + ω ρ CP kiihtyvyys: a = r C + ω ρ CP + ω (ω ρ CP ),

26 SUHTEELLINEN LIIKE: ESIMERKKI Z R säteinen kiekko vierii XY -tasolla liukumatta siten, että sen keskipiste O etenee vakionopeudella v = vj. Mikä on tällöin kiekon kulmanopeus ω? Y O P ω v X

27 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE

28 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE: ONGELMA Oheisen kuvan mukainen laiva on aallokon vuoksi liikkeessä s.e. sen kulmanopeus on laivan xyz-kappalekoordinaatistossa ω x (vakio) x-akselin suhteen ja ω y (vakio) y-akselin suhteen. Tarkasteluhetkellä koordinaatistot xyz ja XY Z yhtyvät. Samaan aikan laivan tuulimittari pyörii kulmanopeudella ω (vakio) oman akselinsa ympäri. Mikä on tuulimittarin kulmanopeus ja kulmakiihtyvyys kappalekoordinaatistossa?

29 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Dynamiikan ongelmia helpottamaan vastataan siis seuraavaan kysymykseen: Edellä olevan perusteella saadaan johdettua yhteydet kulmanopeuksien ja - kiihtyvyyksistä tehtyjen havaintojen välille yhteydet. Kuvassa: haetaan B kulmanopeutta ja -kiihtyvyyttä, kun A:n suhteellinen havainto niistä tiedetään ja A:n oman kannan vastaavat tunnetaan inertiaalikoordinaatistossa C. Kulmanopeus: Kulmakiihtyvyys: ω = Ω + ω r α = Λ + α r + Ω ω r Näissä yhtälöissä ω, α B:n kulmanopeus ja -kiihtyvyys (abs.) Ω, Λ A:n kannan kulmanopeus ja -kiihtyvyys (abs., Ω = Λ) ω r, α r A:n havainto B:n kulmanopeudesta ja -kiihtyvyydestä (suht.)

30 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Kuinka saadaan absoluuttinen kulmanopeus ja -kiihtyvyys (ω ja α), jos (1) niistä tehdyt suhteelliset havainnot (ω r ja α r ) ja (2) suhteellisen havainnon tekijän kannan kulmanopeus ja -kiihtyvyys (Ω ja Λ) tunnetaan? Käytetään hyväksi edellä johdettuja yhtälöitä eri havaintojen välillä: ( ) ( ) da da = + Ω a (1) C A ( ) ( ) da da = + ω r a (2) A B ( ) ( ) da da = + ω a (3) C B ja ratkaistaan yhtälön (3) tuntematon absoluuttinen kulmanopeus ω. Tässä a on mielivaltainen vektori.

31 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Käytetään hyväksi edellä johdettuja yhtälöitä eri havaintojen välillä: ( ) ( ) da da = + Ω a (1) C A ( ) ( ) da da = + ω r a (2) A B ( ) ( ) da da = + ω a (3) C B ja ratkaistaan yhtälön (3) tuntematon absoluuttinen kulmanopeus ω. Tässä a on mielivaltainen vektori.

32 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Käytetään hyväksi edellä johdettuja yhtälöitä eri havaintojen välillä: ( ) ( ) da da = + Ω a (1) C A ( ) ( ) da da = + ω r a (2) A B ( ) ( ) da da = + ω a (3) C B ja ratkaistaan yhtälön (3) tuntematon absoluuttinen kulmanopeus ω. Tässä a on mielivaltainen vektori. Sijoita (da/) A yhtälöstä (2) yhtälöön (1) ja vähennä tulos yhtälöstä (3) (ω Ω ω r) a = 0, ja a mielivaltainen ω Ω ω r = 0 ω = Ω + ω r (4)

33 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE Kulmakiihtyvyyden α:n ratkaisemiseksi derivoidaan ω = Ω + ω r ajan suhteen: ( ) ( ) ( ) ( ) ( ) dω dω dωr dω dωr α = = + = + + Ω ω r. C C C Toinen = seuraa suhteellisen liikkeen kaavoista (sijoita yhtälöön (1) ω r a). Muutetaan merkinnät seuraavasti ( ) dω Λ = (= Ω) A:n koordinaatiston absoluuttinen kulmakiihtyvyys. C ( ) dωr α r = A:n havainto B:n kulmakiihtyvyydestä. A Ja saatiin haettu absoluuttinen kulmakiihtyvyys C α = Λ + α r + Ω ω r. A

34 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE: ESIMERKKI Oheisen kuvan mukainen laiva on aallokon vuoksi liikkeessä s.e. sen kulmanopeus on laivan xyz-kappalekoordinaatistossa ω x (vakio) x-akselin suhteen ja ω y (vakio) y-akselin suhteen. Tarkasteluhetkellä koordinaatistot xyz ja XY Z yhtyvät. Samaan aikan laivan tuulimittari pyörii kulmanopeudella ω (vakio) oman akselinsa ympäri. Mikä on tuulimittarin kulmanopeus ja kulmakiihtyvyys kappalekoordinaatistossa?

35 JÄYKÄN KAPPALEEN SUHTEELLINEN LIIKE: ESIMERKKI Kuvan xyz-koordinaatisto pyörii Z-akselin ympäri vakiokulmanopeudella ω p. Hyrrä pyörii samanaikaisesti x-akselin ympäri kulmanopeudella ω s = ω 0 sin ω 0 t (mitattuna xyz-koordinaatistossa), jossa ω 0 on vakio. Lisäksi hyrrän kallistuskulma α vakio. Määritä hyrrän kulmanopeus sekä kulmakiihtyvyys lausuttuina xyz-koordinaatiston kantavektoreiden i, j, k avulla. Käytä jäykän kappaleen suhteellisen liikkeen kaavoja. Jos vertaat tehtävän xyz-koordinaatistoa viime luennolla esitettyihin Eulerin kulmiin liittyviin koordinaatistoihin niin minkä niistä sen sanoisit olevan (apu-,väli- vai kappalekoordinatisto)?

DYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Lyhyt kertaus edellisen luennon asioista. Jäykkä kappale, kappalekoordinaatisto ja kulma-asema. Eulerin kulmat kulma-aseman ja nopeuden

Lisätiedot

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Liikemäärän ja liikemäärän momentin tase. Hyrräyhtälöt. Liikeyhtälöiden muodostaminen. Lagrangen formalismi:

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 1 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Yleisiä asioita syksyn 2015 kurssista. Johdanto: Dynamiikka osana mekaniikkaa ja sen tarkastelukohteet. Dynamiikan ongelmien ratkaiseminen.

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Määritelmiä: yleistetyt koordinaatit, virtuaaliset siirtymät Liike-energian lausekkeita erilaisille

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

Fysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.

Fysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita. 766323A Mekaniikka Mansfield and O Sullivan: Understanding physics kpl 1 ja 2. Näitä löytyy myös Young and Freedman: University physics -teoksen luvuissa 2 ja 3, s. 40-118. Johdanto Fysiikka on perustiede.

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Hitaustensori. Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} )2 x = 1 2 T = 1.

Hitaustensori. Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} )2 x = 1 2 T = 1. Torstai 2.10.2014 1/20 Hitaustensori Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} T = 1 m i ( r i 2 )2 x = 1 m i ( R + ω ri ) 2 2 i i = 1 2 M R 2 + 1 2 ω i I ik

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

KJR-C2002 Kontinuumimekaniikan perusteet, tentti KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö. TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Jäykän kappaleen mekaniikkaa

Jäykän kappaleen mekaniikkaa Jäykän kappaleen mekaniikkaa 29. joulukuuta 2005 Sisältö 1 Johdanto 1 2 Jäykän kappaleen mekaniikka 2 2.1 Pyörivä koordinaatisto...................... 2 2.2 Vakio Ω.............................. 3 2.3

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts. 49 3 VEKTORIT 3.1 VEKTORIN KÄSITE Vektori on suure, jolla suuruuden lisäksi on myös suunta (esim. kiihtyvyys). Skalaari puolestaan on suure, jolla on vain suuruus (esim. tiheys). Vektori graafisesti: Vektorin

Lisätiedot

Luento 4: kertaus edelliseltä luennolta

Luento 4: kertaus edelliseltä luennolta Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

2 LIIKE, JÄNNITYS JA VENYMÄ

2 LIIKE, JÄNNITYS JA VENYMÄ 2 LIIKE, JÄNNITYS JA VENYMÄ 2.1 KAPPALEEN LIIKE... 4 2.2 LAGRANGEN JA EULERIN ESITYSTAVAT... 12 2.3 SIIRTYMÄ... 22 2.4 JÄNNITYS... 25 2.5 VENYMÄ JA VENYMÄNOPEUS... 38 Viikko 45/1 VIIKON 45 OSAAMISTAVOITTEET

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

8 Suhteellinen liike (Relative motion)

8 Suhteellinen liike (Relative motion) 8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ 58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

12. Derivointioperaattoreista geometrisissa avaruuksissa

12. Derivointioperaattoreista geometrisissa avaruuksissa 12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

kertausta Esimerkki I

kertausta Esimerkki I tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Liikkuvan varauksen kenttä

Liikkuvan varauksen kenttä Luku 14 Liikkuvan varauksen kenttä Tässä luvussa tutustutaan liikkuvan varauksen aiheuttamaan kenttään. Asiaa on käsitelty RMC:n luvussa 21 ja CL:n luvussa 13. Jokaisen sähködynaamikon on laskettava ainakin

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot