SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa"

Transkriptio

1 ATE2010 Dynaaminen kenttäteoria syksy /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º) V), jonka sisäinen impedanssi on Z = 10 Ω ja taajuus 1,05 GHz. Vaihenopeus johdossa on 0,7c. Laske jännite u(z, t) ja virta i(z, t) siirtojohdossa. Aallonpituus johdossa: v 0, λ = = = 0, 2 m 9 f 1,05 10 Vaihekerroin: 2π 2π β = = = 10π rad/m βl = 10π 0,67 = 6,7π = 0,7π rad 126 λ 0, 2 Heijastuskerroin kuorman päässä: Z Z 100 j j L 0 L = = = = = 26,57 = 0, 45 26,57 ZL Z0 100 j j , 43 5 Impedanssi siirtojohdon alussa (eneraattorin päässä): 2γ z j2βl Le 1+ Le 1+ 0, 45 26, Ζ in = Z0 = Z0 = Z 2 0 = 50 γ z j2βl 1 1 e 1 e 1 0, 45 26, = 37,5 + j41,5 Generaattorin jännite: L L { j ωt j30 10 sin 30 Im 10e e } Im{ ˆ j ωt = ω + = = e } e t t e j30 eˆ 10e = = Joten eneraattorin päästä siirtojohdolle lähtevä jännite: Zin + jβ l jβ l + jβl jβl uˆ ˆ ˆ ˆ ˆ in = e = u0e + u0e = u0 e + e Z + Z in ( + ) Z eˆ 37,5 j41,5 10e uˆ = = = j30 + in 1 1 j , 6e jβl jβl j126 j26,57 j126 Zin + Z e + Le 37,5 + j41, e + 0, 45e e Ja jännite siirtojohdolla: + uˆ z = uˆ e + e = 7, 6e e + 0, 45e e jβ z jβ z j111 jβ z j26,57 jβ z 0 ( L ) jωt u ( z t) { uˆ ( z) } ( ωt β z ) ( ωt β z ), = Im e = 7, 6sin , 46sin + 13 V Virta siirtojohdolla: + jβ z jβ z j j j j j111 j j26,57 j 0 β z 0 β z 0 β z β z β z β z = 0e + 0e = e e = ( e Le ) = e ( e 0, 45e e ) iˆ z iˆ iˆ ˆ + uˆ uˆ + uˆ 7, 6 Z Z Z jωt { } ( ω β ) ( ω β ) i z, t = Im i z e = 0,15sin t z 111 0, 07 sin t + z 13 A

2 ATE2010 Dynaaminen kenttäteoria syksy /6 Tehtävä 2. 0 m pitkä häviötön koaksiaalikaapeli (50 Ω) on päätetty oikosululla. Kaapeli kytketään hetkellä t = 0 tasajännitelähteeseen (40 V), jonka sisäinen resistanssi on 25 Ω. Määritä ja esitä raafisesti lähetyspään jännite 0 < t < t 1 (t 1 on hetki, jolloin jännite laskee alle 0,1 V). Vaihenopeus linjalla on 2,5 10 m/s. Aalto kulkee kaapelin pituuden ajassa: 0 m t l = = = 320 ns 2,5 10 m/s Heijastuskerroin oikosuljetun johdon loppupäässä: 0 Z0 R = = Z 0 Heijastuskerroin eneraattorin päässä: R Z = = = = R + Z Lähetyspään jännite alkuhetkellä: Z0 50 U = U 40 26,6 V R + Z = = Lähetyspään jännite eri ajanhetkillä: 0 < t < 0,64 µs: U = 26,6 V Johdon loppupäästä heijastunut aalto saapuu alkupäähän hetkellä t = 0,64 µs ja osa siitä heijastuu takaisin johdolle: 0,64 t < 1,2 µs: U = 26,6 26,6 + 26,6 V =, V 1, 2 t < 1,92 µs: U =,, +, V = 2,962 V 1,92 t < 2,56 µs: U = 2,962 2, ,962 V = 0,9 V 2,56 t < 3, 20 µs: U = 0,9 0,9 + 0,9 V = 0,330 V 3, 20 t < 3,4 µs: U = 0,330 0, ,330 V = 0,110 V 3,4 t < 4, 4 µs: U = 0,110 0, ,110 V = 0, 037 V Eli jännite laskee alle 0,1 V ajanhetkellä t = 3,4 µs

3 ATE2010 Dynaaminen kenttäteoria syksy /6 U s / V t l 4t l 6t l t l 10t l 12t l Kuva 1. Lähetyspään jännite tehtävässä 2. t / µs Tehtävä m pitkä häviötön (90 Ω) siirtolinja (ε r =3,51) kytketään hetkellä t = 0 tasajännitelähteeseen (70 V), jonka sisäinen resistanssi on 120 Ω. Määritä aika, milloin vastaanottopään (avoin linja) jännite on 97% jatkuvantilan arvosta. Aallon etenemisnopeus: c 3 10 m/s v = = = = = 1,6 10 m/s µε µ ε µ ε ε 3, r r r Aalto kulkee kaapelin pituuden ajassa: 12 m t l = = 0 10 = 00 ns 1,6 10 m/s Heijastuskerroin avoimen johdon loppupäässä: Z0 R = = 1 + Z 0

4 ATE2010 Dynaaminen kenttäteoria syksy /6 Heijastuskerroin eneraattorin päässä: R Z = = = = R + Z Lähetyspään jännite alkuhetkellä: Z0 90 U = U V R + Z = = Jännite loppupäässä: 0,97 70 V = 67,9 V t = 0,0 µs: V = 60 V 6 t = 0, ,0 10 µs = 2, 4 µs: = 6,6 V 7 Tehtävä m pitkä häviötön (90 Ω) siirtojohto (ε r =3,52) on päätetty 50 Ω vastuksella. iirtojohtoa syötetään pulssieneraattorilla, jonka sisäinen resistanssi on 90 Ω. Generaattorin syöttämän tasajännitepulssin amplitudi on 140 V, kesto 5 µs ja pulssitaajuus 100 pulssia sekunnissa. Määritä sekä lähetysettä vastaanottopään jännite aikavälillä 0 < t < 30 µs ja esitä ne raafisesti (eri kuvissa). Aallon etenemisnopeus: c 3 10 m/s v = = = = = 1,60 10 m/s µε µ ε µ ε ε 3, r r r Aalto kulkee kaapelin pituuden ajassa: 200 m t l = = = 1, 25 µs 1,60 10 m/s Heijastuskerroin avoimen johdon loppupäässä: ZL Z R = = = Z + Z L 0 Heijastuskerroin eneraattorin päässä: Z Z = = = 0 Z + Z Lähetyspään jännite hetkellä t = 0 + : Z0 90 U = 1 U 140 V 70 V Z + Z = =

5 ATE2010 Dynaaminen kenttäteoria syksy /6 Ensimmäinen jännitepulssi saapuu johdon loppupäähän hetkellä t = 1,25 µs, jolloin loppupäästä heijastuu osa pulssista takaisin: Takaisin heijastuu: 2 U1 = RU1 = 70 V = 20 V 7 Joten loppupäänjännite hetkellä t = 1,25 µs: R1 1 1 U = U + U = V = 50 V Ensimmäinen loppupäästä alkupäähän heijastunut jännitepulssi saapuu johdon alkupäähän hetkellä t = 2,5 µs. Koska eneraattorin pää on sovitettu, johdon alkupäästä ei heijastu johdolle takaisin mitään. Johdon alkupäänjännite hetkellä t = 2,5 µs: U = U + U = V = 50 V Toinen pulssi: 1 1 T = = s = 10 ms f 100 Toinen pulssi ei ennätä lähteä aika jaksolla 0 < t 30µs. u / V ,5 5 7, t / µs u R / V ,5 5 7, t / µs Kuva 2. Lähetys- että vastaanottopään jännitteet aikavälillä 0 < t < 30 µs tehtävässä 4.

6 ATE2010 Dynaaminen kenttäteoria syksy /6 Tehtävä 5. Alla esitetyn kuvan mukaisessa tilanteessa häviöttömällä siirtojohdolla tuotetaan 12 ns kestävä suorakaidepulssi (00 V). Kytkimen k 1 ollessa kiinni ja kytkimen k 2 ollessa auki siirtojohto varataan tasajännitteellä E. Varaamisen jälkeen kytkin k 1 avataan. Hetkellä t = 0 kytkin k 2 suljetaan, ja varaus puretaan kuormaan Z R. Määritä siirtojohdon pituus l 1 ja siirtojohdon alkupään jännite hetkellä t = 0 +, kun Z = 2 kω, Z 0 = 100 Ω, Z R = 100 Ω ja ε r =5,25. Z k 1 k 2 E + U dc Z 0, ε r Z R U out l Kuva 3. Periaatekaavio tehtävään 5. Aallonnopeus siirtojohtimessa: 1 c 3 10 m m v = = = = 1,3 10 µε µ ε 5, 25 s s r r Joten kaapelin pituus on oltava: 9 2l = vt = 1, m = 1,56 m l = 0,7 m Johdon alkupään jännite hetkellä t = 0 + : ZR U out = U dc Z + Z U R 0 Z + Z U 00 V 1600 V R 0 dc = out = = ZR 100

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

S /142 Piirianalyysi 2 2. Välikoe

S /142 Piirianalyysi 2 2. Välikoe S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviiko 7 / versio 26. lokakuuta 2016 Aallot ja osoittimet (Ulaby, 1.4 1.7) Etenevät (sinimuotoiset) aallot Osoittimet ja notaatiovertailu Piirianalyysiin

Lisätiedot

MHz. Laske. = 1,5 j1,38

MHz. Laske. = 1,5 j1,38 . Z a Z 0, l Z Johto, jonka ominaisimpedanssi on Z 0 = Ω, on päätetty impedanssilla Z = (75 j69) Ω. Johdon pituus on l = 3,5 m ja sitä syötetään taajuudella f = MHz. Laske (a) syöttöpisteimpedanssi Z a

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

SATE1050 Piirianalyysi II syksy 2016 kevät / 8 Laskuharjoitus 13 / Smithin kartta ja kuorman sovittaminen

SATE1050 Piirianalyysi II syksy 2016 kevät / 8 Laskuharjoitus 13 / Smithin kartta ja kuorman sovittaminen SATE1050 Piirianayysi II syksy 2016 kevät 2017 1 / 8 Tehtävä 1. Aa oevassa kuvassa esitetty pitkä johto on päätetty impedanssia Z. Kuormituksen sovittamiseksi iitetään johtoon avoin johdonpätkä ( Z 0,

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: 521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..

Lisätiedot

Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on

Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähkömagneettiset aallot Aikaharmoniset kentät

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Siirtojohdot, Transmission Lines Luento, vrt. laboratoriotyö nr. 3. Siirtojohdon käsite Esim. antenni- tai muu koaksiaalikaapeli, ATK-verkko Aaltojen

Lisätiedot

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA 1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-6 2017, Kimmo Silvonen Osa VI, 30.10.2017 Otan mielelläni esim. sähköpostilla (kimmo.silvonen@aalto.fi) vastaan pieniäkin korjauksia (kuten painovirheet), tekstisisältötoiveita

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

S Piirianalyysi 2 Tentti

S Piirianalyysi 2 Tentti S-55.2 Piirianalyyi 2 Tentti 4.9.06. j(t) u(t) ake jännite u(t) ajan funktiona ja vatukea kuluva teho, kun j(t) ĵ in(ω t)+ĵ 2 in(ω 2 t) ja piiri on jatkuvuutilaa. Ω 5µH 00 nf ĵ 300 ma ĵ 2 0 ma ω 0 6 rad/

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

S-72.3310 Tietoliikenteen siirtomediat

S-72.3310 Tietoliikenteen siirtomediat S-72.3310 Tietoliikenteen siirtomediat Laboratoriotyö A: Johtotutkatyö Esiselostus Päiväys: Ryhmän nro: Nimet: 1. 2. 3. Tutustu huolellisesti Lauri Halmeen kirjan Johtotransmissio ja sähkömagneettinen

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti 2.2.200: tehtävät,3,4,7,0.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,

Lisätiedot

Keskitaajuudella rinnakkaisreaktanssi kasvaa ideaalisena äärettömän suureksi:

Keskitaajuudella rinnakkaisreaktanssi kasvaa ideaalisena äärettömän suureksi: TURUN AMMATTIKORKEAKOULU SUURTAAJUUSPIIRIEN PERUSTEET 230BS05 2007-08 Henry Gylén Resonanssipiirit (vain tiivistetty yhteenveto) Rinnakkaisresonanssipiiri muodostuu kelasta ja kondensaattorista rinnakkain.

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

LUENTO 9, SÄHKÖTURVALLISUUS - HARJOITUKSET

LUENTO 9, SÄHKÖTURVALLISUUS - HARJOITUKSET LUENTO 9, SÄHKÖTURVALLISUUS - HARJOITUKSET Tehtävä 1 Iso mies tarttuu pienjänniteverkon johtimeen jonka jännite on 230 V. Kuinka suuri virta miehen läpi kulkee, kun kehon resistanssi on 1000 Ω ja maaperän

Lisätiedot

SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima ATE.1 Dynminen kenttäteori syksy 11 1 / 5 Lskuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys on kksinkertinen verrttun siirrosvirrn tiheyteen

Lisätiedot

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta ATE11 taattinen kenttäteoria kevät 17 1 / 6 askuharjoitus 13: ajapintaehdot ja siirrosvirta Tehtävä 1. Alue 1 ( r1 = 5) on tason 3 + 6 + 4z = 1 origon puolella. Alueella r =. 1 Olkoon H1 3, e,5 e z (A/m).

Lisätiedot

2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?

2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa? TIETOLIIKENNELABORATORIO RADIOTEKNIIKAN PERUSTEET Tentti 3.4.27 1. Selosta lyhyesti: a) Symbolit ja yksiköt sähkökentälle, magneettikentälle, sähkövuon tiheydelle ja magneettivuon tiheydelle. b) Kenttien

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom

Lisätiedot

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

PIIRILEVYJOHTIMEN AALTOIMPEDANSSIN MÄÄRITTÄMINEN

PIIRILEVYJOHTIMEN AALTOIMPEDANSSIN MÄÄRITTÄMINEN IMPEDANSSISOVITUKSET H. Honkanen Jokainen piirilevyjodinan on samalla myös siirtolinja. Siirtolinjan emittoivaa vaikutusta voidaan merkittävästi pienentää sovittamalla siirtolinja. Tällä on merkitystä

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.103 SÄHKÖTKNIIKKA 19.12.2002 Kimmo Silvonen Tentti: tehtävät 1,3,4,7,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY K001/M12/2015 Liite 1 / Appendix 1 Sivu / Page 1(17) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address Puh./fax/e-mail/www

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Analogiapiirit III. Keskiviikko , klo , TS128. Operaatiovahvistinrakenteet

Analogiapiirit III. Keskiviikko , klo , TS128. Operaatiovahvistinrakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 3. Keskiviikko 11.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. a) Laske kuvan 1 käännetty kaskadi (folded-cascode)

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

1 Yleistä mikroaalloista

1 Yleistä mikroaalloista FYSA220/K3 (FYS222/K3) MIKROAALLOT Työssä tutustutaan mikroaaltojen käyttäytymiseen aaltoputkissa sekä mikroaaltokomponentteihin ja mikroaaltojen mittaamiseen. Työssä määritetään erilaisten kiinteiden

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1 SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite

Lisätiedot

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

HARJOITUS 7 SEISOVAT AALLOT TAVOITE SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

ELEC-C4120 Piirianalyysi II 2. välikoe

ELEC-C4120 Piirianalyysi II 2. välikoe LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2

Lisätiedot

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT VAAAN YLIOPITO TEKNILLINEN TIEDEKUNTA ÄHKÖTEKNIIKKA Maarit Vesapuisto ATE.010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE : AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT Opetusmoniste (Raaka

Lisätiedot

Ideaalinen dipoliantenni

Ideaalinen dipoliantenni Ideaalinen dipoliantenni Ideaalinen dipoli on säh k öisesti p ieni lank a-antenni ( z λ), jossa v irralla v ak io am p litu d i ja v aih e. Id eaalinen d ip oliantenni on k äy tännön antennina h arv inainen.

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5 5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n

Lisätiedot

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri. Kä y tä n n ö n sä h k ö ise sti p ie n e t d ip o lit Säh k ö isesti pien en an ten n in k o k o o n alle λ/1 0. Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti

Lisätiedot

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

JUSSI RYTILAHTI SUURIEN SIGNAALINOPEUKSIEN HUOMIOINTI PIIRILEVY- SUUNNITTELUSSA

JUSSI RYTILAHTI SUURIEN SIGNAALINOPEUKSIEN HUOMIOINTI PIIRILEVY- SUUNNITTELUSSA JUSSI RYTILAHTI SUURIEN SIGNAALINOPEUKSIEN HUOMIOINTI PIIRILEVY- SUUNNITTELUSSA Insinöörityö Kajaanin ammattikorkeakoulu Tekniikan ja liikenteen ala Tietotekniikan koulutusohjelma Kevät 2005 Tekniikka

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot