Luento 9: Pyörimisliikkeen dynamiikkaa

Koko: px
Aloita esitys sivulta:

Download "Luento 9: Pyörimisliikkeen dynamiikkaa"

Transkriptio

1 Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

2 Ajankohtaista

3 Konseptitesti 1 Kysymys F 1 F 3 Seuraavassa kuvassa kaikki voimat ovat yhtä suuria. Mikä voimista kohdistaa suurimman vääntömomentin pisteen O suhteen? F 2 F 4 O 1. F 1 2. F 2 3. F 3 4. F 4 5. Annettu tieto ei riitä

4 Konseptitesti 1 Kysymys F 1 F 3 Seuraavassa kuvassa kaikki voimat ovat yhtä suuria. Mikä voimista kohdistaa suurimman vääntömomentin pisteen O suhteen? F 2 F 4 O 1. F 1 2. F 2 3. F 3 4. F 4 5. Annettu tieto ei riitä

5 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

6 Vääntö Kulmakiihtyvyys on kappaleen pyörimisnopeuden muutos ajan suhteen. Miten voimasta voi seurata pyörivän kappaleen kulmakiihtyvyys? Tarkastellaan voiman aiheuttamaa vääntömomenttia (torque) ja sen yhteyttä kappaleen kulmakiihtyvyyteen Määritellään analogisesti liikemäärän kanssa määritellään liikemäärämomentti (angular momentum) Havaitaan, että liikemäärämomentille pätee yhtä vahva säilymislaki kuin liikemäärällekin ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

7 Vektori- eli ristitulo Kertaus Kahden vektorin ristitulon itseisarvo ~A ~ B = ~ A ~ B sin ' Ristitulovektorin suunta? tulon tekijöitä vastaan: ~A ~ B? ~ A ~ A ~ B? ~ B ~A ~ B ~A ~ B:n suunta oikean käden säännöstä Yhdensuuntaiset tulontekijät (' = 0 tai 180 ) ~ A ~ B = 0 ~A ' ~B ~B ~ A = ~ A ~ B

8 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

9 Vääntömomentti Kuinka voima aiheuttaa tai muuttaa pyörimisliikettä? Voiman suuruuden lisäksi myös voiman vaikutuspiste vaikuttaa Määritellään voiman ~ F vääntömomentti pisteen O suhteen = `F missä ` on voimavektorin ~ F ja voiman vaikutussuoran kohtisuora etäisyys ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

10 Vinosti vaikuttava voima Jos voima ~ F ja vaikutuspisteen paikkavektori ~r eivät ole kohtisuorassa toisiaan vastaan, on vaikutussuoran kohtisuora etäisyys missä ` = r sin on vektorien ~ F ja ~r välinen kulma Tällöin vääntömomentti on = rf sin ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

11 Vääntömomenttivektori Voiman tangentiaalinen komponentti F tan = F sin Sen avulla vääntömomentti saadaan muotoon = rf tan = ~r F ~ Määritellään vääntömomentti yleisessä tapauksessa ~ = ~r F ~ Vääntömomentti ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

12 Voiman komponentit Jäykän kappaleen massapisteeseen m i vaikuttaa kokonaisvoima ~ F i Voima jaetaan komponentteihin pyörimisakselin suhteen Vain tangentiaalinen komponentti aiheuttaa vääntömomenttia akselin y suhteen (radiaalinen komponentti yhdensuuntainen voiman kanssa =) ristitulo nolla) Radan tangentin suunnassa pätee F i,tan = m i a i,tan = m i r i =) i = F i,tan r i = m i r 2 i pyörimisakseli ~F i,y y r i m i ~r i x z ~F i, tan ~F i, rad

13 Newtonin 2. lain analogia Koko kappaleelle pätee X i = X i i Newtonin 2. lain analogia voidaan kirjoittaa tot = I, m i r 2 i = I missä I on kappaleen hitausmomentti, eli massan analogia pyörimisliikkeessä / pyörimisen inertiaominaisuus. Vrt. P F ext = ma Huom! Tämä yhtälö pätee vain jäykän kappaleen pyörimisliikkeessä, taipuminen otettava huomioon eri tavalla (ei tämän kurssin aihepiirissä) = Jäykän kappaleen jokaisella pisteellä sama kulmakiihtyvyys

14 Ulkoiset vääntömomentit Painovoima voidaan redusoida kappaleen massakeskipisteeseen vaikuttavaksi voimaksi M~g Sisäisten voimien (esimerkiksi jännitykset) aiheuttamia vääntömomentteja ei tarvitse huomioida N-III! sisäiset vääntömomentit kumoavat toisensa pareittain Seuraus: Yhtälö voidaan kirjoittaa muodossa X ext = I ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

15 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

16 Erilaisten kappaleiden hitausmomentteja

17 Steinerin sääntö Jäykän kappaleen hitausmomentti riippuu akselista, jonka suhteen hitausmomentti lasketaan Steinerin sääntö eli (parallel-axis theorem) Olkoon I CM on kappaleen hitausmomentti massakeskipisteen kautta kulkevan akselin suhteen Hitausmomentti jonkun pisteen P kautta kulkevan, alkuperäisen akselin kanssa yhdensuuntaisen akselin suhteen on I p = I CM + Md 2, Steinerin sääntö missä d on akselien välinen kohtisuora etäisyys. ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

18 Steinerin säännön todistus Kappaleen massakeskipiste origossa O Akselit kulkevat pisteiden O ja P läpi z-akselin suuntaisesti Pisteiden välisen etäisyyden x-koordinaatti a ja y-koordinaatti b =) d 2 = a 2 + b 2 x i b m CM O y d m i P a y i x Hitausmomentti massakeskipisteen O kautta kulkevan akselin suhteen I O = I CM = X i m i (x 2 i + y 2 i ) ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

19 Todistus jatkuu Hitausmomentti pisteen P kautta kulkevan akselin suhteen on siten I P = X h i m i (x i a) 2 +(y i b) 2 i = X h i m i xi 2 2ax i + a 2 + yi 2 2by i + b 2 i = X X X m i (xi 2 + yi 2 ) 2a m i x i 2b m i y i i i i + X i m i (a 2 + b 2 ) ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

20 Steinerin säännön seuraukset Edellinen voidaan vielä esittää massakeskipisteen koordinaattien avulla I P = X i m i (x 2 i + y 2 i ) 2aMx CM 2bMy CM + X i m i (a 2 + b 2 )= X i m i (x 2 i + y 2 i )+Md 2 Seuraus: kappaleen hitausmomentti aina pienin massakeskipisteen kautta kulkevan akselin suhteen, koska termi Md 2 > 0. Huom! Sääntö ei sovellettavissa, elleivät akselit yhdensuuntaisia. ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

21 Hitausmomentin laskeminen yleisessä tapauksessa Steinerin sääntö varsin rajattu Yleisessä tapauksessa joudutaan käyttämään hitausmomentin määritelmää I = X i m i r 2 i kun kappale koostuu hiukkasista Summaus korvautuu integroinnilla kun kyseessä jatkuva kappale Z I = r 2 dm Hitausmomentti ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

22 Hitausmomentin laskeminen: tilavuusintegraali Koska m = V, niin differentiaalinen massaelementti on dm = dv Lisäksi yleisessä tapauksessa on paikan funktio = (x, y, z) Hitausmomentti on tällöin Z I = r 2 dv = Probleema jakautuu kahteen osaan: miten kappaleen muoto esitetään integraalissa (sinä teet) ja miten integraali lasketaan (tietokone tekee) Ei yleistä ratkaisureseptiä, muutama laskettu esimerkki kalvosetin loppupäässä

23 Hitausmomentin laskeminen: tilavuusintegraali Koska m = V, niin differentiaalinen massaelementti on dm = dv Lisäksi yleisessä tapauksessa on paikan funktio = (x, y, z) Hitausmomentti on tällöin Z ZZZ I = r 2 dv = esim. [r(x, y, z)] 2 (x, y, z) dx dy dz Probleema jakautuu kahteen osaan: miten kappaleen muoto esitetään integraalissa (sinä teet) ja miten integraali lasketaan (tietokone tekee) Ei yleistä ratkaisureseptiä, muutama laskettu esimerkki kalvosetin loppupäässä

24 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

25 Konseptitesti 2 Kysymys L Naruun kiinnitetty tennispallo pyörii vaakatasossa (pyörimisakseli ylöspäin). Kuvaan merkityssä pisteessä pallolle annetaan mailalla pystysuora ylhäältä alaspäin suuntautunut impulssi. Mitä tapahtuu tennispallon liikemäärämomentille ~ L? z y x ω H 1. Se kääntyy +x -suuntaan 2. Se kääntyy x -suuntaan 3. Se kääntyy +y -suuntaan 4. Se kääntyy y -suuntaan 5. Sen suunta pysyy samana, mutta suuruus muuttuu 6. Pallo vaappuu joka suuntaan

26 Konseptitesti 2 Kysymys L Naruun kiinnitetty tennispallo pyörii vaakatasossa (pyörimisakseli ylöspäin). Kuvaan merkityssä pisteessä pallolle annetaan mailalla pystysuora ylhäältä alaspäin suuntautunut impulssi. Mitä tapahtuu tennispallon liikemäärämomentille ~ L? z y x ω H 1. Se kääntyy +x -suuntaan 2. Se kääntyy x -suuntaan 3. Se kääntyy +y -suuntaan 4. Se kääntyy y -suuntaan 5. Sen suunta pysyy samana, mutta suuruus muuttuu 6. Pallo vaappuu joka suuntaan

27 Liikemäärämomentti Kulmaliikemäärä, rörelsemängdmoment, angular momentum Tärkeä! Hiukkasen liikemäärämomentti pisteen O suhteen ~ L = ~r ~p = ~r m~v missä ~r on paikkavektori O:sta lukien Liikemäärämomenttivektorin itseisarvo L = mvr sin ~p? ~r ~p = m~v missä kulma on paikkavektorin ja nopeusvektorin välinen

28 N-II:n analogia Otetaan liikemäärämomentin aikaderivaatta d~ L dt = d~r dt ~p + ~r d~p dt = ~v m~v + ~r d~p dt = ~r d~p dt Jos hiukkaseen vaikuttaa nettovoima ~ F net = d~p/dt d~ L dt = ~r d~p dt = ~r ~ F net = ~! Liikemäärämomentti ja vääntömomentti laskettava saman pisteen suhteen Pätee kaikille hiukkassysteemeille vain ulkoiset vääntömomentit otetaan huomioon d~ L dt = X ~ ext

29 Liikemäärämomentin säilyminen Kun nettovääntömomentti on nolla, niin d~ L/dt = 0 eli ~ L on vakio = Liikemäärämomentin säilymislaki Yhtä yleinen fysikaalinen periaate kuin liikemäärän säilyminen Esimerkiksi jos eristetyn systeemin hitausmomentti muuttuu arvosta I 1! I 2, niin silloin täytyy myös kulmanopeuden muuttua I 1! 1 = I 2! 2 Esimerkiksi karusellit ja vauhtipyörät

30 Harjoitus Tehtävänanto Luoti, jonka massa on m = 10 g, osuu nopeudella v = 400 m s 1 kohtisuoraan oven keskelle ja jää siihen kiinni. Mikä on herkästi saranoidensa varassa kääntyvän oven, jonka leveys on ` = 1 m ja massa M = 15 kg, alkukulmanopeus törmäyksen jälkeen?

31 Ratkaisu Luodin liikemäärämomentti saranan suhteen on ~ L1 = ~r 1 ~p 1 =) L 1 = 0.5m mv. Oven liikemäärämomentti L on törmäyksen jälkeen on L 2 = I! = 1 3 Ml2!. Liikemäärämomentti säilyy =) L 1 = 0.5m mv = L 2 = 1 M`2! 3 =)! = 3 0.5m mv M`2 = 0.40 s 1

32 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

33 Gyroskooppi Kappale pyörii pääakselinsa ympäri eikä siihen vaikuta ulkoisia vääntömomentteja! Pyörimissuunta ja kulmanopeus eivät muutu Gyroskooppi koostuu pyörivästä renkaasta ja tukisysteemistä Tuet sijoitettu s.e. renkaan akseli pystyy pyörimään vapaasti joka suuntaan Gyroskooppia käänneltäessä huomataan että renkaan pyörimisakseli osoittaa aina samaan suuntaan

34 Paikanmääritys Pyörivä systeemi pyrkii säilyttämään pyörimisaskelin suunnan Voidaan käyttää hyväksi suunnistamisessa maan pinnalla Kun gyroskooppi laitetaan pyörimään tiettyyn suuntaan, se pysyy aina samassa asennossa suhteessa avaruuteen Maapallon pyöriessä akselinsa ympäri, kääntyy gyroskoopin akseli maan pinnan suhteen Kun gyroskooppi sitten viedään eri leveyspiirille, saadaan akselin ja maan pinnan välisestä kulmasta paikan leveysaste Lisäksi jos kellonaika eli maan asento tunnetaan, saadaan myös pituuspiiri selville ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

35 Prekessiokulmanopeus Ulkoiset vääntövoimat aiheuttavat gyroskoopin liikemäärämomentin muutoksen vääntömomentin suuntaan d~ L dt = ~ =) d~ L = ~ dt = ~r ~ F dt Liikemäärämomentin pieni muutos d~ L aina vääntömomentin suuntaan Alkutilassa gyroskoopilla liikemäärämomentti ~ L, hetken dt kuluttua se on ~ L + d ~ L = ~ L + ~ dt Tämä vastaa pyörimisakselin kääntymistä kulman d = d ~ L ~ L verran Kääntymiskulman kääntymiskulmanopeus = prekessiokulmanopeus = d dt = L = I!

36 Tason päällä pyörivä hyrrä Kulmanopeus!, liikemäärämomenttivektori hyrrän akselin suuntainen Jos pyörimisakseli muodostaa kulman tason kohtisuoran kanssa ja massakeskipiste hyrrän kärjestä mitattuna on ~r c! Hyrrään kohdistuu ulkoinen vääntömomentti ~ = ~r c M~g, ~ = Mgr c sin ~ kohtisuorassa pyörimisakselia vastaan Hyrrä prekessoi kulmanopeudella = Mgr c sin I! Kulman kasvaessa kasvaa, samoin hyrrän kulmanopeuden! laskiesssa Suuri! =) ei pysy vakiona, vaan muuttuu ajan suhteen = nutaatio

37 Luennon sisältö Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

38 Harjoitus Kappale, jonka massa on m, riippuu köydestä joka on kierretty sylinterinmuotoisen väkipyörän ympärille. Kun kappale päästetään liikkeelle levosta, niin mikä on a) kappaleen kiihtyvyys ja b) köysivoima, kun väkipyörän massa on M ja säde R. ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

39 Ratkaisu Kappaleen liikeyhtälö P F y = mg T = ma Väkipyörän pyörimisyhtälö P O = RT = I Köysi ei liu u: v = R! =) a = R, I = 1 2 MR2 T = I R = a MR2 2R = Ma 2 2 Ma a) ma = mg =) a = mg 2 m + M 2 b) T = Ma 2 = Mmg 2m + M = Mg 2 + M m

40 Esimerkki 1 Laske homogeenisen kiekon hitausmomentti (akseli 1) suhteessa kiekkoa vastaan kohtisuoraan akseliin, joka kulkee kiekon reunan kautta (akseli 2). Akseli 2 Akseli 1 ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

41 Ratkaisu Hitausmomentti suhteessa massakeskipisteen kautta kulkevaan kiekkoa vastaan kohtisuoraan akseliin on I CM = 1 2 MR2 Kiekon reunan pisteen P kautta kulkevan akselin suhteen se on I P = I CM + MR 2 = 3 2 MR2 ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos

42 Esimerkki 2 Laske ohuen homogeenisen sauvan hitausmomentti sitä vastaan kohtisuoran, massakeskipisteen kautta kulkevan akselin suhteen.

43 Ratkaisu Z I CM = r 2 dv, missä r = x dv = Adx ja = M AL =) I CM = ZL/2 L/2 M AL x 2 Adx = 2 M L L = 1 12 ML2

44 Esimerkki 3 Laske homogeenisen sylinterin hitausmomentti sylinterin massakeskipisteen kautta kulkevan, sylinterin päätyä vastaan kohtisuoran akselin suhteen (kuvassa z-akseli).

45 Ratkaisu Z I = r 2 dv, missä r = r, = M R 2 L I = Z R 0 ja dv = 2 Lrdr =) M R 2 L r 2 2 Lrdr = 2M R 2 = 2M R 2 R 4 4 = 1 2 MR2 Z R 0 r 3 dr

46 Esimerkki 4 Laske homogeenisen pallon hitausmomentti pallon massakeskipisteen kautta kulkevan akselin suhteen käyttäen hyväksi homogeenisen kiekon hitausmomentin lauseketta.

47 Ratkaisu Z I = di, missä dz-paksuiselle kiekolle di = 1 2 r 2 dm dm = dv = M V r 2 dz = I = Z 1 2 r 2 3M 4 R 3 r 2 dz = 3M 8R 3 3M 4 R 3 r 2 dz =) Z R R r 4 dz Koska R 2 = r 2 + z 2, niin r 2 = R 2 z 2, joten I = 3M 8R 3 Z R R (R 2 z 2 ) 2 dz = 3M 8R 3 = 3M 4R R5 = 2 5 MR2 Z R R (R 4 2R 2 z 2 + z 4 )dz

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

:37:37 1/50 luentokalvot_05_combined.pdf (#38) 'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

6 Monen kappaleen vuorovaikutukset (Many-body interactions)

6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6.1 Newtonin III laki Voimme laskea kappaleen liiketilan Newtonin II lain avulla, jos tunnemme kaikki kappaleeseen vaikuttavat voimat. Jos kappaleita

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

8 Suhteellinen liike (Relative motion)

8 Suhteellinen liike (Relative motion) 8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Suhteellisuusteorian perusteet 2017

Suhteellisuusteorian perusteet 2017 Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION Rutherfordin sironta vm MOMENTUM IMPULSE COLLISIONS Rekan ja henkilöauton törmäyksessä vaikuttavia voimia on lukematon

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 1 Voimat mekanismeissa Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) 12.2.2016 Sisältö Staattiset voimat Staattinen tasapainotila Vapaakappalekuva Tasapainoyhtälöt Kitkavoimat Hitausvoimat Hitausvoimien

Lisätiedot

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot Mekaniikka, osa 2 Perttu Lantto Luentokalvot perustuvat kirjaan: University physics, 13 th International Edition H. D. Young & R. A. Freedman (Pearson, 2012) 16. tammikuuta 2017 Mekaniikka, osa 2 Mekaniikka

Lisätiedot

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

4 Kaksi- ja kolmiulotteinen liike

4 Kaksi- ja kolmiulotteinen liike Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa

6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa Vaasan yliopiston julkaisuja 93 6 PISTETULON JA RISTITULON SOVELLUKSIA Ch:DotCross :RotatingBody sec:fmomspace 6.1 Pyörivistä kappaleista 6.1.1 Voiman momentti akselin suhteen avaruudessa Seuraavassa pohdiskelussa

Lisätiedot