Tilastolliset inversio-ongelmat

Koko: px
Aloita esitys sivulta:

Download "Tilastolliset inversio-ongelmat"

Transkriptio

1 Luku 4 Tilastolliset inversio-ongelmat Tilastollisen inversio-ongelman ratkaisu ei niinkään vastaa kysymykseen "mikä tuntematon vektori x 0 on"vaan pikemminkin kysymykseen "mitä tiedämme tuntemattomasta vektorista x 0 ". Maallikkotermejä käyttäen inversio-ongelmassa pyritään päättelemään seurauksista syihin Samaan tapaan ilmaistuna tilastollisessa inversio-ongelmassa pyritään arvioimaan syiden x 0 todennäköisyyksiä kun arvon y = F (x 0 ) + ε lisäksi tunnetaan epätarkkojen seurausten y todennäköisyydet. Tämän luvun päämäärä on ymmärtää tilastollisten inversio-ongelmien ratkaisuperiaate. Luvussa 5.1. kerrataan inversio-ongelmien kannalta tärkeitä todennäköisyyslaskennan käsitteitä (alla sinisellä tekstillä) ja moniulotteisia integraaleja, joiden avulla lasketaan tuntemattoman todennököisyyksiä. Luvussa 5.2. ryhdytään tarkastelemaan tilastollisia inversio-ongelmia. (Äärellisulotteisen) tilastollisen inversio-ongelman ratkaisuperiaate: 1. Dataa ja tuntematona mallinnetaan satunnaisvektoreina Y = (Y 1,..., Y m ) ja X = (X 1,, X n ). 2. Datan annettu arvo y R m on otos (näyte) satunnaisvektorista Y. 3. Tuntemattoman jakaumaa nimitetään priorijakaumaksi. Se edustaa tietoa tuntemattoman arvoista. 4. Tilastollisen inversio-ongelman ratkaisu on posteriorijakauma. Posteriorijakauma on X:n jakauma ehdolla Y = y ja sen todennäköisyystiheysfunktio (tntf) on f(x y) = cf(y x)f pr (x) (ayesin kaava) missä f(y x) on satunnaisvektorin Y tntf ehdolla X = x, f pr (x) on tuntematton priorijakauman tntf ja c > 0 on normitusvakio. 79

2 Huomautus 17. Sana priori viittaa aikaan, jolloin mittaushavaintoa y satunnaisvektorin Y arvosta ei ole vielä tehty. Sana posteriori viittaa aikaan, jolloin mittaushavainto Y = y on käytettävissä. Esimerkki 31. Mitä tarkoittaa, että todennäköisyysjakauma edustaa tietoa tuntemattomasta? Tarkastellaan kahta yksinkertaista tapausta: (a) Olkoon tuntematon luku X huomisen keskipäivän lämpötila. Tänään emme voi varmasti tietää huomisen lämpötilaa, mutta olemassaolevan tiedon perusteella X:lle on annettu todennäköisyysjakauma, jonka tntf on f(x). Alla on esimerkkejä funktiosta f. f Temperature Kuva 4.1: Tntf:n f kuvaaja: Lämpötilat välillä [ 10, 0] näyttävät epätodennäköisiltä. Samoin lämpötilat välillä [+5,+10] Lämpötila +2 näyttäisi todennäköisimmältä. Tntf näyttää, että uskomme huomisen keskipäivän lämpotilan olevan +2 asteen kieppeillä. (b) Olkoon tuntematon X = (X 1, X 2 ), missä X 1 ja X 2 ovat samassa tasossa planeettojen kanssa kulkevan asteroidin elliptisen radan x2 + y2 = 1 parametrit. Olkoon X:n X1 2 X2 2 tntf f(x) = f(x 1, x 2 ). Samoin voidaan asettaa korkeaulotteisia todennäköisyysjakaumia äärellisulotteisten inversio-ongelmien tuntemattomille, kuten kuvan terävöittämisessä pikselien väriarvoille, tietokonetomografiassa massa-absorptiokertoimen äärellisulotteisille approksimaatioille ja impedanssitomografiassa johtavuuden äärellisulotteisille approksimaatioille. Huomautus 18. Tilastollisissa inversio-ongemissa käsitellään usein korkeaulotteisia satunnaisvektoreita. Moniulotteisten satunnaisvektorien jakaumien visualisointi tehdään usein koordinaatti tai koordinaattipari kerrallaan tai jakauman tunnuslukuja käyttäen. 80

3 f Temperature Kuva 4.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 10] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa epävarmuutta seuraavan keskipäivän lämpötilasta. f Temperature Kuva 4.3: Tntf:n f kuvaaja: Lämpötilat välillä [ 10, 5] sekä [5, 10] näyttävät epätodennäköisiltä. Lämpötilat +2 näyttää todennäköisimmältä, mutta myös -2 on melko todennäköinen. Tämä heijastaa epävarmuutta seuraavan keskipäivän lämpötilasta. Lämpötila on luultavimmin +2:n, mutta ehkä myös -2:n kieppeillä. 81

4 z f(x1,x2) x x2 Kuva 4.4: Tntf:n f kuvaaja: kahden muuttujan funktion f = f(x 1, x 2 ) arvot esitetään korkeuden avulla avulla. Arvo f(10, 5) on koordinaateissa x 1 = 10, x 2 = 5 olevia parametreja X 1 = 10 ja X 2 = 5 vastaava arvo. Tuntemattoman arvot ovat todennäköisimmin lähellä arvoa (10,5). Sen sijaan esimerkiksi pistettä (6,4) lähellä olevat arvot näyttävät epätodennäköisiltä. 4.1 Todennäköisyyslaskennasta Kertaamme todennäköisyyslaskennan perusteet ennen kuin ryhdymme käsittelemään tilastollisia inversio-ongelmia Tilastollisille inversio-ongelmille tärkeitä käsitteitä ovat mm. satunnaisvektori riippumattomuus tiheysfunktio, odotusarvot (mm. varianssi). ehdolliset jakaumat, ayesin kaava Todennäköisyyslaskennan mittateoreettiset perusteet Olkoon Ω perusjoukko, jonka alkiota ω Ω nimitetään alkeistapahtumia. Olkoon Σ kokoelma perusjoukon joukkoja joka muodostaa σ-algebran eli 1. Ω Σ 2. Jos A Σ, niin A C Σ. 3. Jos A i Σ kun i N, niin i=1a i Σ. Joukkoja A, Σ nimitetään tapahtumiksi (eng. event). Tapahtumien yhdiste A tarkoittaa että joko tapahtuma A tai sattuu (tai molemmat). 82

5 Kuva 4.5: Sinisellä todennäköinen rata x2 x 2 + y2 = y2 5 2 = 1. Oranssilla epätodennäköinen rata Joukkojen leikkaus A tarkoittaa että molemmat tapahtumat sattuvat. Joukon komplementti A C = Ω\A tarkoittaa, että tapahtuma A ei satu. Määritelmä 15. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos 1. P (Ω) = 1 2. Jos joukot A i Σ, i N, ovat sellaisia että A i A j = kaikiilla i j, niin P ( i=1a i ) = i=1 P (A i) (täysadditiivisuus). 83

6 Lukua P (A) kutsutaan tapahtuman A todennäköisyydeksi. Määritelmä 16. Kaksi tapahtumaa A ja Σ ovat riippumattomia (eng. independent/statistically independent), jos P (A ) = P (A)P (). Satunnaisvektori Olkoon (Ω, Σ, P ) todennäköisyysavaruus. Avaruuden R n orel-joukkojen luokka on pienin sigma-algebra (R n ) joka sisältää avoimet joukot. Määritelmä 17. Satunnaismuuttuja (eng. random variable) X on kuvaus X : Ω R, jolle orel-joukkojen alkukuvat ovat tapahtumia eli X 1 () Σ kun (R). Satunnaismuuttujan X jakauma (eng. distribution) on kuvaus (R) P (X ). Satunnaisvektori (eng. random vector) X = (X 1,..., X n ) on kuvaus X : Ω R n, jolle avaruuden R n orel-joukkojen alkukuvat ovat tapahtumia eli X 1 () Σ kun (R n ). Satunnaisvektorin X jakauma on kuvaus (R n ) P (X ). Huomautus 19. 1) Merkintätapa: P (X A) = P (X 1 (A)) = P ({ω Ω : X(ω) A}). 2) Satunnaisvektori on matemaattinen käsite, joka sallii todennäköisyysjakauman määrittelemisen. orel-joukot taas sallivat integroinnin määrittelemissen todennäköisyysjakauman suhteen (jos yritettäisiin määritellä integraalia, joka sallisi integroinnin yli minkä tahansa avaruuden osajoukon, osa integraalin intuitiivisistä ominaisuuksista menisi rikki). Sivuutamme seuraavan lauseen todistuksen, joka voidaan osoittaa avaruuden R n oreljoukkojen ominaisuuksien avulla (erit. orel-joukkojen generointi hyperkuutioiden avulla). Lause 14. Kuvaus X : Ω R n on satunnaisvektori jos ja vain jos kuvauksen X = (X 1,..., X n ) komponentit X i, i = 1,..., n ovat satunnaismuuttujia. Määritelmä 18. Kaksi satunnaisvektoria X : Ω R n ja Y : Ω R m ovat riippumattomia (eng. independent/statistically independent), jos P (X A Y ) = P (X A)P (Y ) kaikilla orel-joukoilla A (R n ) ja (R m ). 84

7 Miksi tarvitaan mittateoriaa? 1900-luvun alkaessa todennäköisyyslaskentaa ei pidetty matematiikan aitona osaalueena, sillä todennäköisyyslaskennalla ei ollut aksiomaattista pohjaa. Hilbertin kuuluisista 23:sta ongelmasta kuudes vaati todennäköisyyslaskennan aksiomatisointia seuraavin sanoin: 6. Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem: To treat in the same manner, by means of axioms, those physical sciences in which already today mathematics plays an important part; in the first rank are the theory of probabilities and mechanics. Todennäköisyyslaskennan aksiomatisointi onnistui abstraktin mittateorian ja integraalilaskennan kehittämisen avulla 1920-luvun lopussa. Todennäköisyyslaskennan aksioomien isä on A. N. Kolmogorov ( ). Tämä on ainoa konsistentti tapa, jolla todennäköisyyslaskentaa on kyetty käsittelemään. Matemaattisina objekteina satunnaismuuttujat ja satunnaisvektorit ovat funktioita; niissä itsessään ei ole mitään satunnaista, ei mitään satunnaisuutta aiheuttavaa mekanismia eikä keinoa generoida satunnaislukuja. Tämä voi vaikuttaa hieman oudolta......että satunnaisia ilmiöitä käsitellään ilman minkäänlaista satunnaisuutta...? Kolmogorovin aksioamatisoinnissa satunnaisilmiötä ei pyritä selittämään kokonaan! Ajatellaan esimerkiksi, että satunnainen ilmiö tuottaa reaaliluvun (vaikka hissin saapumisaika napin painalluksen jälkeen), jota mallinnetaan matemaattisesti satunnaismuuttujan X avulla. Satunnaismuuttujan mahdollisten arvojen tiedetään olevan reaalilukuja, mutta emme tiedä etukäteen tarkasti minkä arvon satunnaismuuttuja tulee saamaan. Tieto satunnaismuuttujan toteutuvasta arvosta on epätäydellistä. Kun hissi saapuu hetkellä x 0, on luku x 0 otos eli näyte satunnaismuuttujasta X. Tämä tarkoittaa, että x 0 = X(ω 0 ) jollakin ω 0 Ω. Matematiikka ei kerra kuinka satunnaismuuttujasta on saatu näyte X(ω 0 ). Alkeistapahtuman ω 0 valintamekanismi on tuntematon. Vaikka funktio X, joukko Ω ja todenäköisyys P on tiedossa, emme sen perusteella pysty etukäteen sanomaan satunnaismuuttujan toteutuvasta arvosta sen enempää kuin mitä jakauma P (X ), kun (R) paljastaa. Moniulotteinen Riemann-integraali Todennäköisyyslaskenta toimii luentevimmin Lebesgue n integraalin (jota ei kuulu tämän kurssin esitietoihin) kanssa. Tällä kurssilla käytämme Riemann-integraalia. Kerrataan moniulotteisen Riemann-integroinnin periaatteet (kirjallisuutta: Apostol: Calculus (vol II), Lang: Analysis I, Apostol: Mathematical Analysis). Olkoon R n n-ulotteinen suorakulmainen särmiö = {x = (x 1,..., x n ) R n : a i x i b i, i = 1,..., n} 85

8 missä a i, b i R ja a i < b i. Merkitään särmiö sisäpisteiden joukkoa Int(). Määritelmä 19. Funktiota f : R kutsutaan porrasfunktioksi, jos särmiö voidaan jakaa suorakulmaisiin särmiöihin i, i = 1,..m siten että löytyy luvut c i R joilla kun x Int( i ), i = 1,..., m. f(x) = c i, Määritelmä 20. Määritelmän 19 porrasfunktion f : R integraali yli joukon on m f(x)dx := c i Vol( i ) missä Vol( i ) on särmiön tilavuus i=1 i = {x = (x 1,..., x n ) R n : a (i) j Vol( i ) = n (b (i) j j=1 x j b (i) j, j = 1,.., n} a (i) j ). Määritelmä 21. Olkoon f : R rajoitettu funktio. Jos on olemassa vain yksi luku I R, jolle s(x)dx I S(x)dx jokaisella porrasfunktiolla s : R, jolla s f, ja jokaisella porrasfunktiolla S : R, jolla f S, niin sanotaan, että f on Riemann-integroituva (yli joukon ) ja merkitään f(x)dx = I. Olkoon K() kaikkien porrasfunktioiden f : R joukko. Lause 15. Rajoitettu funktio f : R on Riemann-integroituva jos ja vain jos s(x)dx = I = S(x)dx jolloin Todistus. Sivuutetaan. sup s K() s f inf S K() f S f(x)dx = I. Lause 16 (Fubinin lause Riemann-integroituville funktioille). Olkoon R n ja C R m kompakteja suorakulmaisia särmiöitä. Olkoon f : C R integroituva funktio, jolla f(x, y)dy C on olemassa jokaisella x. Silloin funktio x f(x, y)dy on integroituva ja C ( ) f(x, y)dy dx = f(z)dz. C 86 C

9 Todistus. Sivuutetaan. Fubinin lauseen nojalla moniulotteinen integraali voidaan laskea yksiulotteisten integraalien iteraationa eli esim kun n = 3, niin b 3 ( b2 ( b1 ) ) f(x)dx = f(x 1, x 2, x 3 )dx 1 dx 2 dx 3, x 1 =a 1 x 3 =a 3 x 2 =a 2 kunhan kaikki integraalit ovat määriteltyjä. Lisäksi integroimisjärjestystä voi vaihtaa. Integraali yli koko avaruuden R n määritellään epäoleellisena integraalina (eli rajaarvona integraaleista yli kasvavien osajoukkojen). Jos f on ei-negatiivinen, Fubinin lause on edelleen totta kun = R n ja C = R m sillä ei-vähenevien lukujen raja on joko rajoitettu tai +. Jos f saa myös negatiivisia arvoja, ilmaistaan f muodossa f = f + f, missä f +, f 0, ja pyritään laskemaan integraali epäoleellisten integraalien erotuksena f(x)dx = f + (x)dx f (x)dx, mikäli mahdollista. Muuttujanvaihto x = H(y) moniulotteisessa integraalissa tehdään Jakobin determinantin avulla. Jos f : R n R on jatkuva funktio, U R n avoin kuutio ja H : U R n injektiivinen C 1 -funktio, jonka Jakobin matriisin determinantti ei häviä, niin f(x)dx = H() (JH(y)) ij = H i y j (y), i, j = 1,..., n. kaikilla avoimilla tai suljetuilla kuutioilla U. Tiheysfunktiot f(h(y)) det(jh(y)) dy, Määritelmä 22. Todennäköisyystiheysfunktio (lyh, tntf. eng. probability density function) f : R n [0, ) on integroituva funktio, jolle R n f(x)dx = 1. Esimerkki 32. Olkoon Silloin f(x) = 1 f(x)dx = [ 1,1] 2 dx = 1 n n 2 n { 1 2 n, x [ 1, 1] n 0, x [ 1, 1] n. [ 1,1] n dx Fubini 87 = 1 ( 1 n dx) = 1. 2 n 1

10 Esimerkki 33. Olkoon Silloin f(x)dx = = f(x) = 1 e 1 (2π) n 2 x (2π) n 2 1 (2π) n 2 e 1 2 x 2 dx = 1 (2π) n 2 e 1 2 x 2 dx e 1 2 (x x2 n) dx 1 dx n Fubini = 1 Määritelmä 23. Olkoon (Ω, Σ, P ) todennäköisyysavaruus. Satunnaismuuttujalla X : Ω R sanotaan olevan tntf f X, jos f X : R [0, ) on sellainen tntf, että kaikilla a, b R, a b. P (a X b) = b a f X (x)dx Määritelmä 24. Olkoon (Ω, Σ, P ) todennäköisyysavaruus Satunnaisvektorilla X = (X 1,..., X n ) : Ω R n sanotaan olevan tntf f X, jos f X : R n [0, ) on sellainen tntf, että P (a i X i b i, i = 1,..n) = b1 a 1 bn a n f X (x 1,..., x n )dx 1 dx n. kaikilla a i, b i R, a i b i, i = 1,..n. Tntf:ta f X kutsutaan satunnaismuuttujien X 1,..., X n yhteistodennäköisyystiheysfunktioksi. Määritelmä 25. Funktiota R x i f Xi (x i ) = x 1 = x i 1 = x i+1 = f X (x 1,..., x n )dx 1 dx i 1 dx i+1 dx n x n= kutsutaan satunnaismuuttujan X i reunatodennäköisyystiheysfunktioksi (tai marginaalitntf). Satunnaisvektorin tntf on työkalu, jolla satunnaisvektorin jakauman arvoja P (X ) voidaan laskea. Tällä työkalulla on kuitenkin rajoitteita. Kaikilla satunnaisvektoreilla ei ole tntf. Tntf ei ole yksikäsitteinen. Esimerkki 34 (Jakauma ilman tntf:ta). Olkoon X satunnaismuuttuja jolla on tntf f X : R [0, ). Näytetään, että satunnaisvektorilla (X, X) ei ole tntf:ta: Vastaoletus: oletetaan että satunnaisvektorilla (X, X) olisi tntf f (X,X) (x, y). Merkitään = {(x, y) R n R n : x y} 88

11 (on orel-joukko, jonka indikaattorifunktio 1 (x, y) on Riemann-integroituva). Silloin jakauma antaa joukolle todennäköisyyden P ((X, X) ) = 0 koska (X, X) /. Tntf:n olemassaolosta seuraisi, että 0 = P ((X, X) ) = f (X,X) (x, y)dxdy ( x ) Fubini = x= f (X,X) (x, y)dy + y= y=x mikä on mahdotonta. Täten sv:lla (X, X) ei ole tntf:ta. f (X,X) (x, y)dy dx = 1, Esimerkki 35 (Tntf epäyksikäsitteisyys). Olkoon X : Ω R n satunnaismuuttuja, jolla on tntf Tällöin jokaisella a < b pätee Siis myös P (x [a, b]) = f X (x) = 1 [0,1] (x). (4.1) b a 1 [0,1] (x)dx = f X (x) = 1 (0,1) (x) b a 1 (0,1) (x)dx. on sm:n X tntf. Selvästi fx f X. Tämä yleistyy helposti n-ulotteiseen tapaukseen, kun merkitään X = (X 1,..., X n ), missä satunnaismuuttujat X i ovat riippumattomia satunnaismuuttujia, joiden tntf on annettu kaavalla (4.1). Silloin ja määrittelevät saman jakauman. f X (x 1,..., x n ) = 1 [0,1] n(x 1,..., x n ) f X (x 1,..., x n ) = 1 (0,1) n(x 1,..., x n ) Määritelmä 26. Olkoon X : Ω R n satunnaisvektori. Eri todennäköisyystiheysfunktioita f : R n [0, ), joilla P (X ) = f X (x)dx kaikilla suorakulmaisilla särmiöillä R n, nimitetään satunnaisvektorin X tntf:n versioiksi. Huomautus 20. Olkoon X sellainen n-ulotteinen ja Y sellainen m-ulotteinen satunnaisvektori, että satunnaisvektorilla (X, Y ) on (yhteis)tntf f (X,Y ) (x, y). Kun reunatntf f X (x) = f (X,Y ) (x, y)dy on olemassa, niin se on versio sv:n X tntf:sta, sillä P (X ) = P (X Y R m ) = P ((X, Y ) R m ) = f (X,Y ) (x, y)dxdy = f X (x)dx R m jokaisella suorakulmaisella särmiöllä R n. 89

Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos

Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos 0.02 0.04 0.06 0.08 f 0 5 0 5 0 Temperature Kuva 5.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 0] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

4.2.2 Uskottavuusfunktio f Y (y 0 X = x)

4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Inversio-ongelmien laskennallinen peruskurssi Luento 7 Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

4.3.6 Eräitä diskreettejä Markov-kenttiä

4.3.6 Eräitä diskreettejä Markov-kenttiä 0.4 0.35 Gauss l1 Cauchy 0.3 0.25 0.2 0.15 0.1 0.05 0 10 8 6 4 2 0 2 4 6 8 10 Kuva 4.20: L2-priorin tnft, Cauchy-priorin tntf kun α = α = 2. 2π π 2π ja L1-priorin tntf kun 4.3.6 Eräitä diskreettejä Markov-kenttiä

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1]. Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.

0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}. HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa

Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma

3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma 3 Yhteisjakauma Kappaleessa 2 tarkastelimme aina yhtä satunnaismuuttujaa kerrallaan. Tässä kappaleessa näemme, miten aikaisemmat käsitteet yleistyvät siihen tilanteeseen, jossa samalla perusjoukolla on

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)

Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min) Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot 2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Vektorilaskenta. Luennot / 54

Vektorilaskenta. Luennot / 54 Luennot 22.09.-27.09.2017 1 / 54 Välin mitta Alasumma 1 Alasumma 2 Yläsumma 1 Yläsumma 2 Tihennys 1 Tihennys 2 Integroituvuus Jatkuva 1 Jatkuva 2 Jatkuva 3 Jatkuva 4 Jatkuva 5 Jatkuva 6 2 / 54 Välin mitta

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

k S P[ X µ kσ] 1 k 2.

k S P[ X µ kσ] 1 k 2. HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

Satunnaismuuttujat ja jakaumat

Satunnaismuuttujat ja jakaumat Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

TN-IIa (MAT22001), syksy 2017

TN-IIa (MAT22001), syksy 2017 TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 7

031021P Tilastomatematiikka (5 op) viikko 7 0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot