Luku Ohmin laki
|
|
- Jarmo Saaristo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja kuten Ohmin lakia, virran kuluttamaa tehoa ja resistanssin laskemista. 9.1 Ohmin laki Kiinteissä johteissa sähköä johtavat johde-elektronit. Ytimet ovat kiinni kidehilassa eivätkä pääse liikkumaan vapaasti, joten ne eivät osallistu virran kuljetukseen. Sen sijaan nesteissä ja kaasuissa pääsevät ionitkin liikkumaan ja siksi ne toimivat virrankuljettajina. Vaikka johtavat aineet kuljettavatkin sähkövirtaa, ne ovat yleensä ulospäin sähköisesti neutraaleja, ts. ne sisältävät yhtä paljon positiivisia ja negatiivisia varauksia. Kiinteissä johteissa osa elektroneista (johde-elektronit) voi liikkua vapaasti. Johde-elektronien liike on stokastista ja ne törmäilevät kidehilan atomeihin muuttaen jatkuvasti liikkeensä suuntaa. Staattisessa tilanteessa tämän elektronikaasun keskimääräinen nopeusvektori on nolla. Jos johteessa ylläpidetään nollasta poikkeavaa sähkökenttää E, kohdistuu elektroneihin voima ee, jonka vaikutuksesta johdeelektronit pyrkivät muuttamaan nopeuttaan kyseisen voiman suuntaan törmäysten välillä. Väliaineen aiheuttama jarruttava voima saa aikaan sen, että elektronikaasu saa keskimääräisen nopeuden v, joka on kentän suunnalle vastakkainen. Jos kiinteän aineen johde-elektronien tiheys on N, on varauksenkuljettajien varaustiheys ρ = N e, joten määritelmän (7.3) perusteella virtatiheys on j = ρv = Nev. (9.1) Elektronien keskimääräisen nopeuden suuruutta voidaan arvioida seuraavasti. Oletetaan tasapaksu johdin, jonka poikkipinta-ala on S. Virta kulkee johtimen suunnassa, joten I = NevS. (9.2) c Tuomo Nygrén,
2 114 LUKU 9. SÄHKÖVIRRAT Hyvällä johteella johde-elektroneja on noin 1 kpl/atomi. Esimerkiksi kuparissa N m 3. Jos S = 1 mm 2 ja I = 1 A, on v = I NeS = 1 m , s 10 4 m/s, mikä on hyvin pieni nopeus. Esimerkiksi elektronien terminen nopeus on paljon suurempi. Useissa aineissa virtatiheys on verrannollinen sähkökenttään, eli on voimassa Ohmin lain differentiaalimuoto j = σe. (9.3) Verrannollisuuskerroin σ on johtavuus ja se on kullekin aineelle ominainen, mutta esimerkiksi lämpötilasta riippuva suure. Tarkastellaan homogeenista johtavaa kappaletta, jonka poikkipinta S on vakio. Kun tällainen kappale on kytketty virtapiirin ja sen johtavuus on heikompi kuin piirin johtimien, siitä käytetään nimitystä vastus. Kun vastuksen päiden välillä pidetään yllä jännitettä U, syntyy vastukseen sähkökenttä E. Tällöin johtimessa kulkee virta I = j ds = σ E ds. (9.4) S Ilmeisesti E ja S ovat samansuuntaisia. Jos vastuksen pituus on L, on on E = U/L. Tämän vuoksi I = σse = σsu/l. (9.5) Jännitteen ja virran suhde R = U I = L σs on vastuksen resistanssi. Resistanssin yksikkö on [R] = [U] [I] = V A = Ω (ohmi) S (9.6) ja johtavuuden yksiköksi saadaan (Ωm) 1. Johtavuuden käänteisarvosta 1/σ käytetään nimitystä ominaisvastus eli resistiivisyys. Resistiivisyyden yksikkö on Ωm. Yhtälö (9.6) johtaa Ohmin lakiin (Ohmin lain integraalimuoto) U = IR. (9.7) Yleisessä tapauksessa johdekappale voi olla mielivaltaisen muotoinen ja sähkökenttä voi olla paikan funktio. Kuitenkin, aina kun yhtälö (9.3) on voimassa, virta on verrannollinen jännitteeseen, joten resistanssi on määritelty. Ohmin laki ei kuitenkaan aina ole voimassa. Esimerkiksi kaasut noudattavat likimääräisesti Ohmin lakia vain, kun sähkökenttä on riittävän pieni; voimakkaassa sähkökentässä tapahtuu sähköpurkaus. Toisaalta jotkut aineet muuttuvat matalissa lämpötiloissa suprajohtaviksi, jolloin johtavuus kasvaa käytännössä lähes äärettömän suuruiseksi.
3 9.2. VIRRAN KULUTTAMA TEHO 115 Ohmin laki kuvaa virran kulkua johtavassa aineessa ainoastaan likimääräisesti, mutta se on riittävän tarkka monia käytännön tarpeita varten. On syytä huomata, että Ohmin laki ei liity sähkömagnetismin perusrakenteeseen samalla tavalla kuin esimerkiksi Gaussin laki tai Poissonin yhtälö. Periaatteessa tarvittaisiin erityinen teoria, jonka avulla saataisiin selville kunkin aineen johtavuus, kun aineen rakenne tunnetaan. Käytännössä kuitenkin johtavuus määritetään kokeellisesti. Jotta virta voisi kulkea johtimessa, on sen päiden välillä pidettävä yllä potentiaalieroa jännitelähteen avulla. Kuormittamattoman jännitelähteen napajännitteestä käytetään nimitystä lähdejännite; vanha termi on sähkömotorinen voima (smv). Jännitelähteitä ovat mm. sähköparistot ja akut, joissa kemiallinen energia muuttuu sähköenergiaksi, sekä aurinkokennot, joissa valon sisältämä energia muuttuu sähköenergiaksi. 9.2 Virran kuluttama teho Kun vastuksen läpi kulkee virta I, kulkee ajassa δt sen jokaisen poikkipinnan läpi ja siis koko vastuksen läpi jokin varaus δq. Ilmeisesti I = δq δt. (9.8) Kulkiessaan vastuksen läpi varaus menettää potentiaalienergian U δq, missä U on vastuksen päiden välinen jännite. Vastuksen kuluttama teho on siis P = U δq δt = UI. (9.9) Tämä tulos on nimeltään Joulen laki (Joulen lain integraalimuoto). Ohmin lain avulla Joulen laki voidaan kirjoittaa myös muotoon Yhtälö (9.9) antaa tehon yksiköksi P = I 2 R = U 2 [P ] = [U][I] = VA = VAs s R. (9.10) = J s = W, (9.11) kuten tulee ollakin. Virta voi myös kulkea väliaineessa siten, että virtatiheys riippuu paikasta. Tällöin on kiinnostavaa tietää, mitä on virran kuluttama taho tilavuusyksikköä kohti avaruuden eri paikoissa. Tämä saadaan selville yllä esitetyllä periaatteella. Tarkastellaan pientä johtavassa aineessa olevaa tilavuuselementtiä, jonka pohjat ovat kohtisuorassa virtatiheyttä vastaan. Kummankin pohjan pinta-ala on δs ja sylinterin pituus δl, joten elementin tilavuus on δτ = δsδl. Sähkökenttä elementin kohdalla on E ja koska se on virtatiheyden suuntainen, se on kohtisuorassa elementin pohjia vastaan. Pohjien välinen potentiaaliero on δu = EδL. Ajassa δt
4 116 LUKU 9. SÄHKÖVIRRAT kummankin pohjan lävitse kulkee varaus δq; tämän suuruinen varaus menee sylinterin toisesta päästä sisään ja toisesta ulos. Kokonaisefekti on, että tämän suuruinen sähkömäärä menettää potentiaalienergian δw = δqδu. Tämä muuttuu törmäysten kautta lämmöksi. Näinollen tilavuudessa δτ syntyy lämpöä teholla δp = δw δt = δqδu δt = δq δle = δiδle, (9.12) δt missä δi = δq/δt on sylinterin päiden kautta kulkeva virta. Koska toisaalta δi = jδs, saadaan teho muotoon joten Joulen teho tilavuusyksikköä kohti on Tämä on Joulen lain differentiaalimuoto. δp = jδsδle = jδτe, (9.13) δp δτ = je = j E = σe2. (9.14) 9.3 Vastusten sarjaan- ja rinnankytkennät Tarkastellaan kuvan 9.1 a mukaista tilannetta, jossa kaksi vastusta on kyteketty sarjaan (peärkkäin) ja yhdistetty tasajännitelähteeseen, jonka jännite on U. On huomattava, että pisteen A potentiaali on suurempi kuin pisteen B potentiaali, joka taas on suurempi kuin pisteen C potentiaali. Jos vastusten ja jännitelähteen jännitteet määritellään positiivisiksi, voidaan ne kirjoittaa potentiaalien avulla muotoon U = φ A φ C, (9.15) U 1 = φ A φ B ja (9.16) U 2 = φ B φ C. (9.17) Sähkökentän konservatiivisuudesta johtuu, että potentiaalien muutosten summa piirin ympäri on nolla. Kun lähdetään pisteestä A ja kuljetaan virran suuntaan, voidaan kirjoittaa (φ A φ B ) (φ B φ C ) + (φ A φ C ) = 0, (9.18) a) b) I A R 1 I I 1 I 2 U B U R 1 R 2 C R 2 Kuva 9.1: Vastusten sarjaan- ja rinnankytkennät.
5 9.3. VASTUSTEN SARJAAN- JA RINNANKYTKENNÄT 117 eli U 1 U 2 + U = 0, josta U = U 1 + U 2. (9.19) Virtapiirejä ratkaistaessa käytetään vastuksen yli mitatusta jännitteestä usein nimitystä vastuksen jännitehäviö. Tämä sisältää edellä esitetyn ajatuksen, jonka mukaan jännite pienenee virran kuljettaessa virran suuntaan. Yhtälön (9.19) tulos voidaan lukea seuraavasti: Jännitelähteen jännite on yhtä suuri kuin vastusten jännitehäviöiden summa. Virtapiirien teoriassa tämä yleistetään ns. Kirchhoffin II laiksi, joka on fysikaalisesti sama asia kuin sähkökentän konservatiivisuus, ts. sähkökentän integraali pitkin suljettua tietä on nolla. Kummankin vastuksen läpi kulkee virta I. Ohmin lain mukaan vastusten päiden väliset jännnitteet ovat Sijoittamalla nämä yhtälöön (9.19) saadaan U 1 = IR 1 ja (9.20) U 2 = IR 2. (9.21) U = IR 1 + IR 2 = I(R 1 + R 2 ). (9.22) Näinollen sarjaankytkennän päiden välisen jännitteen ja läpi kulkevan virran välillä on lineaarinen riippuvuus. Ohmin lain (9.7) perusteella verrannollisuuskerroin on kytkennän resistanssi, joten sarjaan kytkettyjen vastusten resistanssi on R = R 1 + R 2. (9.23) Kuvan 9.1 b tapauksessa kummankin vastuksen jännite on jännitelähteen jännitteen suuruinen. Siis U 1 = U 2 = U. (9.24) Jännitelähteestä tuleva virta I jakautuu vastusten kesken kahdeksi virraksi I 1 ja I 2. Koska jokainen varauksenkuljettaja kulkee jomman kumman vastuksen läpi, on voimassa ehto I = I 1 + I 2. (9.25) Virtapiirien teoriassa tämä yleistetään ns. Kirchhoffin I laiksi, joka on eräs tapa ilmaista sähkövarauksen säilyminen. Ohmin lain perusteella U 1 = I 1 R 1, josta I 1 = U 1 R 1 ja (9.26) U 2 = I 2 R 2, josta I 2 = U 2 R 2. (9.27) Sijoittamalla nämä tulokset yhtälöön (9.25) ja ottamalla huomioon yhtälö (9.24) saadaan ( 1 I = U + 1 ). (9.28) R1 R2
6 118 LUKU 9. SÄHKÖVIRRAT Virran ja jänniteen välillä on siis lineaarinen riippuvuus ja verrannollisuuskerroin on Ohmin lain perusteella rinnakytkennän resistanssin käänteisluku. Siis 1 R = 1 R R 2, josta R = R 1R 2 R 1 + R 2. (9.29) Monimutkaisempien vastuskytkentöjen resistansseja voidaan laskea soveltamalla sarjaan- ja rinnankytkennän kaavoja. Aina tämä ei kuitenkaan ole mahdollista, vaan joudutaan turvautumaan hankalampin menetelmiin. Koska resistanssin käänteisarvo esintyy rinnankytkennän kaavoissa, on tälle suureelle anettu oma nimi, konduktanssi, jonka määritelmä siis on G = 1 R. (9.30) Konduktanssin yksikkö on eli siemens. [G] = 1 [R] = 1 Ω = S (9.31)
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
4. Gaussin laki. (15.4)
Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien
SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
Sähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan
SMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
SMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
kipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
Magneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
VASTUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
Sähkötekiikka muistiinpanot
Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri
Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
FYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
Potentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
RESISTANSSIMITTAUKSIA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 ESSTNSSMTTUKS 1 Työn tavoitteet Tässä työssä tutustut sähköisiin perusmittauksiin. Harjoittelet digitaalisen yleismittarin käyttöä
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
Lineaarialgebra MATH.1040 / Piirianalyysiä
Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen
Luento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
Omnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?
SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
Jännite, virran voimakkuus ja teho
Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/
8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
Magneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
TEHTÄVÄT KYTKENTÄKAAVIO
TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4
SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen
Luento 4 / 12. SMG-1100 Piirianalyysi I Risto Mikkonen
SMG-00 Piirianalyysi I Luento 4 / Kerrostamismenetelmä Lineaarisuus = Additiivisuus u u y y u + Homogeenisuus u y y Jos verkossa on useita energialähteitä, voidaan jokaisen lähteen vaikutus laskea erikseen
Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
KURSSIN TÄRKEIMPIÄ AIHEITA
KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä
Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman
Sähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen
SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
DEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä
TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu
TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista
DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
5. Sähkövirta, jännite
Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
Luento 2. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,
DEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Neljännen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Edellisellä luennolla tarkasteltiin aurinkokennon toimintaperiaatetta kennon sisäisten tapahtumisen
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13
Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen
Silmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2 Verkon systemaattinen ratkaisu Muodostetaan
NIMI: LK: 8b. Sähkön käyttö Tarmo Partanen Ota alakoulun FyssaMoppi. Arvaa, mitä tapahtuu eri töissä etukäteen.
NIMI: LK: 8b. Sähkön käyttö Ota alakoulun FyssaMoppi. Arvaa, mitä tapahtuu eri töissä etukäteen. Sähkön käyttö Ota alakoulun FyssaMoppi 1 ja sieltä Aine ja energia ja Sähkön käyttö ja etsi vastaukset.
Sähkön perusteet. Elektroniikka ja sähköoppi. Klas Granqvist Akun Tehdas / Oy Aku s Factory Ltd
Sähkön perusteet Elektroniikka ja sähköoppi Klas Granqvist Akun Tehdas / Oy Aku s Factory Ltd Sisältö Sähkön perusteet Termit ja suureet Käytännön ilmiöt Laskelmat Äänilaitteiston sähköistys Sähköverkkojen
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä
766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua
7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset
HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan
Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää
Elektrodynamiikka 2010 Luennot Elina Keihänen
Elektrodynamiikka 2010 Luennot 11.2.2010 Elina Keihänen Staattinen sähkökenttä - Eristepalkki levykondensaattorissa - Eristekappaleen energia - Maxwellin jännitystensori Staattinen magneettikenttä - Stationaariset
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
Jakso 5. Johteet ja eristeet Johteista
Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)
SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0
Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten
Luento 6. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä
(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,