SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa
|
|
- Viljo Lattu
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 SATE2010 Dynaaminen kenttäteoria syksy /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri induktanssi tai kapasitanssi on kytkettävä kuorman rinnalle, jotta linjalla saavutetaan SAS-minimi. Kuinka pitkä oikosuljettu johto (ε r = 2,1) on lisättävä, jotta saavutettaisiin sama tulos. Normalisoidaan kuormaimpedanssi ja merkitään Smithin karttaan (kuva 1: kohta A): Z 60,3 30, 7 z = = = 0, , 7 = 0, 741+ j0, 440 Z 70 0 Muutetaan kuormaimpedanssi admittanssiksi peilaamalla Smithin kartan keskipisteen kautta (kuva 1: kohta B): y = 1,0 j0,6 Kuva 1. Smithin kartta tehtävään 1.
2 SATE2010 Dynaaminen kenttäteoria syksy /8 SAS-minimi saavutetaan, kun Im{Z} = 0: j0,6 Yx = Z x = = j116,6 [ Ω] j0,6 1 = 116,6 2πfC 1 C = = = 6 2π ,6 12 4, ,87 pf Aallonpituus oikosuljetulla johdolla : 8 v 1 c 3 10 λ = = = = = 0,739 m 6 f µε f ε f 2, r Oikosuljetun johdon normalisoiduksi admittanssiarvoksi on saatava j0,6 (kuva 1: kohta C). Johtimen pituus aallonpituuksina saadaan admittanssioikosulun (kuva 1: kohta D) etäisyydestä ko. kompensointi admittanssiin (kuva 1: kohta E): loj = 0, 250λ + 0, 086λ = 0,336λ 0,336 0, 739 = 0, 248 m Tehtävä 2. Häviöttömään linjaan (90 Ω, ε r = 1,8), joka toimii taajuudella 280 MHz, on sovitettu kuorma käyttäen oikosuljettua sovituspätkää (tällöin SAS = 1,0). 10 cm pitkä sovituspätkä on sijoitettu 15,8 cm kuormasta generaattoriin päin. Määritä kuormaimpedanssin suuruus. Aallonpituus linjalla ja oikosuljetulla johdolla : 8 v 1 c 3 10 λ = = = = = 0,7986 m 6 f µε f ε f 1, Sovituspätkän pituus aallonpituuksina: 0,1 loj = λ = 0,1252λ 0, 7986 r Sovitettuna SAS = 1,0 => Sovitettu normalisoitu kuorma-admittanssi y s = 1 + j0. Sovituspätkän pituuden perusteella saadaan normalisoidun kuorma-admittanssin imaginääriosan suuruus sovituspätkän kohdalla: admittanssin oikosulkuun (kuva 2: kohta A) lisätään sovituspätkän pituus (kuva 2: kohta B). Luetaan imaginaariosan suuruus (kuva 2: kohta C): 0, 2500λ + 0,1252λ = 0,3752λ y = j os y = j ( ) 15,8cm Joten sovituspätkän kohdalla normalisoitu kuorma-admittanssi y oj = 1 + j (kuva 2: kohta D). Siirrytään (kuva 2: kohta E) 15,8 cm kuormaan päin (kuva 2: kohta F).
3 SATE2010 Dynaaminen kenttäteoria syksy /8 0,158 doj = λ = 0,1978λ 0, ,338λ + 0,1987λ = 0,5367λ 0, 0367λ Peilataan saatu normalisoitu kuorma-admittanssi (kuva 2: kohta G) normalisoiduksi kuormaimpedanssiksi (kuva 2: kohta H) ja puretaan normalisointi: Z = zz0 = ( 2, 0 + j1, 0) 90 = j90 = 201, 2 26, 6 Ω Kuva 2. Smithin kartta tehtävään 2.
4 SATE2010 Dynaaminen kenttäteoria syksy /8 Tehtävä 3. Siirtojohdot, joiden väliaineen suhteellinen permittiivisyys on ε r = 10, on kytketty alla olevassa kuvassa esitetyllä tavalla. Määrää Smithin diagrammia käyttäen a) syöttöpisteimpedanssi Z in b) seisovan aallon suhteet sekä jänniteminimien paikat molemmilla johdoilla c) vastuksissa kuluvat pätötehot. Signaaligeneraattorin taajuus on f = 5 GHz. Siirtojohtojen ominaisimpedanssit ovat Z 01 = 75 Ω, Z 02 = 100 Ω ja pituudet l 1 = 25 mm, l 2 = 2,37 mm. Lisäksi = 50 Ω ja E = 1 / 0º V. E + Z in Z 01, s 1 Z 02, s 2 Kuva 3. Piirikaavio tehtävään 3. Lasketaan aallon aallonpituus: m v λ = = = = = = = f f f f s c 3 10 s 0,01897 m 0,019 m 9 µε µ 1 0ε 0 µ rε r ε r Lasketaan johtimien pituudet aallonpituutena: 25 mm s1 = 25 mm s1 = λ = 1,316λ 19 mm 2,37 mm s2 = 2,37 mm s1 = λ = 0,125λ 19 mm Loppupään (= oikosulun) normalisoitu impedanssi: Zoik ( 0 + j0) Ω zoik = = = 0 + j0 Z 100Ω 02 Siirrytään em. oikosulusta (kuva 4: kohta A) siirtojohtimen 2 alkupäähän (kuva 4: kohta B). Saatu impedanssi peilataan vielä admittanssiksi (kuva 4: kohta C) ja poistetaan normalisointi: yj2a 0 j1 yj2a = 0 j1 Yj2a = = = ( 0 j10 ) ms Z 100 Ω 02 Lasketaan em. admittanssin ja johtojen välissä olevan vastuksen rinnankytkennän yhteisvaikutus: Yj1l = 1 + Y 1 j2a = + ( 0 j10 ) ms = ( 20 j10 ) ms 50 Ω Normalisoidaan edellä saatu admittanssi ja piirretään Smithin karttaan (kuva 4: kohta D): 3 yj1l = Z01Yj1l = 75Ω ( 20 j10 ) 10 S = 1,5 j0,75 Siirrytään (kuva 4: kohta E) johdon 1 alkupäähän (kuva 4: kohta F): λ = 0,305λ + 1,316λ = 1, 621λ 0,121λ G
5 SATE2010 Dynaaminen kenttäteoria syksy /8 Kuva 4. Smithin kartta tehtävään 4. Peilataan saatu admittanssi (kuva 4: kohta G) impedanssiksi (kuva 4: kohta H) ja poistetaan normalisointi: z = z = 0,8 j0,65 Z = z Z = 0,8 j0,65 75 Ω = 60 j48,8 Ω in j1a j1a j1a 01 ( ) ( ) Seisovan aallon suhteet saadaan esim. heijastuskerrointasoympyröiden oikeanpuoleisten sivujen ja kaaren Im{z}= 0 leikkauspisteistä (kuva 4: kohdat J ja I): SAS = 2,1 ja SAS = j1 j2 Jänniteminimien paikat saadaan impedanssitasossa toimittaessa etäisyytenä impedanssin oikosulun (0 + j0) ja johdon pään välillä ja admittanssitasossa toimittaessa admittanssin oikosulun ( + j ) ja johdon pään välisenä etäisyytenä:
6 SATE2010 Dynaaminen kenttäteoria syksy /8 Johto 2: Jänniteminimi heti johdon loppupäässä. Johto 1: Jänniteminimit johdon alkupäästä: 1. jänniteminimi: 0,370λ 7 mm 2. jänniteminimi: 0,870λ 16 mm Lasketaan vastuksissa kuluvat pätötehot: g I E + Z in U Kuva 5. Piirikaavio tehtävän 3 pätötehojen laskentaa varten E P g g I g 2 2 g Z in = = = 50 W = 50 W = 3, 45 mw j48, ,8 Koska kaikki johdot ovat häviöttömiä, loput johdolle 1 lähtevästä pätötehosta kuluu vastuksessa. g in 2 2 * 2 2 E 1 0 P = e{ UI } = e{ Zin I } = e{ Zin} I = e{ Zin} = 60 W = 4,14 mw + Z j48,8 Tehtävä 4. Laske alla esitetyn kuvan mukaisessa kytkennässä a) SAS siirtojohdossa b) jännitelähteen läpi kulkeva virta I. Johto on ilmaeristeinen. E = 10 0 V, Z = 50 Ω, = 50 Ω, l = 300 m, L = 15,92 µh, f = 1 MHz. 0 I + E - Z 0, l L Kuva 6. Piirikaavio tehtävään 4. Lasketaan aallon aallonpituus: 8 m v 3 10 λ = = s = 300 m 6 f s Lasketaan johtimen pituus aallonpituutena:
7 SATE2010 Dynaaminen kenttäteoria syksy /8 l λ l 300 m = = = 1 λ 300 m Kuormaimpedanssi: 6 6 Z ( 50 + j2 π ,92 10 ) Ω L z = = = 1 + j2 Z 50 Ω 0 Piirretään normalisoitu kuormaimpedanssi Smithin karttaan (kuva 7: kohta A) ja luetaan SAS (kuva 7: kohta B tai kohta C): SAS 5,8 Kuva 7. Smithin kartta tehtävään 4.
8 SATE2010 Dynaaminen kenttäteoria syksy /8 Siirtojohtimen pituus on 1,000λ => Siirtojohdon alkupäähän siirretty kuormaimpedanssi = kuormaimpedanssi siirtojohdon loppupäässä. E + I Z in Kuva 8. Piirikaavio tehtävän 4 virran laskemiseksi. I E 10 0 = = A = 0, A + Z j100 in
MHz. Laske. = 1,5 j1,38
. Z a Z 0, l Z Johto, jonka ominaisimpedanssi on Z 0 = Ω, on päätetty impedanssilla Z = (75 j69) Ω. Johdon pituus on l = 3,5 m ja sitä syötetään taajuudella f = MHz. Laske (a) syöttöpisteimpedanssi Z a
1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30
SATE1050 Piirianalyysi II syksy 2016 kevät / 8 Laskuharjoitus 13 / Smithin kartta ja kuorman sovittaminen
SATE1050 Piirianayysi II syksy 2016 kevät 2017 1 / 8 Tehtävä 1. Aa oevassa kuvassa esitetty pitkä johto on päätetty impedanssia Z. Kuormituksen sovittamiseksi iitetään johtoon avoin johdonpätkä ( Z 0,
SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa
ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 8 / Smithin-kartan käyttö siirtojohtojen kahden käytettävän sovituspalan tilanteessa
SATE2010 Dnaaminen kenttäteoria sks 2011 1 / Tehtävä 1. Imaeristeisen injan (50 Ω), joka toimii taajuudea 500 MHz, päässä on kuorma Z L = (50 + j50) Ω. 3λ/-virittimen ensimmäinen sovituspaa on sijoitettu
S /142 Piirianalyysi 2 2. Välikoe
S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston
SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m
1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan
Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla
Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip
ELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
SATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä
1040 Piirianalyysi B kevät 2016 1 /6 ehtävä 1. lla olevassa kuvassa esitetyssä symmetrisessä kolmivaihejärjestelmässä on kaksi konetta, joiden lähdejännitteet ovat vaihejännitteinä v1 ja v2. Järjestelmä
SATE1140 Piirianalyysi, osa 1 kevät /9 Laskuharjoitus 4: Kerrostamis- ja silmukkamenetelmä
ST1140 Piirianalyysi, osa 1 kevät 018 1 /9 Tehtävä 1. Määritä alla esitetyssä piirissä kuormassa (vastuksessa) R L lämmöksi kuluva teho käyttäen hyväksi kerrostamismenetelmää. 0 kω, R 5 kω, R 0 kω, 0 kω,
Antennit ja syöttöjohdot
Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf
ELEC-C4120 Piirianalyysi II 2. välikoe
LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2
Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on
ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit
S Piirianalyysi 2 Tentti
S-55.2 Piirianalyyi 2 Tentti 4.9.06. j(t) u(t) ake jännite u(t) ajan funktiona ja vatukea kuluva teho, kun j(t) ĵ in(ω t)+ĵ 2 in(ω 2 t) ja piiri on jatkuvuutilaa. Ω 5µH 00 nf ĵ 300 ma ĵ 2 0 ma ω 0 6 rad/
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
S-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
Keskitaajuudella rinnakkaisreaktanssi kasvaa ideaalisena äärettömän suureksi:
TURUN AMMATTIKORKEAKOULU SUURTAAJUUSPIIRIEN PERUSTEET 230BS05 2007-08 Henry Gylén Resonanssipiirit (vain tiivistetty yhteenveto) Rinnakkaisresonanssipiiri muodostuu kelasta ja kondensaattorista rinnakkain.
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?
TIETOLIIKENNELABORATORIO RADIOTEKNIIKAN PERUSTEET Tentti 3.4.27 1. Selosta lyhyesti: a) Symbolit ja yksiköt sähkökentälle, magneettikentälle, sähkövuon tiheydelle ja magneettivuon tiheydelle. b) Kenttien
Jukka Kinkamo, OH2JIN Kaukopäästä avoin ja oikosuljettu syöttöjohto
Kaukopäästä avoin ja oikosuljettu syöttöjohto Jos lähtötilanteessamme on lähettimen ulostuloimpedanssi 50 Ω, syöttöjohdon impedanssi samoin 50 Ω ja kuorman eli antennin impedanssi 50 Ω, on tehonsiirto
d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?
-08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin
LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin
SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet
S Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
Omnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
HARJOITUS 7 SEISOVAT AALLOT TAVOITE
SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi
Scanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
S Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta
ATE11 taattinen kenttäteoria kevät 17 1 / 6 askuharjoitus 13: ajapintaehdot ja siirrosvirta Tehtävä 1. Alue 1 ( r1 = 5) on tason 3 + 6 + 4z = 1 origon puolella. Alueella r =. 1 Olkoon H1 3, e,5 e z (A/m).
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviiko 7 / versio 26. lokakuuta 2016 Aallot ja osoittimet (Ulaby, 1.4 1.7) Etenevät (sinimuotoiset) aallot Osoittimet ja notaatiovertailu Piirianalyysiin
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
Aaltoputket ja mikroliuska rakenteet
Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa
R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus
EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Siirtojohdot, Transmission Lines Luento, vrt. laboratoriotyö nr. 3. Siirtojohdon käsite Esim. antenni- tai muu koaksiaalikaapeli, ATK-verkko Aaltojen
Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY
Antennit ja http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKK LKTRONKK. välikoe 0.3.006. Saat vastata vain neljään tehtävään!. Laske jännite U. R = =Ω, R 3 =3Ω, = =4V, 3 =6V, = + R + R 3 + U 3. Konkka on varautunut jännitteeseen u C (0) =. Kytkin
Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4
SATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 10 / Kaksiporttien ABCD-parametrit ja siirtojohdot aikatasossa
SATE050 Piirianalyysi II syksy 06 kevä 07 / 6 Tehävä. Määriä alla olevassa kuvassa esieylle piirille kejumariisi sekä sen avulla syööpiseimpedanssi Z(s), un kuormana on resisanssi k. i () L i () u () C
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5
5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n
= ωε ε ε o =8,853 pf/m
KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys
SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-6 2017, Kimmo Silvonen Osa VI, 30.10.2017 Otan mielelläni esim. sähköpostilla (kimmo.silvonen@aalto.fi) vastaan pieniäkin korjauksia (kuten painovirheet), tekstisisältötoiveita
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.3 SÄHKÖTKNKKA.5.22 Kimmo Silvonen Tentti: tehtävät,3,4,6,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.. Laske virta.
Radiotekniikan perusteet BL50A0301
Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
215.3 MW 0.0 MVR pu MW 0.0 MVR
Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi
20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:
SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot
LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET
LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET LABORATORIOTYÖ 2 (8 h) LIITE 2/2 1 TYÖN KUVAUS Työssä tutustutaan antennien ominaisuuksiin rakentamalla ja mittaamalla
S-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
PIIRILEVYJOHTIMEN AALTOIMPEDANSSIN MÄÄRITTÄMINEN
IMPEDANSSISOVITUKSET H. Honkanen Jokainen piirilevyjodinan on samalla myös siirtolinja. Siirtolinjan emittoivaa vaikutusta voidaan merkittävästi pienentää sovittamalla siirtolinja. Tällä on merkitystä
Häiriöt, siirtojohdot, antennit, eteneminen
Radioamatöörikurssi PRK OH2TI Häiriöt, siirtojohdot, antennit, eteneminen 2.11.2011 Teemu, OH2FXN 1 / 44 Häiriöt Radioamatööri on vastuussa aiheuttamistaan häiriöistä. Kaikissa häiriötapauksissa amatööri
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
VAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.
Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen
Fysiikan valintakoe klo 9-12
Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen
SATE.1040 Piirianalyysi IB syksy /8 Laskuharjoitus 1: Ohjatut lähteet
STE. iirianalyysi syksy 6 /8 Tehtävä. Laske jännite alla olevassa kuvassa esitetyssä piirissä. Ω, Ω, Ω,, E V, E V E E Kuva. iirikaavio tehtävään. atkaisu silmukkamenetelmällä: E E Kuva. Tehtävän piirikaavio
2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.
Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä
Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1
Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus
Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita
VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
RADIOTEKNIIKKA 1 HARJOITUSTYÖ S-2009 (VERSIO2)
SÄHKÖ- JA TIETOTEKNIIKAN OSASTO Radiotekniikka I RADIOTEKNIIKKA 1 HARJOITUSTYÖ S-2009 (VERSIO2) Työn tekijät Katja Vitikka 1835627 Hyväksytty / 2009 Arvosana Vitikka K. (2009) Oulun yliopisto, sähkö- ja
SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä
ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,
1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
EMC. Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät
EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen
Vcc. Vee. Von. Vip. Vop. Vin
5-87.2020 Elektroniikka II Tentti ja välikoeuusinnat 27.05.2011 1. Våitikokeen tehtiivät l-4,2. välikokeen tehtävät 5-8 ja tentin tehtävät l,2,6ja 8. Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE.1 Dynminen kenttäteori syksy 11 1 / 5 Lskuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys on kksinkertinen verrttun siirrosvirrn tiheyteen
HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT
LUENTO 4 HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT HAVAINTOJA ELÄVÄSTÄ ELÄMÄSTÄ HYVÄ HÄIRIÖSUOJAUS ON HARVOIN HALPA JÄRJESTELMÄSSÄ ON PAREMPI ESTÄÄ HÄIRIÖIDEN SYNTYMINEN KUIN
Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.
TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori