Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f
2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2. Lanamarkknat... 5 2.3. Muut sjotusnstrumentt... 5 3. Modernn portfoloteoran rakennuspalkat... 6 3.1. Arvopapern tuotto... 6 3.2. Portfolon tuotto... 7 3.3. Osakkeden tuoton odotusarvo... 7 3.4. Osakkeen tuottojen varanss rskn mttana... 7 3.5. Kovaranss... 8 3.6. Vaadttavat oletukset... 9 4. Markowtzn porfoloteora... 9 4.1. Osakkeden yhtesvahtelu... 10 4.2. Tehokas rntama... 11 4.3. Tehokkaan portfolon muodostamnen... 12 4.4. Sjottajan hyötyfunkto... 13 4.5. Tehokas salkku esmerkkanestosta... 15 4.5.1 Parametren estmont... 15 4.5.2 Portfolon optmont... 16 4.5.3 Tulokset... 17 5. Sjotussalkku ja rsktön korko... 18 5.1. Rsktön lanaamnen ja tallettamnen portfolossa... 18 5.2. Varallsuuden allokont... 19 5.3. Rskn ja tuoton muutosten vakutus varallsuuden allokontn... 20 6. CAP-mall... 21 6.1. Markknaportfolo... 22 6.2. Pääomamarkknasuora... 23 6.3. Osakemarkknasuora... 23 6.4. Karakterstnen suora... 24 7. Johtopäätökset... 26 8. Lähteet... 27 9. Ltteet... 28
3 1.Johdanto Modernn portfoloteoran lähtökohta on sjotussalkun tehokas hajauttamnen rskn penentämseks. Sjottajan tavotteena on saada mahdollsmman hyvää tuottoa sjotukslleen penmmällä mahdollsella rskllä. Arvopapermarkknolla on suur määrä osakketa ja muta sjotusnstrumenttejä, josta sjottaja vo valta tselleen parhaten sopvat. Modern portfoloteora antaa sjottajalle matemaattsen ja tlastollsen pohjan valta hänen preferensselleen sopvan optmaalsen sjotusportfolon. Modernn portfoloteoran perustan esttel nobelst Harry Markowtz artkkelssaan Portfolo Selecton (Journal of Fnance 1952). Markowtz havats, että er osakkeden tuottojen korrelaatot vahtelevat systemaattsest, jollon sjotussalkun kannalta paras hajautushyöty saadaan valtsemalla osakketa joden tuotot korrelovat mahdollsmman vähän. Tällön tosen osakkeen mahdollnen kursslasku kompensotuu muden osakkeden kurssnousulla, jollon koko sjotussalkun rsk penenee, mutta tuotto pysyy ennallaan. Kun osakkeden tuottoa mtataan tuoton odotusarvolla, ja rskä tuoton keskhajonnalla, pystymme matemaattsn menetelmn valtsemaan ne osakkeet sjotussalkkuun, jotka antavat sjottajalle parhamman mahdollsen hajautushyödyn. Amerkkalanen talousteteljä James Tobn jatko Markowtzn malln kehttämstä edelleen, artkkelssaan Lqudty preference as behavor towards rsk, (The Revew of Economc Studes 1958). Tobn ott sjotussalkun yhdeks nstrumentks rskttömän koron, jonka tehtävänä on säädellä salkun rsktasoa. Tobnn hahmottelema varallsuuden allokontteora kertoo, mssä suhteessa sjottajan tuls valta salkkuunsa rskllsä arvopapereta ja tosaalta rskttömä korkosjotuksa. Wllam Sharpe esttel vuonna 1964 Captal asset prcng malln, joka yksnkertastaa Markowtzn ja Tobnn teorota. Sharpen mallssa yksttästen osakkeden tuottojen vahtelua e vertalla keskenään vaan ntä verrataan markknaportfolon tuottoon. Osakkeen rskä mtataan osakkeen Beta-kertomella, joka kertoo osakkeen rsktasosta suhteessa markknaportfolon rskn. Tutkelmassan pyrn ntomaan yhdeks kokonasuudeks kakk kolme modernn portfoloteoraan lttyvää teoraa, auttaen nän lukjaa ymmärtämään modernn
4 portfoloteoran koko krjon. Hyvn matemaattsen teoran havannollstamseks pyrn myös laskemaan yksnkertasa esmerkkejä mallen melekkyyden testaamseks. 2.Sjotusmarkknat Sjotusmarkknat ovat Suomessa tunnetust olleet hyvn pankktalletuskeskeset. Tämä juontaa juurensa sjotusten säätelystä ennen 1990-luvun tatetta, jollon sjotustomnta vapautu ja ulkomaset raha- ja sjotusmarkknat avautuvat. 1990- luvun alusta lähten arvoper-nstrumentten osuus suomalasten rahotusvarallsuudesta on kasvanut (Martkanen 2006, 153-155). Rahotusnstrumentten krjo on myös kasvanut humast kahden vuoskymmenen akana. Etenkn monen tavallsen säästäjän valkomaan ovat tulleet mukaan sjotusrahastot, jotka ovat pensjottajalle hyvä välne saada akaan hajautushyötyä penelläkn alkupääomalla. Sjotusportfolo ptää ssällään kakk sjottajan omstamat arvopapert ja pankktalletukset, stä kutsutaan arkkelessä nmellä sjotussalkku. Lähtökohtasest sjottajat ovat knnostuneet kunka hedän sjotuksensa tuottavat kokonasuutena, jollon sjotusportfolon tuoton optmonta vodaan ptää melekkäänä lähtökohtana sjotusnstrumentteja valttaessa. 2.1. Osakemarkknat Pörssosakkeet ovat yks perntesstä rskllsstä sjotusmuodosta. Osakkeden tuotot muodostuvat osakkeelle maksetusta osngosta sekä osakkeen arvon noususta. Osakkeden hnnanmuodostus tapahtuu markknolla kysynnän ja tarjonnan mukaan. Osakkeden hnnat perustuvat yrtyksen substanssarvon lsäks ptkält yrtyksen tulevasuuden odotuksn, jonka taka osakkeden tuottojen ennustamnen etukäteen on lähes mahdotonta. Mtä epävarmemmat ovat tulevasuuden tuotot, stä suurempaa tuottoa yl rskttömän koron sjottajat osakkelta vaatvat. Osakemarkknat ovat hyvn lkvdt, joka tarkottaa stä, että osakkeden muuttamnen rahaks onnstuu vavattomast. Suomen osakemarkknat ovat tutkmusten mukaan keskvahvalla muodolla tehokkata. Tällön osakkeden kursst ssältävät jo akasemman kursshstoran, ekä tätä voda käyttää hyväks tulevan kursskehtyksen ennustamseen. Seuraamalla uutta markkna- ja yrtyskohtasta nformaatota e ole mahdollsta saada yltuottoja, koska nformaato välttyy hntohn nopeast.
5 Osakkeden erkosprteenä on lyhyeksmyynt, el osakkeden lanaamnen. Tämä tarkottaa osakkeden myyntä ennen kun ne on hankttu, jollon deana on hyötyä mahdollsesta kursslaskusta. Lyhyeksmyynnn suorttaja myy osakkeet eteenpän aamulla, mutta lunastaa jo eteenpän myymänsä osakkeet vasta llalla. Tomeksantaja tekee ss kaupalla vottoa, jos osakekursst ovat aamulla korkeammalla kun llalla. Lyhyeksmyynnssä osakkeden pano sjotussalkussa on negatvnen. 2.2. Lanamarkknat Lanamarkknat vodaan jakaa kahteen osaan: rahamarkknohn, jotka ptävät ssällään alle vuoden mttaset talletukset ja lanat, sekä joukkovelkakrjamarkknohn, jotka puolestaan ovat yl vuoden mttasa sjotusvaateta. Euroakana rahamarkknakoron määrää Euroopan keskuspankn ohjauskorko. Ohjauskorko määrttää rskttömän koron, jolla on keskenen rool sekä sjotusportfolon muodostamsessa, että osakkeden hnnottelussa. Rsktön korko kertoo mllä hnnalla rahaa saadaan lanaks, ta mllä hnnalla stä vodaan tallettaa lman rskä. Korkojen noustessa osakkeden suhteellnen klpalukyky hekkenee, koska osakkesta saatava tuotto yl rskttömän koron penenee. Joukkovelkakrjat ovat julksenvallan ta yrtyksen lkkeelle laskema lanatodstuksa, jolle maksetaan knteä korko. Mkäl joukkovelkakrjan ptää tsellään koko juoksuajan, e etenkään valton lkkeelle laskemssa lanossa ole rskä menettää rahojaan. Joukkovelkakrjohn lttyy kutenkn jotakn rskejä, kuten nflaatorsk, lkvdteettrsk, korkorsk ja konkurssrsk (yrtyslanossa). Joukkovelkakrjat ovat yks hyvä nstrumentt arvopapersalkun hajauttamsessa, koska ne tarjoavat varmaa tuottoa suhdantesta rppumatta. 2.3. Muut sjotusnstrumentt Asuntomarkknat ovat suomalasten suurn yksttänen sjotuskohde, ekä stä tule jättää huomotta rakennettaessa henklökohtasta sjotussalkkua. Asuntosjotusten analysonnssa käytetään myös hyväks portfoloteoraa, joka tosn sop vahtelevas-
6 t mona ertysprtetä omaavlle asuntomarkknolle. Asuntomarkknolle onkn sovellettu Johdannasmarkknat ovat yks nopeten kasvava sjotusmuoto, ja stä käytetäänkn laajast rsken hallntaan. Sjotusportfolon rskä vodaan lsätä ta vähentää johdannasten avulla, suojautumalla kursslaskujen varalta ta hakemalla vpuvakutusta kurssnousuun. Sjotussalkun muodostamsessa kesktyn nässä puttessa lähnnä pörssosakkesn sekä rskttömään korkoon. 3. Modernn portfoloteoran rakennuspalkat Modern portfoloteora ptää ssällään mona matemaattsa ja tlastollsa menetelmä. Kuten edellä manttn, osakkeden tuleva lkketä e pystytä etukäteen ennustamaan, joten tarvttavat parametrt on laskettava hstorallssta muutokssta, sekä käyttämällä todennäkösyyksä tulevsta lkkestä. Osakkeden hstorallset lkkeet antavat kutenkn osvttaa osakkeden käyttäytymsen luonteesta. Tällä perusteella tuleva tapahtuma vodaan yrttää mallntaa. 3.1. Arvopapern tuotto Arvopapern hstorallnen kesktuotto r saadaan kun arvopapern hnnasta myynthetkellä vähennetään ostohnta ja erotus jaetaan ostohnnalla. Tuottoapproksmaato vodaan lmasta myös logartmsena tuottona, joka on luonnollnen logartm myynt- ja ostohnnan suhteesta. (2.1) r X X 1 0 = ta X 0 r = ln X X 1 0 Osnkotuotot on myös otettava huomoon arvopapern tuoton laskemsessa. Osnkojen määrä dskontataan myynthetkeen ja lsätään myynthntaan, jollon myynthnnaks tulee osakkeen myyntarvo lsättynä osnkojen nykyarvoon.
7 3.2. Portfolon tuotto Portfolon tuotto on sen ssältämen arvopaperen tuottojen summa. Oletetaan, että portfolo ssältää n arvopapera. Kutakn osaketta on salkussa panolla w, jollon panojen summa on yks. (2.2) w = 1 n = 1 Portfolon tuotto R saadaan summaamalla sen osakkeden tuotot ja panojen summat. (2.3) R = wr n = 1 Sjottajan kannalta onkn oleellsta tarkastella kakken sjotusten yhtestä tuottoa, kun arvodaan yksttäsen sjotuksen onnstumsta. 3.3. Osakkeden tuoton odotusarvo Osakkeen tuotto muodostuu osngosta ja osakkeen arvon noususta. Osakkeden ja osnkojen arvoa tulevasuudessa e pystytä etukäteen määrttelemään. Nden tuleva tuottoja on arvotava todennäkösten tulemen pohjalta. Osakkaan odotusarvo E(x) muodostuu satunnasmuuttujasta x, joka on tuoton mahdollnen realsaato, sekä sen todennäkösyydestä p. (2.4) E( x) = µ = x p n = 1 Tuoton odotusarvo on sten kakken vahtoehtosten realsaatoden panotettu keskarvo, jossa panokertomna ovat todennäkösyydet. 3.4. Osakkeen tuottojen varanss rskn mttana Osakkeen rsk vodaan jakaa kahteen osaan: osakekohtaseen rskn ja markknarskn. Markknarsk tarkottaa koko osakemarkknohn vakuttava suhdanteden muutoksa, jotka vakuttavat lähes kakkn osakkesn. Osakekohtanen rsk on tettyyn osakkeeseen lttyvä hntarsk. Osakekohtasta rskä pystytään vähentämään hajauttamalla sjotussalkku useampaan er osakkeeseen. Modern portfoloteora
8 (MPT) tutk juur hajauttamsen tehokkuutta ja antaa välneet optmoda kuluttajan salkun ssällön epävarmuuden valltessa. Varanss kertoo osakkeen rskstä. Mtä suuremp varanss, stä enemmän osakkeen tuotot vahtelevat keskarvon ympärllä, ja stä epävarmempa ovat odotetut tuotot. Osakkessa rsk tarkottaa ss epävarmuutta stä mkä on tuleva tuotto. Varanss e mttaa anoastaan osakkeden rskä tuoton penenemselle, vaan myös keskarvon yläpuolella tapahtuvaa vahtelua. Sjottajan kannalta rskä on anoastaan alaspän tapahtuva vahtelu, jota vodaan mtata sem-varansslla. Tuottojen normaaljakautumaoletuksen ansosta vahtelut keskarvon ympärllä ovat symmetrset, joten varanssa vodaan ptää valdna rskn mttana, jollon emme tarvtse sem-varanssa. (Sharpe 145-149, 1990). Varanss ² on nelö satunnasmuuttujan x pokkeamasta sen odotusarvosta x, jonka jokanen tulema kerrotaan velä sen todennäkösyydellä. Keskhajonta el volatlteett saadaan ottamalla varansssta ² nelojuur. (2.5) Var = ² = n = 1 p ( x x) 2 Varanss on ana e-negatvnen luku, johtuen toseen potenssn korottamsesta. Volatlteett kertoo kunka monta prosentta osakkeden tuotot keskmäärn vahtelevat keskarvon ympärllä 68 %:n todennäkösyydellä. 3.5. Kovaranss Kovaranss on keskenen tekjä portfolon optmonnssa. Se mttaa kahden osakkeen tuottojen välstä yhtesvahtelua. Kovaranss rppuu osakkeden x ja y välsestä korrelaatosta, joten se vodaan lmasta myös korrelaaton ja keskhajontojen summana. Postvnen kovaranss tarkottaa stä, että osakkeden tuotot lkkuvat keskmäärn enemmän samaan suuntaan. (2.6) COVx, y = p ( x x)( y y) N = 1 (2.7) COVx, y = ρ xyσ xσ y Korrelaato saa ana arvoja välltä +1 ja -1. Kun korrelaato on +1 vahtelevat kahden osakkeen tuotot täysn samaan tahtn, ja vastaavast korrelaaton ollessa -1 osakkeden lkkeet ovat täysn vastakkassuuntasa.
9 3.6. Vaadttavat oletukset Portfoloteoran ylesyyden taka on tehtävä muutama yksnkertastava oletuksa. Oletetaan, että markknat ovat täydellset nn, että arvopapert ovat jaettavssa äärettömän penn yksköhn, ekä verotusta ja transaktokustannuksa oteta huomoon. Informaaton oletetaan olevan lmasta ja kakken saatavlla. Rskttömän korot oletetaan olevan sama sekä lanatessa että talletettaessa, ja lanaa on kakken tomjoden saatavlla tasapuolsest (Bellemore 1979 s.152). Sjotusten pävttäset tuotot oletetaan normaaljakautuneks. Tällön pystymme kuvaamaan tuotot odotusarvon µ ja varanssn 2 σ avulla. 4. Markowtzn porfoloteora Harry Markowtzä pdetään modernn portfoloteoran sänä. Hän hahmottel 1950- luvun alussa matemaattsen menetelmän optmaalsen sjotussalkun muodostamseen. Portfolon valnnan tavotteena on valta tehokas salkku, joka tuottaa: 1. suurmman odotetun tuoton annetulla rsktasolla ta 2. penmmän mahdollsen rskn annetulla tuottotasolla. Sjottajan on sten tasapanoteltava odotettujen tuottojen ja rskn välllä (Bellemore 1979 s.153). Sjottajalla on tetty alkuvarallsuus, jonka hän haluaa sjottaa ennalta määrätyks ajaks. Kyseessä on yhden perodn mall, jossa sjottajan valtsee ajan hetkellä t=0 mtä er arvopapereta hän ostaa salkkuunsa. Ajan hetkellä t=1 sjottaja myy sjotuksen ta optmo uudestaan sjotussalkkunsa ssällön. Se mtä arvopapereta sjottaja salkkuunsa valtsee, rppuu arvopaperen tuoton odotusarvosta ja varansssta sekä er osakkeden odotettujen tuottojen yhtesvahtelusta, el kovaransssta (Sharpe 134-135, 1990). Markowtzn portfolon hajautus perustuu er arvopaperen odotettujen tuottojen yhtesvahtelun erohn. Jos arvoperen tuotot lkkuvat er suuntn, kumoaa tosen arvopapern tuotto tosesta syntyneen tappon. Tällön koko salkun tuotto e romahda yhden osakkeen epäonnstuessa. Kun tämän ajattelumalln mukasest salkkuun valtaan useta osakketa joden tuotot yhtesvahtelevat mahdollsmman vastakkases-
10 t keskenään, saadaan arvopapersalkku, jonka keskmääränen tuotto on samalla tasolla kun yksttäsen osakkeen, mutta rsktaso on huomattavast alhasemp. Yhteen osakkeeseen sjottanut osakkeenomstaja kantaa suurempaa rskä kun portfoloon sjottanut, sllä portfolossa osakekohtanen rsk on hajautettu pos. 4.1. Osakkeden yhtesvahtelu Alotetaan tehokkaden arvopaperyhdstelmen tarkastelu kahden arvopapern tapauksesta. Portfolo ssältää kahta arvopapera A ja B. Arvopaper A on penemprsksemp kun B, mutta vastaavast sllä on penemp tuotto-odotus kun B:llä. Jos osakkeden A ja B tuotot lkkuvat ana samaan suuntaan, el nden korrelaato on yks, saadaan nästä osakkesta portfolo valtsemalla jokn pste suoralta A-B kuvosta 2.1. Tällön portfolon tuotto on osakkeden tuottojen panotettu keskarvo. Salkun keskhajonta on vastaavast A:n ja B:n panotettu keskhajonta, joten hajauttamalla e saada penennettyä kokonasrskä. Mkäl osakkeden tuotot evät vahtele täysn samaan suuntaan, vaan oletetaan korrelaaton olevan 0,3 saadaan portfolo valttua kaarevalta lnjalta välllä A-B. Tällön on tehokkaampaa valta portfoloon kumpaakn osaketta, koska hajauttamalla saadaan parempaa tuottoa samalla rskllä, jollon keskhajonta on penemp kun keskhajonnan panotettu keskarvo. Jos osakkeden A ja B tuotot lkkuvat täysn er suuntn, el nden korrelaato on -1, vodaan portfolo valta A:n ja B;n välseltä lnjalta, joka kulkee y-akseln kautta. Tällön on mahdollsta muodostaa salkku joka on täysn rsktön. Rsktön salkku saavutetaan valtsemalla osakkeden panot nden varanssen kääntesessä suhteessa. Salkun tuotto e vo kutenkaan ylttää rsktöntä korkoa, jos sen täysn rsktön.
11 E(x) ρ = 1 B ρ = 0.3 ρ = 1 A 0 σ 2 = var Kuvo 2.1, Kahdesta osakkeesta muodostettava salkku er korrelaatolla Osakkeden tuottojen korrelaatoden eroavuus yhdestä mahdollstaa hajauttamalla saatavan rskn penenemsen. Intutvsest vodaan ajatella, että ulkopuolset shokt vakuttavat osakkeden arvoon er tavalla, jollon hajautuksella vodaan penentää yhden osakkeen hekkenemsestä johtuva tappo. Jos osakkeden tuottojen korrelaatot ovat negatvsa, nousee tosen osakkeen arvo kun tosen arvo laskee. Esmerkks kohonnut öljyn hnta penentää kuljetusyhtöden tuottoja, mutta vastaavast parantaa öljy-yhtöden tuottoja. Kun portfolo ssältää molempa osakketa päädytään edelleen keskmääräseen tuottoon. Emprsestä anestosta on vakea löytää osakketa joden korrelaatot olsvat negatvsa, joten rskttömän salkun muodostamnen on hypoteettnen ajatus, mutta lähes korrelomattomlla osakkellakn saavutetaan jo merkttävää hajautushyötyä. 4.2. Tehokas rntama Kahden osakkeen mallsta vodaan srtyä tarkastelemaan portfolota, joka ssältää n kappaletta er arvopapereta. Useamman osakkeen tapauksessa vodaan portfolo muodostaa kaksta saatavssa olevsta arvopaperesta. Jokanen arvopaper saa panon w salkussa kutenkn sten, että panot summatuvat ykköseen. n 4.1 w = 1. Er arvopaperen yhdstelmät muodostavat nn sanotun käyvän alueen, joka ssältää kakk mahdollset er arvoparen yhdstelmät. Käypä alue on vasemmalle konveks joukko, joka muodostuu kuvossa 2.2 psteden A, B ja C läp kulkevan rntaman okealle puolelle (Luenberger 1998, s. 155-156).
12 Sjottajat ovat kutenkn knnostuneta mahdollsmman hyvn hajautetusta salkusta, joka antaa penmmän varanssn annetulla tuotolla. Tätä optmaalsta sjotussalkkujen joukkoa kutsutaan tehokkaaks rntamaks, joka on kuvossa 2.2 psteden B ja C välnen paksu vva. Tehokkaalla rntamalla sjatsevlla portfololla on paras mahdollnen tuotot suhteessa rskn. E(x) Tehokas rntama C B Käypä alue A Mn var σ 2 = var Kuvo 2.2, Tehokas rntama ja käypä alue 4.3. Tehokkaan portfolon muodostamnen Tehokkaan rntaman portfoloden ssältö vodaan ratkasta mnmomalla salkun varanssa rajotteena annettu tuotto r ja panojen summautuessa ykköseks. Yhtälössä 3.1 σ j on osakkeden välnen kovaranss ja kerron ½ varanssn edessä on mukavuustekjä, joka tekee lopullsesta muodosta yksnkertasemman. n 1 (3.1) Mn w w jσ, j 2, j= 1 Rajotteet: n =1 w r = r n w = 1 = 1
13 Mnmontongelmasta vodaan ratkasta Lagrangen menetelmällä osakkeden panot salkussa. n n (3.2) = n L 1 2 w w jσ j λ w r r w j= = µ 1, 1 1 = 1 Ratkastaan ensmmäsen kertaluvun ehdot ottamalla osttasdervaatat kakken muuttujen suhteen ja asettamalla ne nollaks, josta saadaan ulos optmaalset osakkeden panot salkussa. Tarkastamalla tosen kertaluvun ehdot varmstetaan että kyseessä on mnm. Yllä estetty ongelma vo antaa osakkeden panoks myös negatvsa arvoja, joka tarkottaa, että osaketta on myyty lyhyeks. Jos lyhyeksmyyntä e sallta mnmontongelmassa, tulee rajottesn lsätä ehto w 0. Tätä yhtälöä e kutenkaan vo enää ratkasta lneaarslla menetelmllä, vaan avuks tulee ottaa nelö-optmont, jollon tosen kertaluvun ehtojen tarkstamseen tarvtaan myös Kuhn-Tucker-ehtoja (Luenberger 1998, s. 157-162). 4.4. Sjottajan hyötyfunkto Kun tehokas rntama on ratkastu, rppuu sjottajan preferenssestä mnkä osakeyhdstelmän hän valtsee. Nätä preferenssejä vodaan kuvata sjottajan ndffenrensskäyrllä tuoton ja keskhajonnan suhteen. Sjottajlla on luonnollsest erlasa preferenssejä rskn ja tuoton suhteen. Sjottajen suhtautumsta rskn, el rskaversota vodaan mallntaa Von Neuman- Morgensten hyötyfunktolla sjoutusvarallsuudesta w, jossa hyöty rppuu negatvsest rskstä ja postvsest tuotosta. 3.3 E[U(w)]=E( ). Ylesest oletetaan, että ratonaalsest käyttäytyvä henklö on rskn kahtaja, jollon hänen hyötyfunktonsa on konkaav. Erkostapauksssa sjottaja vo olla myös rskn rakastaja, jollon hänen hyötyfunktonsa on konveks, ta rskneutraal, jollon hyötyfunkto on lneaarnen.
14 Rskn sedon astetta vodaan mallntaa Arrow-Pratt rskmtalla, kaava 3.4. Hyötyfunkton tosen dervaatan suhde ensmmäseen dervaattaan kertoo hyötyfunkton konkaavsuuden asteen, joka mttaa rskaverson suuruutta. Mtä konkaavmp hyötyfunkto on, stä suuremp on rskaverso el stä penemprsksempä sjotuksa henklö suos. 3.4 R( w) = u ( w) u ( w) Sjottajan preferenssejä vodaan kuvata ndfferensskäyrllä, jossa vaaka-aksellla on rsk ja pystyaksellla tuotto. Mtä korkeammalle ndfferensskäyrälle kuluttaja pääsee stä suuremp on hänen hyötynsä. Kuvossa 5.1 sjottaja A:n ndfferensskäyrät ovat huomattavast enemmän konveksejä, joten hänellä on suuremp rskaverso kun B:llä, joka hänkn on rskn kahtaja. Tuotto = µ I 3 I 2 I 1 Tuotto = µ I 3 I 2 I 1 A) Rsk = σ B) Rsk = σ Kuvo 2.3 Sjottajen A) ja B) ndfferensskäyrä, jossa A) kahtaa enemmän rskä kun B) Lkuttaessa ptkn ndfferensskäyrää sjottajan hyöty pysyy samana. Kussakn psteessä ndfferensskäyrän jyrkkyys kertoo, paljonko sjottaja on valms lsäämään rskä tuoton kasvaessa. Kun tehokas rntama on määrtelty, sjottaja valtsee osakeyhdstelmän jossa hän maksmo oman hyötyfunktonsa. Graafsest tämä vodaan esttää sten, että sjottaja valtsee osakesalkun tehokkaasta rntamasta snä kohdassa jossa hän saavuttaa korkemman ndfferensskäyrän.
15 E(x) I 2 I 1 C Tehokas rntama B Käypä alue A Mn var σ 2 = var Kuvo 2.4 Sjottajan optmaalsen portfolon valnta. Pste, jossa tehokas rntama svuaa sjottajan ndfferensskäyrää, osottaa sjottajan hyödyn maksmovan osakesalkun. Ratonaalsest käyttäytyvä rskä kahtava sjottaja valtseekn juur kysesen salkun. 4.5. Tehokas salkku esmerkkanestosta Teoreettsen tarkastelun havannollstamseks olen laskenut esmerkn portfolon optmonnsta okella pörssosakkella. Tarkasteltavaks valtsn vs knnostavaa suomalasta pörssyhtötä, jotka kukn edustavat er tomaloja. Esmerkksalkku ssältää Nokan, Sampon, UPM-Kymmenen, Fortumn ja Wärtslän osakketa. Esmerkssä osakkeden määrä on rajattu vteen estmotaven parametren määrän rajottamseks, mutta todellsuudessa sjottajalla on mahdollsta valta salkkuunsa osakketa kakken pörssosakkeden joukosta. 4.5.1 Parametren estmont Emprnen tutkmus lähtee lkkeelle osakkeden kursshstoran tetojen hankkmsella. Tarkasteluajanjaksoks valttn yks vuos, ja havannot ovat ajalta 1.10.2005-1.10.2006. Käytn esmerkssä osakkeden kuukauden päätöskursseja, josta laskn jokaselle osakkeelle logartmset kuukaustuotot (kaava 2.1). Osnkotuottoja e ole huomotu esmerkssä malln yksnkertastamseks. Seuraava askel on lattaa kuukaustuotot matrsn ja laskea tuottojen keskarvot kullekn osakkeelle. Kun tedämme keskmääräset tuotot, vomme laskea osakke-
16 den kuukausttaset yltuotot kovaranssen laskemseks. Yltuottojen matrs täytyy velä transponoda varanss-kovaranss-matrsn laskemseks. Varansskovaranss-matrs saadaan kertomalla yltuottomatrs sen transpooslla (kaava 2.6), (Lte 1, esmerkn taulukot). Osakkeden odotusarvojen (kaava 2.3) ja varanssen (kaava 2.5) oletettn vastaavan nden hstorallsten tuottojen ja varanssen tasoa. Estmonnn parantamseks ols mahdollsta käyttää esmerkks kutstamsmenetelmää tuleven tuottojen estmonnssa, mutta se on jätetty tämän työn ulkopuolelle. 4.5.2 Portfolon optmont Tarkotuksena on selvttää osakkeden optmaalset panot sjotussalkussa. Optmont suortetaan Exceln optmonttyökalulla (solver). Ensmmäseks lasketaan mnmvaranssportfolo. Optmonttyökalu laskee portfolon osakkeden panot, jotka mnmovat salkun rskn rajottena panojen summautumnen yhteen, sekä suurmman mahdollsen tuoton annetulla varansslla. Optmont on estetty formaalssa muodossa kaavassa 3.1.Tuloksena saadaan salkku, joka kannattaa valta jos haluaa sjottaa kysesn osakkesn mahdollsmman penellä rskllä. Mnmvaransssalkun panot ovat seuraavat: Optmaalset panot Noka 0,62 Sampo 0,00 UPM 0,03 Fortum 0,35 Wärtslä 0,00 summa 1 Taulukko 4.1 Mnmvaransssalkun osakkeden panot Portfolon rskn mnmovan sjottajan tuls antaa osakkelle panot: Noka 62%, Fortum 35% ja UPM-Kymmene 3%. Wärtslän ja Sampon osakkeet saavat panon nolla. Salkun vuosttaseks keskhajonnaks saadaan 13,34 % ja vuostuotoks 14,41 %.Samalla mekankalla vodaan laskea tehokas portfolo mlle tahansa annetulle tuotto- ta rsktasolle. Kakk optmaalset portfolot muodostavat yhdessä tehokkaan rntaman (Kappale 3.2). Tehokkaan rntaman vo muodostaa laskemalla kaks optmaalsta portfolota. Yhdstelemällä nätä kahta porfolota er kertomlla vodaan muodostaa kakk muut tehokkaat portfolot.
17 Laskn tosen tehokkaan porfolon jonka vuostuotto on 20,20 % ja volatlteett 15,72%. Optmpanoks saatn Noka 26,64%, Sampo 26,77% ja Fortum 46,60%. Vertalukohdaks vodaan ottaa portfolo, jossa jokasen osakkeen panoks on annettu 20%. Tällasen salkun tuotto on 16,6% ja volatlteett 15,6%. Tästä vomme havata, että tehokkaalla portfolon allokonnlla saadaan n.3% parempaa tuottoa samalla rsktasolla verrattuna portfoloon joka on hajautettu tasajaolla. 4.5.3 Tulokset Kuvossa 2.1 on estetty osakkeet tuotto-rsk-yhdstelmät, sekä tehokas rntama. Kuvosta vomme havata, että sjottamalla portfoloon saamme parempaa tuottoa annetulla rsktasolla, ta vastaavast penemmän rskn annetulla tuottotasolla kun yksttässtä osakkesta, joten esmerkk tukee Markowtzn teoraa. Tulosten melekkyydestä on kutenkn vakea tehdä johtopäätöksä, koska tulevasuuden kursskehtys osottaa onko salkku ollut lähellä optmaalsta allokaatota. Vakeuksa optmonssa aheuttaa lähtöparametren estmont, sllä tuotot ja kovaransst perustuvat hstorallseen dataan, ekä sten voda tetää mten tuotot ja varansst tulevasuudessa käyttäytyvät. Kovaranssen estmonnssa ols hyvä käyttää pdempää akasarjaa tarkempen estmaatten saavuttamseks. 30,00 % 25,00 % Fortum Tuotto 20,00 % 15,00 % Tehokas rntama Sampo Wärtslä 10,00 % Noka UPM 5,00 % 0,00 % 0,00 % 5,00 % 10,00 % 15,00 % 20,00 % 25,00 % 30,00 % Keskhajonta Kuvo 2.1 Tehokas rntama ja osakkeden tuotto-rsk yhdstelmät Esmerkn apuna on käytetty krjaa Bennnga, Smon Fnancal modelng 2000.
18 5.Sjotussalkku ja rsktön korko Tutkelman alussa manttn, että rskttömät korkosjotukset ovat suomalaslle merkttävä sjotuskohde, joten on syytä myös analysoda rsktöntä korkoa osana sjotusportfolota. Rskttömän koron volatlteett on nolla, joten se tarjoaa varmaan tuottoa. Osakesjotukset hajautetaan edelleen tehokkaast kuten edellsessä kappaleessa, jollon saadaan kunkn tuoton mnmova volatlteett. Oletetaan malln yksnkertastamseks, että kaklla sjottajlla on mahdollsuus lanata rahaa rskttömällä korolla, vakka todellsuudessa lanan saanta saattavat rajottaa sjottajan vakuudet. 5.1. Rsktön lanaamnen ja tallettamnen portfolossa Osakkeden ja rskttömän koron muodostaman portfolon tuotto R saadaan laskemalla kaavasta 5.1, jossa α, α [0,1] on osakesjotusten pano salkussa, rf rsktön korko ja r sjotussalkun odotettu tuotto. (5.1) R = ( 1 α ) rf + α * r (5.2) σ p = α * σ s Vastaavalla tavalla saadaan laskettua yhdstetyn portfolon keskhajonta σ p kaavasta 5.2, jossa rskttömän koron keskhajonta on nolla, jollon portfolon rsk muodostuu osakesalkun rskstä. Osakesalkun allokaatota muuttamalla sjottaja vo säädellä sjotuksensa rskä ta tuottoa. Rsk vähenee kun alfaa kasvatetaan, jollon myös vastaavast tuotto penenee (Luenberg 165-166, 1998). Kuvossa 4.1 on havannollstettu sjottajan valntaa rsk-tuotto -akselstossa. Mkäl sjottaja lattaa osan rahostaan rskttömään korkoon ja osan osakesalkkuun, sjatsee hänen portfolonssa suoralla r f - S, jollon tuotto ja rsk ovat penemmät kun sjotettaessa pelkästään osakesalkkuun. Jos sjottaja valtsee salkun psteestä S ylävstoon osottavalta suoralta, lanaa hän rahaa rskttömällä korolla, ja sjottaa lanaamansa rahat osakeportfoloon. Sjottaja saa osakesalkkua parempaa tuottoa velan vpuvakutuksen ansosta, mutta samalla rsktaso on velatonta osakesalkkua korkeamp.
19 R Talletus Lana Tehokas rntama S= Tangenttportfolo r f Kuvo 5.1, Lanaamnen ja tallettamnen sjotusportfolossa σ Tämän separaatoteoraks kutsutun varallsuuden allokontmenetelmän estt nobelst James Tobn artkkelssaan Lqudty preference as behavor toward rsk, 1958. Separaatoteorassa sjottajan salkun valnta jakautuu kahteen vahteeseen: 1. Sjottaja valtsee osakeportfolon Markowtzn teoran mukasest tehokkaasta rntamasta. 2. Sen jälkeen sjottaja valtsee preferenssensä mukaan kunka suur osuus sjotetaan osakesalkkuun ja paljonko sjotetaan rskttömään korkoon. Sjottaja valtsee ana nn sanotun tangenttportfolon, joka saadaan prtämällä vva, joka alkaa rskttömän koron tasolta ja tangeeraa tehokasta rntamaa, kuvo 5.1. Optmaalsta osakesalkkua valttaessa e tarvta enää tetoa sjottajan preferenssestä, sllä ne vakuttavat enää sjottajan valntaan osakeportfolon ja rskttömän koron suhteesta. Malla, jossa sjottaja valtsee yhden osakesalkun ja vahtelee koko portfolon rskä rskttömän koron määrällä kutsutaan myös yhden rahaston teoraks (sngle ndex model). Kappaleessa kuus kästtelemme tasapanomalla, jossa kakk sjottajat ostavat tätä samaa rahastoa. 5.2. Varallsuuden allokont Sjottajan varallsuuden allokaato rppuu hänen rsksetokyvystään, jota edellä kuvattn hyötyfunkton avulla. Sjottaja ss optmo rsksjotusten ja rskttömän koron suhteen ottaen huomoon oman hyötyfunktonsa. Mtä enemmän sjottaja kart-
20 taa rskä, stä penemmäks osakesjotusten osuus jää. Jätetään formaalnen tarkastelu seuraavaan kappaleeseen ja kesktytään tässä graafseen tarkasteluun. Tällön alfan suuruus vodaan määrttää psteessä, jossa ndfferensskäyrän tangeeraa pääoman allokontsuoraa. Kuvon 4.2 psteestä, jossa ndfferenss käyrä I tangeeraa osakkeen allokontsuoraa, prretään suora vva alaspän. Tämä osottaa koordnaatston alapuolsella osalla osakesjotusten osuuden α 1. R I r s r 1 r f 0 σ 1 σ s σ α 1 1 α Kuvo 4.2 Alfan ollessa 1, sjottaja lattaa koko varallsuutensa osakeportfoloon. Kun alfa on <1, jakaa sjottaja rahansa rskttömään korkoon ja osakeportfoloon. Vastaavast kun alfa on >1, ottaa sjottaja lanaa alkuvarallsuutensa lsäks ja sjottaa nämäkn varat osakeportfoloon. (Tobn, 1958.) 5.3. Rskn ja tuoton muutosten vakutus varallsuuden allokontn Osake- ja korkomarkknolla tapahtuvat tuotto- ja rsktasojen muutokset vakuttavat sjottajan portfolon allokaatoon rskttömän koron ja osakkeden välllä. Osakkeden rsktason kohoamnen johtaa pääoman allokontsuoran kulmakertomen penenemseen. Stä kautta kuluttaja joutuu alemmalle ndfferensskäyrälle. Uudessa sjottajan optmssa osakesjotusten määrä on laskenut, ja rskttömen korkos-
21 jotusten määrä vastaavast kasvanut. Intutvsest tulknta on melekäs, koska rskä karttavan sjottajan uskotaan penentävän rsksjotusten määrää kun markknatlanne muuttuu epävarmemmaks (Tobn, 1958). Vastaavast osakkeden tuottojen noustessa nden osuus koko portfolossa kasvaa. Tämä johtuu pääoman allokaatosuoran jyrkkenemsestä, joka tekee osakesjotukssta houkuttelevampa kun akasemmn. Rskttömän koron noustessa osakkeden osuus portfolossa laskee, koska nden tuotto yl rskttömän koron penenee. Tämä taas johtaa osakkeden hntojen laskuun kysynnän penentyessä. Osakemarkknat reagovat herkäst nflaato-odotusten muutoksn, mkä johtuu juur korkeata nflaatota seuraavasta rskttömän koron noususta. Sjottajan tulee olla valms muuttamaan portfolonsa allokaatota markknatlanteen muuttuessa, koska parametren muuttuessa salkku e välttämättä ole enää optmaalnen sjottajan kannalta. Rskttömks korkosjotuksks lasketaan lyhyet pankktalletukset, jotka luetaan mukaan lavean M3 rahan määrtelmään. Tobn estt spekulatvsen rahan kysynnän määräytyvän juur separaatoteoran mukasest sjotustarkotuksesta. Sten osakkeden tuotto- ja rsktasot vakuttavat välllsest myös rahan kysyntään. 6. CAP-mall Portfoloanalyysn yksnkertastamseks Treynor ('61), Sharpe ('64) and Lntner ('65), kehttvät Captal Asset Prcng Model menetelmän. CAP-mallssa oletetaan, että kakk sjottajat ovat hajauttaneet osakesalkkunsa optmaalsest, jollon osakkeden hntohn vakuttaa van nden markknarsk, ekä osakekohtasen rskn kannosta makseta korvausta. Markknanformaaton oletetaan olevan lmasta, sekä kakken saatavlla. Tästä seuraa, että kakk sjottavat samaan osakeportfoloon ja säätelevät rsktasoa rskttömän koron määrällä. Kyseessä on tasapanomall, jollon markknoden tulee olla tasapanossa, ja osakkeden oken hnnoteltuja suhteessa nden rskn. Lsäoletuksena sjottajen tulevasuuden odotusten tulee olla homogeenset, ja rajaton lyhyeksmyynt sallttua. Yksttäsen osakkeen mttana käytetään keskhajonnan sjaan betakerronta, joka kertoo osakkeen markknarskstä.