Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos
|
|
- Juuso Tikkanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 f Temperature Kuva 5.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 0] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa epävarmuutta seuraavan keskipäivän lämpötilasta. riippumattomuus tiheysfunktio, odotusarvot (mm. varianssi) ehdolliset jakaumat, ayesin kaava Todennäköisyyslaskennan mittateoreettiset perusteet Olkoon Ω perusjoukko, jonka alkiota ω Ω nimitetään alkeistapahtumia. Olkoon Σ kokoelma perusjoukon joukkoja joka muodostaa σ-algebran eli. Ω Σ 2. Jos A Σ, niin A C Σ. 3. Jos A i Σ kun i N, niin i=a i Σ. Joukkoja A, Σ nimitetään tapahtumiksi (eng. event). Tapahtumien yhdiste A tarkoittaa että joko tapahtuma A tai sattuu (tai molemmat). Joukkojen leikkaus A tarkoittaa että molemmat tapahtumat sattuvat. Joukon komplementti A C = Ω\A tarkoittaa, että tapahtuma A ei satu. Määritelmä 7. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, ] on todennäköisyysmitta (eng. probability measure), jos. P (Ω) = 7
2 f Temperature Kuva 5.3: Tntf:n f kuvaaja: Lämpötilat välillä [ 0, 5] sekä [5, 0] näyttävät epätodennäköisiltä. Lämpötila +2 näyttää todennäköisimmältä, mutta myös -2 on melko todennäköinen. Tämä heijastaa epävarmuutta seuraavan keskipäivän lämpötilasta. Lämpötila on luultavimmin +2:n, mutta ehkä myös -2:n kieppeillä (kaksi mallia sään kehitymiselle) f x x2 Kuva 5.4: Tntf:n f kuvaaja: kahden muuttujan funktion f = f(x, x 2 ) arvot esitetään värien tai korkeuden avulla avulla. Muuttujan x arvot ovat vaakaakselilla ja muuttujan x 2 arvot pystyakselilla. Arvo f(0, 5) on koordinaateissa x = 0, x 2 = 5 olevan värin lukuarvo. Tuntemattoman arvot ovat todennäköisimmin lähellä arvoa (0,5). Sen sijaan pistettä (-0,-0) lähellä olevat arvot näyttävät epätodennäköisiltä. 2. Jos joukot A i Σ, i N, ovat sellaisia että A i A j = kaikiilla i j, niin P ( i=a i ) = i= P (A i) (täysadditiivisuus). Lukua P (A) kutsutaan tapahtuman A todennäköisyydeksi. Kolmikkoa (Ω, Σ, P ) kutsutaan todennäköisyysavaruudeksi. Määritelmä 8. Kaksi tapahtumaa A ja Σ ovat riippumattomia (eng. independent/statistically independent), jos P (A ) = P (A)P (). 72
3 Satunnaisvektori Olkoon (Ω, Σ, P ) todennäköisyysavaruus. Avaruuden orel-joukkojen luokka on pienin sigma-algebra ( ) joka sisältää :n avoimet joukot. Määritelmä 9. Satunnaismuuttuja (eng. random variable) X on kuvaus X : Ω R, jolle orel-joukkojen alkukuvat ovat tapahtumia eli X () Σ jokaisella (R). Satunnaismuuttujan X jakauma (eng. distribution) on kuvaus (R) P (X ). Satunnaisvektori (eng. random vector) X = (X,..., X n ) on kuvaus X : Ω, jolle avaruuden orel-joukkojen alkukuvat ovat tapahtumia eli X () Σ jokaisella ( ). Satunnaisvektorin X jakauma on kuvaus ( ) P (X ). Huomautus 5. Merkintätapa: P (X A) = P (X (A)) = P ({ω Ω : X(ω) A}). Sivuutamme seuraavan lauseen todistuksen, joka voidaan osoittaa avaruuden oreljoukkojen ominaisuuksien avulla (erit. orel-joukkojen generointi hyperkuutioiden avulla). Lause 2. Kuvaus X : Ω on satunnaisvektori jos ja vain jos kuvauksen X = (X,..., X n ) komponentit X i, i =,..., n ovat satunnaismuuttujia. Määritelmä 20. Kaksi satunnaisvektoria X : Ω ja Y : Ω R m ovat riippumattomia (eng. independent/statistically independent), jos P (X A Y ) = P (X A)P (Y ) kaikilla orel-joukoilla A ( ) ja (R m ). Miksi tarvitaan mittateoriaa? 900-luvun alkaessa todennäköisyyslaskentaa ei pidetty matematiikan aitona osaalueena, sillä todennäköisyyslaskennalla ei ollut aksiomaattista pohjaa. Hilbertin kuuluisista 23:sta ongelmasta kuudes vaati todennäköisyyslaskennan aksiomatisointia seuraavin sanoin: 6. Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem: To treat in the same manner, by means of axioms, those physical sciences in which already today mathematics plays an important part; in the first rank are the theory of probabilities and mechanics. Todennäköisyyslaskennan aksiomatisointi onnistui abstraktin mittateorian ja integraalilaskennan kehittämisen avulla 920-luvun lopussa. Todennäköisyyslaskennan aksioomien isä on A. N. Kolmogorov ( ). Tämä on ainoa konsistentti tapa, jolla todennäköisyyslaskentaa on kyetty käsittelemään. Matemaattisina objekteina satunnaismuuttujat ja satunnaisvektorit ovat funktioita; niissä itsessään ei ole mitään satunnaista, ei mitään satunnaisuutta aiheuttavaa mekanismia eikä keinoa generoida satunnaislukuja. Tämä voi vaikuttaa hieman oudolta......että satunnaisia ilmiöitä käsitellään ilman minkäänlaista satunnaisuutta...? 73
4 Kolmogorovin aksioamatisoinnissa satunnaisilmiötä ei pyritä selittämään kokonaan! Ajatellaan esimerkiksi, että satunnainen ilmiö tuottaa reaaliluvun (vaikka hissin saapumisaika napin painalluksen jälkeen), jota mallinnetaan matemaattisesti satunnaismuuttujan X avulla. Satunnaismuuttujan mahdollisten arvojen tiedetään olevan reaalilukuja, mutta emme tiedä etukäteen tarkasti minkä arvon satunnaismuuttuja tulee saamaan. Tieto satunnaismuuttujan toteutuvasta arvosta on epätäydellistä. Kun hissi saapuu hetkellä x 0, on luku x 0 otos eli näyte satunnaismuuttujasta X. Tämä tarkoittaa, että x 0 = X(ω 0 ) jollakin ω 0 Ω. Matematiikka ei kerra kuinka satunnaismuuttujasta on saatu näyte X(ω 0 ). Alkeistapahtuman ω 0 valintamekanismi on tuntematon. Vaikka funktio X, joukko Ω ja todenäköisyys P on tiedossa, emme sen perusteella pysty etukäteen sanomaan satunnaismuuttujan toteutuvasta arvosta sen enempää kuin mitä jakauma P (X ), kun (R) paljastaa. Moniulotteinen Riemann-integraali Todennäköisyyslaskenta toimii luentevimmin Lebesgue n integraalin (jota ei kuulu tämän kurssin esitietoihin) kanssa. Tällä kurssilla käytämme Riemann-integraalia. Kerrataan moniulotteisen Riemann-integroinnin periaatteet (kirjallisuutta: Apostol: Calculus (vol II), Lang: Analysis I, Apostol: Mathematical Analysis). Olkoon n-ulotteinen suorakulmainen särmiö = {x = (x,..., x n ) : a i x i b i, i =,..., n} missä a i, b i R ja a i < b i. Merkitään särmiö sisäpisteiden joukkoa Int(). Määritelmä 2. Funktiota f : R kutsutaan porrasfunktioksi, jos suorakulmainen särmiö voidaan jakaa suorakulmaisiin särmiöihin i, i =,..m siten että löytyy luvut c i R joilla f(x) = c i, kun x Int( i ), i =,..., m. Määritelmä 22. Määritelmän 2 porrasfunktion f : R integraali yli joukon on missä Vol( i ) on särmiön f(x)dx := m c i Vol( i ) i= i = {x = (x,..., x n ) : a (i) j x j b (i) j, j =,.., n} tilavuus Vol( i ) = n (b (i) j j= a (i) j ). 74
5 Määritelmä 23. Olkoon f : R rajoitettu funktio. Jos on olemassa vain yksi luku I R, jolle s(x)dx I S(x)dx jokaisella porrasfunktiolla s : R, jolla s f, ja jokaisella porrasfunktiolla S : R, jolla f S, niin sanotaan, että f on Riemann-integroituva (yli joukon ) ja merkitään f(x)dx = I. Olkoon K() kaikkien porrasfunktioiden f : R joukko. Lause 3. Rajoitettu funktio f : R on Riemann-integroituva jos ja vain jos s(x)dx = I = S(x)dx jolloin Todistus. Sivuutetaan. sup s K() s f inf S K() f S f(x)dx = I. Lause 4 (Fubinin lause Riemann-integroituville funktioille). Olkoon ja C R m kompakteja suorakulmaisia särmiöitä. Olkoon f : C R integroituva funktio, jolla f(x, y)dy C on olemassa jokaisella x. Silloin funktio x f(x, y)dy on integroituva ja C ( ) f(x, y)dy dx = f(z)dz. Todistus. Sivuutetaan. C Fubinin lauseen nojalla moniulotteinen integraali voidaan laskea yksiulotteisten integraalien iteraationa eli esim kun n = 3, niin b 3 ( b2 ( b ) ) f(x)dx = f(x, x 2, x 3 )dx dx 2 dx 3, x =a x 3 =a 3 x 2 =a 2 kunhan kaikki integraalit ovat määriteltyjä. Lisäksi integroimisjärjestystä voi vaihtaa. Integraali yli koko avaruuden määritellään epäoleellisena integraalina (eli rajaarvona integraaleista yli kasvavien osajoukkojen). Jos f on ei-negatiivinen, Fubinin lause on edelleen totta kun = ja C = R m sillä ei-vähenevien lukujen raja on joko rajoitettu tai +. Jos f saa myös negatiivisia arvoja, ilmaistaan f muodossa f = f + f, missä f +, f 0, ja pyritään laskemaan integraali epäoleellisten integraalien erotuksena f(x)dx = f + (x)dx f (x)dx, mikäli mahdollista. 75 C
6 Tiheysfunktiot Määritelmä 24. Todennäköisyystiheysfunktio (lyh, tntf. eng. probability density function) f : [0, ) on integroituva funktio, jolle f(x)dx =. Esimerkki 3. Olkoon Silloin Esimerkki 32. Olkoon Silloin f(x)dx = f(x) = f(x)dx = [,] 2 dx = n n 2 n (2π) n 2 e 2 x 2 dx = (2π) n 2 { 2 n, x [, ] n 0, x [, ] n. [,] n dx Fubini f(x) = e (2π) n 2 x 2. 2 e 2 x 2 dx = (2π) n 2 = ( n dx) =. 2 n e 2 (x2 + +x2 n ) dx dx n Fubini = Määritelmä 25. Olkoon (Ω, Σ, P ) todennäköisyysavaruus. Satunnaismuuttujalla X : Ω R sanotaan olevan tntf f X, jos f X : R [0, ) on sellainen tntf, että kaikilla a, b R, a b. P (a X b) = b a f X (x)dx Määritelmä 26. Olkoon (Ω, Σ, P ) todennäköisyysavaruus Satunnaisvektorilla X = (X,..., X n ) : Ω sanotaan olevan tntf f X, jos f X : [0, ) on sellainen tntf, että P (a i X i b i, i =,..., n) = f X (x)dx. [a,b ] [a n,b n] kaikilla a i, b i R, a i b i, i =,..n. Tntf:ta f X kutsutaan satunnaismuuttujien X,..., X n yhteistodennäköisyystiheysfunktioksi. Määritelmä 27. Funktiota f Xi (x) = x = x i = x i+ = f X (x,..., x n )dx dx i dx i+ dx n x n= kutsutaan satunnaismuuttujan X i reunatodennäköisyystiheysfunktioksi (tai marginaalitntf). Lause 5. Kaksi satunnaisvektoria X ja Y, joiden yhteistodennäköisyystiheysfunktio on f (X,Y ) (x, y), ovat riippumattomia, jos Todistus. Sivuutetaan. f (X,Y ) (x, y) = f X (x)f Y (y). 76
7 Jakauman tunnuslukuja Määritelmä 28. Olkoon X satunnaisvektori, jonka todennäköisyystiheysfunktio on f X : [0, ). Satunnaisvektorin X odotusarvo (eng. expectation) on vektori m = (m,..., m n ), jonka komponentit ovat m i = x i f X (x)dx mikäli x i f X (x) on integroituva kaikilla i =,..., n. Odotusarvolle käytetään merkintää E[X] := m. Huomautus 6. Satunnaisvektorilla ei aina ole odotusarvoa. Määritelmä 29. Olkoon X satunnaisvektori, jonka todennäköisyystiheysfunktio on f X : R ja odotusarvo E[X] = (m,..., m n ). Satunnaisvektorin X kovarianssimatriisi (eng. covariance matrix) on matriisi C X n, jonka elementit ovat (C X ) ij = (x i m i )(x j m j )f X (x)dx, mikäli nämä integraalit ovat olemassa. Huomautus 7. Kovarianssimatriisi C X on aina symmetrinen ja sen ominaisarvot ovat ei-negatiivisia. Todellakin, (C X ) ij = (x i m i )(x j m j )f X (x)dx = (x j m j )(x i m i )f X (x)dx = (C X ) ji ja jos u on ominaisvektori jolle C X u = λu ja u =, niin ( n n ) λ = (C X u, u) = (C X ) ij u j u i = = = n i,j= missä g(x) = n i= (x i m i )u i. i= j= (x i m i )u i (x j m j )u j f X (x)dx ( n ) (x j m j )u j f X (x)dx i= (x i m i )u i) ( n j= g(x) 2 f X (x)dx 0, Määritelmä 30. Olkoot X : Ω ja Y : Ω R m satunnaisvektoreita, joiden yhteistodennäköisyystiheysfunktio on f (X,Y ) : +m R ja odotusarvot E[X] = m X ja E[Y ] = m Y. Satunnaisvektorien X ja Y ristikovarianssimatriisi (eng. cross-covariance matrix) on matriisi C XY m, jonka elementit ovat ( ) (C XY ) ij = (x i (m X ) i )(y j (m Y ) j )f (X,Y ) (x, y)dx dy, i =,.., n j =,.., m R m mikäli nämä integraalit ovat olemassa. Huomautus 8. Ristikovarianssimatriisille pätee C T XY = C Y X. 77
8 Gaussiset jakaumat Satunnaisvektorilla Z : Ω on Gaussinen jakauma eli multinormaalijakauma, jos sen tntf on muotoa f Z (x) = (2π)n det(c) e 2 (x m)t C (x m), missä m ja C n on symmetrinen säännöllinen matriisi, jonka ominaisarvot ovat positiivisia. Silloin merkitään Z N(m, C), mikä tarkoittaa että satunnaisvektorilla Z on multinormaalijakauma ja sen odotusarvo on m sekä kovarianssimatriisi on C. Lemma 6. Funktio f Z (x) = (2π)n det(c) e 2 (x m)t C (x m), on tntf. Jos Z : Ω sellainen satunnaisvektori, että Z N(m, C), niin satunnaisvektorin Z odotusarvo on E[Z] = m ja kovarianssimatriisi C Z = C. Todistus. Selvästi f Z 0. Tarkistetaan, mitä on I = (2π)n det(c) Tehdään ensin muuttujanvaihto x = x m I = (2π)n det(c) e 2 (x m)t C (x m) dx. e 2 (x)t C x dx. Tehdäään sitten muuttujanvaihto x = C 2 x. Muistetaan, että C 2 voidaan määrätä matriisin C ominaisarvohajotelman C = Udiag(λ,..., λ n )U T avulla muodossa C 2 = Udiag( λ,..., λn )U T. Muuttujanvaihdon jälkeen saamme I = e 2 x 2 det(c /2 ) dx. (2π)n det(c) Viimeiseksi meidän tulee laskea integraalit I = 2 (x2 +x x2 n ) dx dx n (2π) n = (2π) n e ( Kätevimmin tämä käy kun lasketaan ( 2 e 2 dx) x2 = R n e 2 dx) x2. R 78 e R 2 2 (x2 +y 2) dxdy
9 napakoordinaateissa x = r cos(θ) ja y = r sin(θ). Saamme jolloin ja ( 2 e 2 dx) x2 = R R 2π 0 0 e 2 x2 dx = 2π. I =. e 2 r2 rdrdθ = 2π Samaan tapaan nähdään, että satunnaisvektorin Z odotusarvo E[Z] = xe 2 (x m)t C (x m) dx = m (2π)n det(c) ja kovarianssi on (C Z ) ij = (2π)n det(c) (x i m i )(x j m j )e 2 (x m)t C (x m) dx = C ij. Todennäköisyyslaskennan tulkinnat Matematiikassa esiintyy harvoin oppiriiitoja, mutta lukuarvon P (X ) tulkinta on sellainen. Kysymys on yksinkertainen; milloin on oikeutettua liittää tapahtumaan X tietty todennäköisyys P (X )?. Frekventistinen tulkinta: tapahtuman todennäköisyys tarkoittaa sitä lukua, jota tapahtuman suhteellisten esiintymiskertojen lukumäärää lähestyisi jos koetta toistettaisiin äärettömän monta kertaa. 2. ayeslainen tulkinta: tapahtuman todennäköisyys on se varmuusaste, jolla uskomme tapahtuman toteutuvan. (Tällä kurssilla käytössä!) Subjektiivinen bayeslainen tulkinta mahdollistaa todennäköisyyksien kiinnittämisen sellaisillekin tapahtumille, jotka eivät ole toistettavissa (esim. bayeslaisen tulkinnan mukaan on mahdollista puhua todennäköisyydestä sille, että muualla maailmankaikkeudessa on älyllistä elämää). Eri yksilöt saattavat myös kiinnittää eri todennäköisyyden samalle tapahtumalle. Frekventistisen tulkinnan mukaan tapahtumalle X on mahdollista kiinnittää vain yksi ja aina sama todennäköisyys. Huomautus 9. Miksi bayeslainen tulkinta? Tuntemattomasta on harvoin saatavilla täysin objektiivista tietoa. ayeslainen tulkinta sallii objektiivisen tiedon täydentämisen oikeahkolta tuntuvalla priorijakaumalla. Etuja: 79
Tilastolliset inversio-ongelmat
Luku 4 Tilastolliset inversio-ongelmat Tilastollisen inversio-ongelman ratkaisu ei niinkään vastaa kysymykseen "mikä tuntematon vektori x 0 on"vaan pikemminkin kysymykseen "mitä tiedämme tuntemattomasta
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
Inversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
4.3 Moniulotteinen Riemannin integraali
4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,
0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].
Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
4.2.2 Uskottavuusfunktio f Y (y 0 X = x)
Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
4.3.6 Eräitä diskreettejä Markov-kenttiä
0.4 0.35 Gauss l1 Cauchy 0.3 0.25 0.2 0.15 0.1 0.05 0 10 8 6 4 2 0 2 4 6 8 10 Kuva 4.20: L2-priorin tnft, Cauchy-priorin tntf kun α = α = 2. 2π π 2π ja L1-priorin tntf kun 4.3.6 Eräitä diskreettejä Markov-kenttiä
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen
1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Satunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a
031021P Tilastomatematiikka (5 op) viikko 7
0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti
Keskihajonta ja korrelaatio
Luku 4 Keskihajonta ja korrelaatio Lasse Leskelä Aalto-yliopisto 19. syyskuuta 2017 4.1 Jakauman varianssi ja keskihajonta Edellisessä luvussa opittiin, että satunnaismuuttujan odotusarvo on X:n jakauman
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Moniulotteiset satunnaismuuttujat ja jakaumat
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
4. Todennäköisyyslaskennan kertausta
luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
Todennäköisyyslaskenta
Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 14. syyskuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 14. syyskuuta 2017 1 / 26 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
TN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa
Lebesguen mitta ja integraali
Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma
3 Yhteisjakauma Kappaleessa 2 tarkastelimme aina yhtä satunnaismuuttujaa kerrallaan. Tässä kappaleessa näemme, miten aikaisemmat käsitteet yleistyvät siihen tilanteeseen, jossa samalla perusjoukolla on
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LUKU 6. Mitalliset funktiot
LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.
Satunnaismuuttujat ja jakaumat
Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
031021P Tilastomatematiikka (5 op) viikko 2
031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (