S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
|
|
- Sanna-Kaisa Jokinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 . väliko Saat vatata vain nljään thtävään!. ak jännit. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. 2 + I 3 2. ak jännit, kun kytkin uljtaan htkllä. = 0 V = 2 = 0 Ω, = 0,2 F, 0 = 2 V. 2 i 2 i 3. ak jännit. = 2 = Ω, = 2 H, = 0,5 F, ω = 2 rad, = 35 0 V ak vatukn = 0 Ω kuluttama tho P rikn molmmia kytknnöiä olttan, ttä 2 :n ottama tho on P 2 = 60 W. 2 = 40 Ω, =,2 mf, = 3 H, ω = 0 rad. + I 2 + I I =? 60 W 2 ) 60 W 5. Jo lakt tämän thtävän, jätä yki thtävitä -4 poi! Siirtojohdon ominaiimpdani on Z = 50 Ω ja viiv 0 n. ak jännit, kun 5 n. = 0 V, T = 0 n, 0) = 0 V, S = 00 Ω, = 50 Ω. + S Z Tämän välikokn voi uuia ma atkaiut ja tulokt tulvat Noppaan. Kurin palautjärjtlmä on avattu, käy ooitta autat khittämään optuta ja aat yhdn liäpitn!
2 . Mid-Trm xam Anwr only four problm!. Find voltag. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. 2 + I 3 2. Find voltag if th witch i clod at. = 0 V = 2 = 0 Ω, = 0.2 F, 0 = 2 V. 2 i 2 i 3. Find voltag. = 2 = Ω, = 2 H, = 0.5 F, ω = 2 rad, = 35 0 V Find powr P takn by ritor = 0 Ω paratly in both circuit, auming th powr of 2 qual in both circuit: P 2 = 60 W. 2 = 40 Ω, =.2 mf, = 3 H, ω = 0 rad. + I 2 + I I =? 60 W 2 ) 60 W 5. If you choo to do thi problm, kip or dlt on of th -4! Th charactritic impdanc of a tranmiion lin i Z = 50 Ω, and dlay 0 n. Find voltag at 5 n. = 0 V, T = 0 n, 0) = 0 V, S = 00 Ω, = 50 Ω. + S Z Thi mid-trm can b rnwd or prformd for th firt tim on Mon, Dc 22th Th olution and rult will b found in Noppa. Th anonymou fdback ytm of th cour i opn. Viit to hlp in dvloping th cour orry, it i in Finnih). An xtra xam point will b givn!
3 . väliko Saat vatata vain nljään thtävään!. ak jännit. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. + I 3 I3 2 I 3 = I + I = I 3 ) + + I + 3 I 3 = 0 I 3 = = I 3 2) 3 I = 0 = 2 3 I 3 = 3 V 3) 2. ak jännit, kun kytkin uljtaan htkllä. = 0 V = 2 = 0 Ω, = 0,2 F, 0 = 2 V. 2 i 2 u = u i u + + du ) +u = 0 4) 2 dt i =i 2 +i u = B + A t du τ d A t τ τ 5) u B + A t τ ) + du dt A ) t τ τ = 0 6) mn B = 0 B = = = 5 V jh A + A ) 2 τ 0 t τ = 0 τ = = 2 = 7) 0 = u0) = B + A 0 = B + A A = 0 B = 3 V 8) u = = 5 3 t/) V 9)
4 3. ak jännit. = 2 = Ω, = 2 H, = 0,5 F, ω = 2 rad, = 35 0 V. + I + I 2 I I 2 2 I jω) I 2 = 0 I = 2 + jω) I 2 0) + jω I + I 2 ) + I = 0 ) j ω + ) j ) + j4) + I2 I 2 + jω) I 2 j ω I 2 = 2) j I 2 = 35 3) [ j) + j4) j] I 2 = 35 4) I 2 = j 5) 35 j405 2j) j) = jωi 2 = j4 = = 6) 5 + 2j = 9,655 + j24,38 = 26,0 68,2 V 7) 4. ak vatukn = 0 Ω kuluttama tho P rikn molmmia kytknnöiä olttan, ttä 2 :n ottama tho on P 2 = 60 W. 2 = 40 Ω, =,2 mf, = 3 H, ω = 0 rad. + I 2 + I I =? 60 W 2 ) 60 W S 2 = P 2 + j0 = 2 I 2 = 2 I 2 I 2 = 2 I 2 2 I 2 = P2 2 = 2 A 8) nimmäinn vaihkulman valinta on vapaa; itoo aika-aklin nollakohdan. Valitaan I 2 = 2 0 A. = jω + 2 )I 2 = 80 + j60 9) I = jω = jω = j0, j60) 20) I = I 2 + I =,28 + j0,96 = 0, j60) 2) Tulokta nähdään ivumnnn), ttä ja I ovat amanvaihiia. Kuorma i ii ota loithoa jännitlähttä. Jännitlähtn virta on amalla pinin mahdollinn virta, jolla vatukn 2 aadaan :n läpi 60 W thoa. Thtävää voidaan tulkita imrkiki yöttöjohdon häviöritaniki. aktaan ii thohäviö. Ilman kompnointia = + I 2 = 7 3 V): P = I 2 2 = 40 W 22) Kompnoituna 2 = + I = 6 37 V): P = I 2 = 0, ,96 2 ) = 25,6 W 23)
5 5. Jo lakt tämän thtävän, jätä yki thtävitä -4 poi! Siirtojohdon ominaiimpdani on Z = 50 Ω ja viiv 0 n. ak jännit, kun 5 n. = 0 V, T = 0 n, 0) = 0 V, S = 00 Ω, = 50 Ω. ρ 2, τ 2 + S u Z u+ Johdoll lähtvä jännitaalto on aluki nolla htkllä ) ja makimiaan: u T ) = Z = S + Z 3 24) Hijatu- ja läpäiykrroin: ρ 2 = Z + Z = 2 τ 2 = + ρ 2 ) = 2 + Z = ) 26) Htkllä 5 n pulin alkava li matalampi runa on htinyt jo aavuttaa kuormavatukn ja hijatunut takaiin. Pulin nouvalla luikalla ollaan juuri kkikohdalla li puoliväliä. Vammalta tulva jännitaalto on ii u + =, joka ii hijatuu ρ 6 2-krtaina takaiin: u + T 2 ) = + ρ 2) u + = τ 2 u + = = 2,5 V 27) Sähkötkniikka ja lktroniikka -kurin välikokiiin tai tnttihin i tulvaiuudakaan vaadita ilmoittautumita. Pahoittln Oodia avoinna olln ilmoittautumin mahdolliti aihuttamia pälvyykiä. Pitäiin järkvänä, ttä tämä käytäntö lviäii koko korkakouluun; lunnoitijoill i pitäii olla uuri ylläty, jo kurill ilmoittautunut opiklija tul myö välikokiiin tai tnttiin. Väkikokidn tulokia i voi yhditää kahdlta ri lukukaudlta. Tavoittnani on, ttä tämä priaat oliikin ainoa idioottimaiuu kurijärjtlyiä! X
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA JA LKTRONIIKKA 2. väliko 15.12.2008. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Lask jännit. = 10 Ω, = 40 Ω, = 3 kω, = 9 kω, = 1 kω, = 1 V. Puskurivahvistin rottaa kuorman
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. väliko 14.12.26. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Millä välillä vaihtl opraatiovahvistimn lähtöjännit, jos =1 +û sin ωt. =2, û =5. 2 Thtävä 2.
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKK LKTRONKK. välikoe 0.3.006. Saat vastata vain neljään tehtävään!. Laske jännite U. R = =Ω, R 3 =3Ω, = =4V, 3 =6V, = + R + R 3 + U 3. Konkka on varautunut jännitteeseen u C (0) =. Kytkin
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTONIIKKA. väliko 13.1.005. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Kuvan kaksiportin -paramtrit tunntaan, samoin kuormavastus ja lähtöjännit U. Lask jännit.
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA LKTONKKA. välikoe 3.0.2006. Saat vastata vain neljään tehtävään!. Laske jännite U. = =4Ω, 3 =2Ω, = =2V, J =2A, J 2 =3A + J 2 + J 3 2. Kondensaattori on aluksi varautunut jännitteeseen
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA JA LKTONIIKKA Tentti 15.5.2006: tehtävät 1,3,5,7,10 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita!
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55. SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe.2.22. Saat vastata vain neljään tehtävään! Sallitut: Kako, [r.] laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!]. Laske jännite. = V, = 2 Ω,
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe 14.12.2010. Saat vastata vain neljään tehtävään! Sallitut: Kako, (gr.) laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!] 1. Missä rajoissa
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..
r u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti 2.2.200: tehtävät,3,4,7,0.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Tentti 6.5.007: tehtävät,3,4,6,0. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
2. välikoe.2.207. Saat vastata vain neljään tehtävään!. aske jännite u 2 (t) ajan t 4 t kuluttua kytkimen sulkemisesta. 9 V S 50 Ω, 00 Ω, 50 Ω. t 0 {}}{{}}{ S t 0 u u 2 (t) 2. aske jännite U yhden millivoltin
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.
S-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
Ratkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu.
L89 Jäittaiiliu. Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. Piirrä i oho a äitläht Thvii kvivaltti. Aa
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.3 SÄHKÖTKNKKA.. Kimmo Silvonn Tntti: thtävät,3,5,7,9. väliko: thtävät,,3,4,5. väliko: thtävät 6,7,8,9, Oltko muistanut vastata palautkyslyyn Voit täyttää lomakkn nyt.. Lask virta. = = 3 =Ω, J =3A,
S-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
S Piirianalyysi 2 Tentti
S-55.2 Piirianalyyi 2 Tentti 4.9.06. j(t) u(t) ake jännite u(t) ajan funktiona ja vatukea kuluva teho, kun j(t) ĵ in(ω t)+ĵ 2 in(ω 2 t) ja piiri on jatkuvuutilaa. Ω 5µH 00 nf ĵ 300 ma ĵ 2 0 ma ω 0 6 rad/
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
LC C21 SÄHKÖTKNKKA JA LKTONKKA Kimmo Silvonen 2. välikoe 8.12.21. Tehtävät 1 5. Saat vastata vain neljään tehtävään! Sallitut: Kako, [gr.] laskin, [MAOL], [sanakirjan käytöstä on sovittava valvojan kanssa!]
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
S Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNIIKKA 19.12.2002 Kimmo Silvonen Tentti: tehtävät 1,3,4,7,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA JA KTONIIKKA 2. välikoe 5.5.2008. Saa vasaa vain neljään ehävään! Kimmo Silven 1. aske vira. = 1 kω, = 2 kω, 3 = 4 kω, = 10 V. Diodin ominaiskayra, aseikko 0... 4 ma + 3 Teh. 2.
ELEC-C4120 Piirianalyysi II 2. välikoe
LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt
Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta
ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
Kimmo Silvonen, Aalto ELEC 2. välikoe 12.12.2016. Saat vastata vain neljään tehtävään! 1. Tasajännitelähde liitetään parijohtoon hetkellä t 0. Lakse kuormavastuksen jännite u 2 (t) hetkellä t 3,1 t ottamalla
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.13 SÄHKÖTKNKK 1.1.5 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,1 Tässä kokeessa on myös välikoeuusinta, koska joulukuussa ei ollut tilaa tentille.
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)
Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.03 SÄHKÖTKNIIKKA 20.5.999 Kimmo Silvonen Tentti: tehtävät,3,5,8,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät,7,8,9,0 Oletko muitanut täyttää palautekyelyn Teeenytja hauku amalla kokeet.. ake jännite
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.3 SÄHKÖTKNKKA.5.22 Kimmo Silvonen Tentti: tehtävät,3,4,6,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.. Laske virta.
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti
MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.
Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5
y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä
SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit
SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)
S Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Returns to Scale Chapters
Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007 Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment Introduction
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55. SÄHKÖTKNKK 9.5.998 Kimmo Silvonen Tentti: tehtävät,,5,7,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muitnut täyttää plutekyelyn Teeenytj huku mll välikokeet.. Lke virt. =4Ω, =2Ω,
S /142 Piirianalyysi 2 2. Välikoe
S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.3 SÄHKÖTKNIIKK.5. Kimmo Silvonen Tentti: tehtävät,3,5,7,8. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske jännite U. =Ω,
Pakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1.
ELE- E89 väliko 8..5 rkiu. ll olvn kuvn muki vrko on onglmi. Tiln ov kuvillii ikä kiki vihohdoi ol kyä mnlinn vrkko. Vli opivi oimnpiiä, oill onglm dn poiu miä hdään minn nn rkiulli prulu. Vikk ohonkin
SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Passiiviset peruskomponentit Luento Kondensaattori kapasitanssi C, i =f(u), varauksen häviämättömyyden laki eli sähkövirran määritelmä Kela induktanssi
Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi syksy 2012
SATE.0 Staattisn knttätorian laantainn Sähköagnttisksi knttätoriaksi sks 0 /6 Laskuharoitus 5 / Sähköagnttist aalton polarisoituinn a tninn väliainsta toisn Thtävä. a) Määritä tniskrroin 50 kh:n taauudlla
Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä
( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
Mat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa
ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
ELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
MAOL-Pisteitysohjeet Fysiikka kevät 2004
MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
Itämeren MoU ja SOLAS vaatimustenmukaisuustodistus
Itämeren MoU ja SOLAS vaatimutenmukaiuutoditu Sten Sundberg Erityiaiantuntija Alutekniikka- ja operointi 22.5.2018 Vatuullinen liikenne. Rohkeati yhdeä. Vaaralliia aineita kuljettavat aluket Rakenne ja
C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat
S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan
LANSEERAUS LÄHESTYY AIKATAULU OMINAISUUDET. Sähköinen jäsenkortti. Yksinkertainen tapa lähettää viestejä jäsenille
tiedote 2 / 9.3.2017 LANSEERAUS LÄHESTYY AIKATAULU 4.3. ebirdie-jäsenkortti esiteltiin Golfliiton 60-vuotisjuhlaseminaarissa 17.3. ebirdie tulee kaikkien ladattavaksi Golfmessuilla 17.3. klo 12:00 alkaen
PD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
Moduloivat toimimoottorit AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 - jousipalautteinen
Moduloivat toimimoottorit AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 - jousipalautteinen Kuvaus AME 10 AME 13 AME 20, AME 30 AME 23, AME 33 Toimimoottoreita on saatavsa moduloiviin säätölaitteiin Y-signaalilla
Rekisteröiminen - FAQ
Rekisteröiminen - FAQ Miten Akun/laturin rekisteröiminen tehdään Akun/laturin rekisteröiminen tapahtuu samalla tavalla kuin nykyinen takuurekisteröityminen koneille. Nykyistä tietokantaa on muokattu niin,
Talousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn
Marina Kostik. Joulu. Naiskuorolle
32 758 Marina Kostik Joulu Naiskuorolle 2017 Copyright by the Composer All Rights Reserved No part of this publication may be copied or reproduced in any form or by any means without the prior permission
Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0
Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865
Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.
T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden
METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus
METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla
OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn
HARJOITUS- PAKETTI A
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital
t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA
Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Helsinki University of Technology Laboratory of Telecommunications Technology
Helinki Univerity of echnology Laboratory of elecommunication echnology Digitaalinen iirtojärjetelmä S-38. Signaalinkäittely tietoliikenteeä I Signal Proceing in Communication ( ov) Syky 998. Luento: Pulinmuokkauuodatu
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
SUUNNITELMA MUHOKSEN KUNNAN LIIKUNTAPAIKKOJEN PARANTAMISEKSI 2013
SUUNNITELM MUHOKSEN KUNNN LIIKUNTPIKKOJEN PRNTMISEKSI 2013 Tämän uunnitlman tarkoitukna on kartoittaa Muhokn kunnan liikuntapaikkojn kunto ja ittää parannukinoja. Liäki ill ottaan muutamia uuia lajja ja
SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 9: Teheveninin ja Nortonin menetelmät
SATE1140 Piirinlyysi, os 1 kevät 2018 1 /7 Tehtävä 1. Lske ortonin menetelmän vull ll olevss kuvss esitetyssä piirissä jännite U 3. 20 A, E 345 V, E 660 V, Z 130, Z 30, Z 545. 3 Z 1 Z 2 E 2 Z 3 U 3 Kuv
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.3 SÄHKÖTKNIIKKA 9.2.998 Kimmo Silvonen Tentti: tehtävät,3,5,8,. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,,8,9, Oletko muistanut täyttää palautekyselyn Teesenytja hauku samalla kokeet.. aske
ELEC-C3230 Elektroniikka 1. Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit)
1 ELEC-C3230 Elektroniikka 1 Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit) 1 luennon pääaiheet Motivointi Piirianalyysin kertaus Vahvistinmallinnus (liuku 2. luentoon) 2 https://www.statista.com/outlook/251/100/consumer-electronics/worldwide