Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
|
|
- Sari Alanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa
2 Ajankohtaista
3 FuksiProffaBuffa Järjestetään tiistaina kello 16: TUAS-talo, Maarintie 8 aula Pelaa Proffabingoa ja saat FuksiProffaBuffa-haalarimerkin! Ilmoittautuminen aukeaa pian oman kiltasi nettisivuilla. Viimeinen päivä ilmoittautua mukaan on 3.10.
4 Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa
5 Suhteellinen liike Nopeusmittauksista suhteellinen nopeus (relative speed) = nopeus suhteessa johonkin koordinaatistoon (frame of reference) Tarkastellaan suoraviivaista liikettä Kaksi havaitsijaa A ja B, jotka liikkuvat toistensa suhteen nopeudella ~v AB Havaitsijoiden koordinaatistojen origot pisteissä O ja O 0 Paikkavektori pisteeseen P havaitsijasta A on ~r = OP ja havaitsijasta B on ~r 0 = O 0 P, jolloin ~r = ~r 0 + ~r AB, missä ~r AB on vektori, joka osoittaa A:sta B:hen Oletetaan, että havaitsija B ei ole kiihtyvässä liikkeessä A:han nähden
6 Suhteellinen liike y Tarkasteltava piste P O ~r AB ~r ~v O 0 ~r 0 ~v 0 ~v ~v 0 ~v AB x
7 = Galilein koordinaatistomuunnos Galilein koordinaatistomuunnos Derivoidaan ajan suhteen d~r = d~r 0 + d~r AB =) ~v = ~v 0 + ~v AB, Derivoimalla uudestaan ajan suhteen saadaan d~v = ~a = ~a 0 Jos valitaan A ja B samaan pisteeseen ajanhetkellä t = 0, saadaan muunnoskaavat ~r 0 = ~r ~v AB t ~v 0 = ~v ~v AB ~a 0 = ~a t B = t A
8 Harjoitus Hahmottele parin kanssa ratkaisua Lentokone lentää nopeudella 240 km h 1 suhteessa ilmaan. Ilman nopeus on 100 km h 1 itään. 1. Mihin suuntaan lentokoneen on lennettävä, jotta se kulkisi pohjoiseen? 2. Mikä on lentokoneen nopeus suhteessa maahan?
9 Ratkaisu
10 Ratkaisu
11 Konseptitesti 1 Kysymys Mikä seuraavista koordinaatistoista on inertiaalinen (tai lähes inertiaalinen) koordinaatisto? 1. Jyrkkää mäkeä laskeva autoon sidottu koordinaatisto 2. Laukaisualustalta juuri lähteneeseen rakettiin sidottu koordinaatisto 3. Mäkeä ylittävään vuoristoradan vaunuun sidottu koordinaatisto 4. Rajanopeuden saavuttanut laskuvarjohyppääjä 5. Ei yksikään edellisistä
12 Konseptitesti 1 Kysymys Mikä seuraavista koordinaatistoista on inertiaalinen (tai lähes inertiaalinen) koordinaatisto? 1. Jyrkkää mäkeä laskeva autoon sidottu koordinaatisto 2. Laukaisualustalta juuri lähteneeseen rakettiin sidottu koordinaatisto 3. Mäkeä ylittävään vuoristoradan vaunuun sidottu koordinaatisto 4. Rajanopeuden saavuttanut laskuvarjohyppääjä 5. Ei yksikään edellisistä
13 Inertiaalikoordinaatisto (inertial frame of reference) Tasaisella nopeudella liikkuva koordinaatisto Galilein muunnoksen keskeisin ominaisuus on että molemmat havaitsijat mittaavat saman kiihtyvyyden Seuraus: kiihtyvyys invariantti koordinaatistomuunnoksessa, kunhan molemmat koordinaatistot ovat inertiaalikoordinaatistoja Merkitys: kaikki inertiaalikoordinaatistot ovat yhdenvertaisia Koordinaatisto, joka liikkuu tasaisella nopeudella johonkin inertiaalikoordinaatistoon nähden myös inertiaalikoordinaatisto Ei-inertiaalinen koordinaatisto kiihtyvässä liikkeessä Myös normaalikiihtyyys kiihtyvää liikettä Normaalikiihtyvyys muuttaa koordinaatiston liikesuuntaa
14 Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa
15 Kulmasuureet Kertausta Ympyräradalla kulkevaa kappaletta kuvataan kulmasuureilla Hiukkasen paikka ympyräradalla paikkavektorin ja x-akselin välinen kulma Kulmanopeus! ja ratanopeus v y! = d ja v = ds = d(r ) = R! Kulmakiihtyvyys R = d! = d 2 2 x
16 Kiihtyvyyden komponentit Kiihtyvyyden tangentiaalikomponentti Normaalikomponentti a T = dv a N = v 2 = R d! = R R = (!R)2 R = R!2
17 Pyörimisliikkeen vektorisuureet Kertaus Kulmanopeusvektori ~! Kohtisuorassa pyörimisliikkeen tasoa vastaan Suunta määrätään oikean käden säännöllä ~! ~, >0 Kulmakiihtyvyysvektori ~ ~! Samansuuntainen kuin ~! jos >0 Vastakkaissuuntainen jos <0
18 Pyörimisliikkeen vektorisuureista tarkemmin z Tarkastellaan z-akselin ympäri (vakio)etäisyydellä R, kulmanopeudella! tapahtuvaa ympyräliikettä Säde R voidaan esittää myös paikkavektorin ~r pituuden r ja kulman avulla R = r sin Tällöin ratanopeus v =!r sin R r
19 Nopeus- ja kiihtyvyysvektorit v =!r sin vektorimuodossa: ~v = ~! ~r Kulmanopeusvektori ~! pyörimistasoa vastaan kohtisuora vektori Suunta oikean käden säännöllä Tasaisessa ympyräliikkeessä vakio ~! Kiihtyvyydellä vain normaalikomponentti Eli ~a = d~v = ~! d~r = ~! ~v ~a = ~! ~v = ~! (~! ~r)! Pätevät tässä muodossa vain kun r ja vakioita
20 Pyörivät koordinaatistot johtavat fiktiivisiin kiihtyvyyksiin Tarkastellaan suhteellista liikettä kahdesta toistensa suhteen pyörivästä eri koordinaatistosta Toinen koordinaatistoista on inertiaalinen, pyörivä ei ole (miksi?) Tarkoituksena on osoittaa että koordinaatistomuunnoksen seurauksena saadaan ei-inertiaalisessa koordinaatistossa fiktiivisiä kiihtyvyystermejä Saadaan keskipakokiihtyvyys ja corioliskiihtyvyys Molemmat seurauksia pyörivästä koordinaatistosta!
21 Pyörivät koordinaatistot Kaksi toistensa suhteen pyörivää koordinaatistoa Koordinaatistojen origot O ja O 0 samassa pisteessä O 0 pyörii kulmanopeudella! inertiaalikoordinaatiston O suhteen Mielivaltainen vektori ~ A(t) Koordinaatistossa O Koordinaatistossa O 0 ~A = A x î + A y ĵ + A z ˆk ~ A 0 = A 0 x î 0 + A 0 yĵ0 + A 0 z ˆk 0 Origot samat ~A = A x î + A y ĵ + A z ˆk = A 0 x î 0 + A 0 yĵ0 + A 0 z ˆk 0 = ~ A 0
22 Aikaderivaatat Tarkkana pilkullisten ja pilkuttomien suureiden suhteen! Inertiaalikoordinaatistossa O Pyörivässä koordinaatistossa O 0 d~ A = da x O î + da y ĵ + da z ˆk 0 d~ A O 0 = da0 x î0 + da0 y ĵ0 + da0 z ˆk 0 Vain yksikkövektorit î, ĵ ja ˆk vakioita inertiaalikoordinaatistossa, joten d~ A 0 O = da0 x î0 + da0 y ĵ0 + da0 z ˆk 0 + A 0 dî 0 x + A 0 dĵ 0 0 y + A 0 d ˆk z
23 Pyörivän koordinaatiston yksikkövektorit Koordinaatisto O 0 (ja sen yksikkövektorit) pyörii vakiokulmanopeudella! =) dî0 = ~! î, dĵ 0 = ~! ĵ, d ˆk 0 = ~! ˆk =) A 0 dî 0 x + A 0 dĵ 0 0 y + A 0 d ˆk z = A 0 x(~! î)+a 0 y(~! ĵ)+a 0 z(~! ˆk) = ~! A 0 xî + ~! A0 yĵ + ~! A0 ˆk 0 z = ~! A ~ = ~! A ~ Seuraa yleinen aikaderivoimisääntö d~ A O = d ~ A O 0 + ~! ~ A
24 Paikka- ja nopeusvektorit Sovelletaan derivoimissääntöä paikkavektoreihin d~r = d~r O O 0 + ~! ~r Merkitsemällä saadaan ~v = d~r O ja ~v 0 = d~r O 0 ~v = ~v 0 +! ~r
25 Kiihtyvyysvektori Kiihtyvyysvektoria muunnettaessa huomattava, että molemmat derivoinnit suoritettava samassa koordinaatistossa ~a = d 2 ~r 2 O Tästä saadaan tulokseksi = d O d~r O ~a 0 = d 2 ~r 2 O 0 = d O 0 ~a = ~a 0 + 2~! ~v {z } 0 + ~! (~! ~r) {z } Coriolis keskipako d~r O 0 Esimerkki siitä, miksi Galilein muunnos menee rikki ei-inertiaalisessa koordinaatistossa kiihtyvyys ei enää invariantti
26 Maapallon pyörimisen aiheuttama kiihtyvyys Maapallo pyörii kulmanopeudella rad s 1, jonka suunta maapallon keskustasta pohjoisnavalle päin Jos maapallo ei pyörisi, vapaasti putoavalle kappaleelle mitattaisiin kiihtyvyys g 0 Pyörimisen takia maan mukana pyörivä havaitsija näkee kappaleella kiihtyvyyden ~a 0 = ~g 0 2~! ~v 0 ~! (~! ~r)
27 Keskipakokiihtyvyys maan pinnalla Maan pyöriminen muuttaa maan pinnalla olevien kappaleiden kokemaa maan vetovoiman kiihtyvyyttä Jos kappale paikallaan, Coriolis-termi häviää Efektiivinen vetovoiman kiihtyvyys ~g = ~g 0 ~! (~! ~r) Vetovoiman kiihtyvyys riippuu korkeusasteesta (latitude): Korjaustermin suuruus ~! (~! ~r) =! 2 r cos 2 = cos m/s 2 Korjaustermin suuruus pieni verrattuna g 0 :n arvoon 9.81 m s 2 N ~! ~r ~g 0 ~! (~! ~r)
28 Pohdintaa Pohdi vierustoverin kanssa ja vastaa Presemoon Tehtävänanto Oletetaan, että eräs kappale liikkuu maanpinnan suuntaisesti eteläisellä pallonpuoliskolla. Miten Corioliskiihtyvyys vaikuttaa kappaleen liiketilaan? Vinkki: Maa pyörii vastapäivään kun katsotaan pohjoisnavalta etelänavalle. Mihin osoittaa kulmanopeusvektori? Luennoijan muistisääntö: kiinalaisille Japani on nousevan auringon maa.
29 Corioliskiihtyvyys Vaikuttaa kaikkiin maapallon suhteen putoaviin kappaleisiin Esim. vapaasti putoava kappale kaartuu pohjoisella pallonpuoliskolla itään Corioliskiihtyvyyden vaikutuksesta Vastaavasti pohjoisella pallonpuoliskolla maanpinnan suuntaisesti liikkuva kappale kääntyy oikealle Eteläisellä pallonpuoliskolla vasemmalle Fiktiivinen kiihtyvyys! seuraus maapallon pyörimisestä
30 Corioliskiihtyvyys yleisessä tapauksessa Yleisessä tapauksessa Corioliskiihtyvyydellä myös pystysuora komponentti Esim. matalapaineen keskuksen ympärillä pyörivät ilmamassat kiertävät pohjoisella pallonpuoliskolla vastapäivään koska matalapainetta kohti tulevat ilmavirtaukset poikkeavat keskilinjasta oikealle Eteläisellä pallonpuoliskolla päinvastoin
31 Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa
32 Karteesinen koordinaatisto z (x, y, z) r dz dx dy Tilavuuselementti dv = dx dy dz x y
33 Karteesinen koordinaatisto Karteesisen koordinaatiston paikkavektori Nopeusvektori Kiihtyvyys Yleinen vektori ~v = d~r ~a = d~v ~r = xî + yĵ + z ˆk = dx î + dy ĵ + dz ˆk = dv x î + dv y ĵ + dv z ˆk ~A = A x î + A y ĵ + A z ˆk
34 Napakoordinaatisto Sylinterikoordinaatiston erikoistapaus 2D:ssä y Koordinaatit Etäisyys origosta ' Paikkavektorin ja positiivisen x-akselin kulma Muuntoyhtälöt ' ~r x x(, ') = cos '; (x, y) = p x 2 + y 2 y(, ') = sin '; '(x, y) =arctan y x Huomaa, että 0 ja ' 2 [0, 2 ]
35 Yksikkövektorit Koordinaattisysteemien koordinaatteja vastaa yksikkövektorit y ~A Yksikkövektori osoittaa kasvavien arvojen suuntaan Tyypillisesti yksikkövektorien suunta riippuu tarkastelupisteestä Napakoordinaatiston paikkavektori ê ' ' ~r ê x ~r(, ') = ê Yleinen vektorisuure napakoordinaatistossa ~A = A ê + A ' ê '
36 Napakoordinaatiston yksikkövektorit Napakoordinaatiston yksikkövektorit kytketty karteesisen koordinaatiston yksikkövektoreihin apple appleî appleê cos ' sin ' = (Rotaatiomatriisi) ê ' sin ' cos ' ĵ Napakoordinaatiston yksikkövektorit riippuvat ':stä! Lasketaan niiden derivaatat ajan suhteen: dê dê ' = d cos ' î + d sin ' ĵ + dî = d cos ' d' d' î + d sin ' d' = d' ê cos ' + dĵ sin ' d' ĵ = d' ê'
37 Nopeus ja kiihtyvyys napakoordinaatistossa y Nopeusvektori ~v = d~r ê 0 ' d' ' ~a = d~v ~r 0 ê ' ~r = d ê 0 ê x = d ( ê )= d ê + dê Nopeus h d ê + d' i ê' =... d 2 = 2 ~v = d~r = d ( ê )= d ê + dê = d ê + d' ê' Kiihtyvyys saadaan nopeuden aikaderivaatasta h d' i 2 ê + 2 d d' + d 2 ' 2 ê '
38 Sylinterikoordinaatisto (x, y, z) =(,, z) z r dz d d Tilavuuselementti dv = d d x y d dz
39 Sylinterikoordinaatisto Napakoordinaatiston yleistys kolmeen ulottuvuuteen Täydennetty karteesisella z-komponentilla z Muuntoyhtälöt x(, ', z) = cos ' (x, y, z) = p x 2 + y 2 y(, ', z) = sin ' '(x, y, z) =arctan y x z(, ', z) =z z(x, y, z) =z ' z y x
40 Yksikkövektorit sylinterikoordinaatistossa Paikkavektori ~r = ê + z ˆk Nopeus ~v = d ê + d' ê' + dz ˆk Kiihtyvyys ~a = 2 d d 2 2 d' h d' i 2 ê + d 2 ' 2 ê ' + d 2 z ˆk Yleinen vektori ~ A = A ê + A ' ê ' + A z ˆk z ~r ˆk ê ' ê y x
41 Pallokoordinaatisto z (x, y, z) =(r,, ) r sin r dr rd d y d r sin d x Tilavuuselementti dv = r 2 sin dr d d
42 Pallokoordinaatisto Koordinaatteina etäisyys origosta r ja kulmat, ' Muuntoyhtälöt z x(r,', )=r sin cos ' ê r y(r,', )=rsin sin ' z(r,', )=rcos (x, y, z) = p x 2 + y 2 + z 2 p x 2 + y (x, y, z) 2 =arctan z x ' r ê ê ' y '(x, y, z) =arctan y x
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotELEC-A3110 Mekaniikka (5 op)
Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat
Lisätiedot8 Suhteellinen liike (Relative motion)
8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
Lisätiedot766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotDYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
Lisätiedotkertausta Esimerkki I
tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotDYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
Lisätiedot6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa
Vaasan yliopiston julkaisuja 93 6 PISTETULON JA RISTITULON SOVELLUKSIA Ch:DotCross :RotatingBody sec:fmomspace 6.1 Pyörivistä kappaleista 6.1.1 Voiman momentti akselin suhteen avaruudessa Seuraavassa pohdiskelussa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotLuento 9: Pyörimisliikkeen dynamiikkaa
Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami
LisätiedotLuento 7: Voima ja Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotDYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotSMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotLuento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait
Lisätiedot:37:37 1/50 luentokalvot_05_combined.pdf (#38)
'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotEsim. Liikkuvan kappaleen radiusvektori. on ajan funktio, missä komponentit x, y ja z riippuvat yhdestä muuttujasta, ajasta t.
147 7 VEKTORIT JA DIFFERENTIAALILASKENTA 7.1 YHDEN MUUTTUJAN VEKTORIFUNKTIOT Esim. Liikkuvan kappaleen radiusvektori r() t xt () ˆi yt () ˆjzt () k ˆ on ajan funktio, missä komponentit x, y ja z riippuvat
Lisätiedot1.4 Suhteellinen liike
Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
Lisätiedotkaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
LisätiedotKinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike
Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotLuennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2017 Luennoitsija: Jukka Maalampi Luennot: 63 35, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 15 (pääsiäisviikko) Harjoitusassistentit: Petri Kuusela ja Tapani
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotNyt kerrataan! Lukion FYS5-kurssi
Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle
LisätiedotFysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.
766323A Mekaniikka Mansfield and O Sullivan: Understanding physics kpl 1 ja 2. Näitä löytyy myös Young and Freedman: University physics -teoksen luvuissa 2 ja 3, s. 40-118. Johdanto Fysiikka on perustiede.
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotE 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän
HARJOITUS 2 E 3.9: Fysiikan kirja luisuu pois pöydän vaakasuoralta pinnalta nopeudella 1,10 m/s. Kirja osuu lattiaan 0,350 sekunnin kuluttua. Jätä ilmanvastus huomiotta. Laske a) pöydän pinnan etäisyys
Lisätiedot(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
Lisätiedot4 Kaksi- ja kolmiulotteinen liike
Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike
Lisätiedotedition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti
LisätiedotSuhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
LisätiedotModerni fysiikka. Syyslukukausi 2008 Jukka Maalampi
Moderni fysiikka Syyslukukausi 008 Jukka Maalampi 1 1. Suhteellisuus Galilein suhteellisuuus Fysiikan lakien suhteellisuus Suppea suhteellisuusteoria Samanaikaisuuden suhteellisuus Ajan dilaatio Pituuden
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotLuento 5: Voima ja Liikemäärä
Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton
LisätiedotLuento 12: Keskeisvoimat ja gravitaatio
Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja
LisätiedotKALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Lisätiedotx (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotLuento 8: Liikemäärä ja impulssi
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
Lisätiedot2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan
LisätiedotVektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
LisätiedotMekaniikkan jatkokurssi
Mekaniikkan jatkokurssi Tapio Hansson 16. joulukuuta 2018 Mekaniikan jatkokurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän mekaniikan kurssin materiaaliksi. Kurssilla kerrataan lukion
LisätiedotLuento 11: Potentiaalienergia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee
LisätiedotDYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän
LisätiedotLuento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen
LisätiedotNäytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
Lisätiedoton hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis
Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa
Lisätiedot