1 Analyyttiset funktiot

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "1 Analyyttiset funktiot"

Transkriptio

1 Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus. Esimerkiksi kuvaus f : C C, f(z) z C on kompleksimuuttujan kompleksiarvoinen funktio. Yleisesti olkoon A C ja a C. Silloin kuvaus f : A C, f(z) a z A on vakiofunktiona kompleksimuuttujan kompleksiarvoinen funktio. 2.Identtinen kuvaus. Olkoon A C ja f(z) z z A. Silloin f : A A on joukon A identtinen kuvaus.. Muotoa S(z) az + b ; a, b, c, d C cz + d olevia kuvauksia sanotaan Möbius-kuvauksiksi. Jos valitaan a d ja b c 0, on S(z) z eli S : C C on identtinen kuvaus. Jos ad bc 0 ja c + d 0 (eli cz + d 0), S on vakiokuvaus: Jos c 0, on S(z) Jos d 0, on vastaavasti S(z) acz + bc c(cz + d) adz + bd d(cz + d) acz + ad c(cz + d) bcz + bd d(cz + d) a(cz + d) c(cz + d) a c b(cz + d) d(cz + d) b d. Olkoon ad bc 0. Erotetaan kaksi tapausta: a) c 0. Kuvaus S(z) az+b on määritelty, kun cz + d 0 eli kun z d. cz+d c Kuvaus on bijektio { C\ d } { a } C\, c c sillä yhtälöllä az + b cz + d az + b cz + d (a c)z d b z d b a c

2 on täsmälleen yksi ratkaisu z, kun a. (Voidaan jo nyt havaita, että c S( d ja S( ) a. Kuvaus S on siis bijektio C { } C { }. c c Ongelmaksi jää vain joukon C { } määrittely topologisena avaruutena.) b) c 0. Koska ad bc 0, on d 0. Kuvaus S(z) az + b cz + d az + b d on nyt määritelty kaikille z C. Kuvaus on bijektio C C, sillä az + b d az d b z d b a (koska ad bc 0 ja c 0, on a 0). (Tässä tapauksessa S( ), joten S : C { } C { } on bijektio.) 4. Määritellään f : C C asettamalla Koska kuvaus r r r+ f ( re iϕ) r r + eiϕ, f(0) 0. on bijektio ]0, [ ]0, [ on f : C U(0, ) bijektio. Jos merkitään z re iϕ, on r z. Tällöin f(z) + r reiϕ + z z. Kuvaus f(z) z on siis bijektio C U(0, ). + z 5. Neliöjuuri. Tarkastellaan kuvausta f : z z 2. Binomiyhtälöllä z 2 on kaksi ratkaisua, joille käytetään merkintöjä ja. Jos re iϕ, niin re i ϕ 2 ja re i( ϕ 2 +π) re i ϕ 2. Kuvaus f : C C on siis surjektio, mutta ei injektio, sillä pisteille 0 kuvautuu aina kaksi pistettä z ja z 2. (On huomattava, että ei ole mitään yleistä tapaa erottaa, kumpi neliöjuurista on z ja kumpi z 2. Jos toista merkitään :llä, niin toinen on.) Olkoon A {z Im z > 0} ja B C\{z Im z 0, Re z 0}. 2

3 z A B Kuva : Silloin f : A B on bijektio. Sen käänteiskuvausta f : B A sanotaan neliöjuuren haaraksi, joka on määritelty pitkin positiivista reaaliakselia aukileikatussa tasossa. Neliöjuuri voidaan määritellä jokaisessa origoon päättyvää sädettä pitkin aukileikatussa tasossa. Neliöjuuri on yksikäsitteinen, kun sovitaan, miten taso aukileikataan ja kumpaan puolitasoon kuuluva haara valitaan. Ennen kuin voidaan ollenkaan puhua neliöjuuresta, on valittava tason aukileikkaus. Esimerkki. Mitä vikaa on seuraavassa päättelyssä? ( ) 2 ( ) 2. jos määritellään siten, että se kuvaa aukileikatun tason ylemmälle vinolle puolitasolle I, niin kuvaa sen alemmalle puolitasolle II. Onko? Ei ole, sillä i, ja i i.

4 z re iϕ ψ - + i z re i ϕ 2 ψ/2 z Kuva 2: Onko sitten? Ei ole, sillä i ja sekä i Haaralle I on siis I Yhtälöä I I i. ja haaralle II on siis II II II. ei siis voida johtaa yhtälöstä, määriteltiinpä neliöjuuri miten hyvänsä. Voidaan huomata, että ja, sillä Siis i i ja i i. pätee haaralle I, mutta ei haaralle II. 4

5 Mõõritellõõn I Aukileikataan pitkin negatiivista imaginaariakselia I I - II II II I II I π + n2π ( π + n2π) π + nπ Kuva : pätee haaralle II, mutta ei haaralle I. 6. Kuutiojuuri. Kuvaus f(z) z on injektio esimerkiksi alueessa 0 < arg z < 2π. Sen kuva on pitkin positiivista reaaliakselia aukileikattu taso. Kuutiojuurella on tässä alueessa kolme haaraa, joiden kuvana ovat alueet I : 0 < arg z < 2π 2π II : < arg z < 4π 4π III : < arg z < 2π Yleisesti voidaan määritellä n, n 2,, 4,.... Esimerkki. Määrää suoran z + z 0 kuva Möbius-kuvauksessa S(z) z+. z Mikä suora? Yleinen tapa: x-akselin leikkauspisteessä on z z x. Siis 2x eli x. 2 y-akselin leikkauspisteessä on z iy, z iy. Siis iy iy 0 ei toteudu. Kyseessä on siis suora x. 2 z + z z z + 5

6 II I III Kuva 4: Kuvan yhtälö: z( ) z ( )( ) Ympyrä: zz + αz + βz + γ 0, α β, γ < αβ α β 2, γ, < ( 2)( 2) 4. Jos α a ib ja β a+ib, niin keskipiste on ( a, b) ja säde a 2 + b 2 γ. Kuvana on siis ympyrä, jonka keskipiste on (2, 0) ja säde on. Saamme erikoistapauksen yleisestä tuloksesta: Möbius-kuvaus kuvaa suoran ympyräksi (tai suoraksi). Yleisesti suoran x n yhtälö kompleksimuodossa on eli 2n 2x 2Re z z + z z + z 2n 0. Vastaavasti suoran y n yhtälö kompleksimuodossa on 2in 2iy z z 6

7 y x Kuva 5: eli Kuva 6: z z 2in 0. Kertomalla i:llä saadaan yhtälö normaalimuotoon αz + βz + γ 0, α β ja γ R: iz iz + 2n 0. Kuutiojuuri reaalifunktiona ja kompleksifunktiona. Kuvaus f : x x on määritelty kaikille x R. Derivaatta f (x) x 2 on määritelty kaikille x 0. Arvolla x 0 käyrän tangentti on pystysuora eikä funktuolla ole äärellistä derivaattaa. Jatkossa ehkä nähdään, että jo tämä riittää osoittamaan, ettei reaalista kuutiojuurta voida luonnollisella tavallajatkaa kompleksifunktioksi. Tarkastellaan kuutiojuurta kompleksifunktiona. Otetaan määrittelyjoukoksi pitkin negatiivista imaginaariakselia aukileikattu taso A C\{z Re z 0, Im z 0} C\{z arg z π}. 2 7

8 π + n2π < arg z < π + n2π 2 2 jokaisella arvolla n saadaan eri argumentina haara - z-taso I II III B 2 B I II... I B taso n 0 Kuva 7: Kuutiojuurella on A:ssa kolme haaraa, joiden maaleina ovat sektorialueet { B C π 6 < arg < π } n 0 { 2 B 2 C π 2 < arg < 7π } n 6 { B C 7π } π < arg < n Kuutiojuuren haarat ovat: I I II III : A B : A B 2 : A B kuvaa positiivisen reaaliakselin positiiviselle reaaliakselille ja negatiivisen reaaliakselin suoralle arg π. kuvaa positiivisen reaaliakselin suoralle arg 2π ja negatiivisen reaaliakselin negatiiviselle reaaliakselille (arg π). II kuvaa positiivisen reaaliakselin suoralle arg 4π ja negatiivisen reaaliakselin suoralle arg 5π. III Reaalinen kuutiojuuri f saadaan siis ottamalla positiivisella reaaliakselilla ja negatiivisella reaaliakselilla ja määrittelemällä f(0) 0. I II Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. 8

9 Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε. Raja-arvoa varten riittää tarkastella jonoja z n z 0, z n A\{z 0 }. Funktiolla on raja-arvo c, jos ja vain jos kaikille tällaisille jonoille on voimassa lim f(z n) c. n Esimerkki. f(z) Re z z on määritelty joukossa A C\{0} ja 0 A. Onko olemassa raja-arvoa lim f(z)? z 0 Olkoon z n. Silloin Re z n n z n n ja f(z n ) Re z, joten z lim n f(z n ), lim z n 0. Olkoon z n i. Silloin Re z n n 0 ja f(z n ) 0, joten lim n f(z n ) 0, lim z n 0. Raja-arvoa ei siis ole olemassa. Funktio f on jatkuva pisteessä z 0 A, jos lim z z 0 f(z) f(z 0 ). Kuvaus f on jatkuva joukossa A, jos se on jatkuva jokaisessa A:n pisteessä. Oletetaan, että A on avoin joukko. Silloin f : A B on jatkuva, jos ja vain jos jokaisen avoimen joukon U C alkukuva f (U) on avoin. Funktio f u + iv on jatkuva, jos ja vain jos u : A R ja v : A R ovat jatkuvia. Olkoon I [0, ] yksikköväli. Polulla γ tarkoitetaan jatkuvaa kuvausta γ : I C γ(0) polun alkupiste γ() polun loppupiste γ(i) polun kantaja eli jälki. Jos γ(i) A, niin γ on joukon A polku. Pisteet γ(0) ja γ() on tällöin yhdistetty polulla γ joukossa A. Jos A:n kaksi pistettä voidaan aina yhdistää polulla A:ssa, niin A on polkuyhtenäinen. Jos A on lisäksi avoin, niin A on alue. Esimerkiksi joukko {z Im z 0} on polkuyhtenäinen, mutta se ei ole avoin. Sen sijaan esimerkiksi yksikkökiekko U(0, ) on sekä avoin että polkuyhtenäinen, eli siis alue. Polkuyhtenäisen joukon kuva jatkuvassa kuvauksessa on polkuyhtenäinen. 9

10 γ x γ(i) y A f f(y) f γ(i) f(x) B f(a) Kuva 8:.2 Analyyttinen funktio Olkoon f : G C kuvaus, G C. Jotta voisimme derivoida, joudumme olettamaan, että G on avoin joukko. Integrointia varten joudumme olettamaan, että G on polkuyhtenäinen. Avoimet ja yhtenäiset joukot ovat alueita. Jatkossa oletamme siis yleensä, että funktioden määrittelyjoukot ovat alueita. Olkoon G alue ja z G. Tällöin on olemassa r > 0 siten, että U(r, z) {z + < r} G. z r r z + 0 U(z, r) U(0, r) Kuva 9: Funktio f(z + ) f(z) h() on määritelty punkteeratussa kiekossa U (0, r) { 0 < < r} U(0, r)\{0} 0

11 ja 0 on U (0, r):n kasautumispiste. Edellä olleen määritelmän mukaisesti voidaan tutkia raja-arvoa a lim 0 h() lim 0 f(z + ) f(z) olemassaoloa. Jos tämä raja-arvo on olemassa, niin f on differentioituva pisteessä z ja luku a f (z) on f:n derivaatta tässä pisteessä. Funktio, joka on differentioituva alueen G jokaisessa pisteessä, on analyyttinen G:ssä. Analyyttisyyden määritelmä on erittäin vahva. Siitä seuraa mm., että myös f on analyyttinen, jolloin edelleen f on analyyttinen jne. Analyyttisellä funktiolla on siis kaikkien kertalukujen derivaatat. Funktio on analyyttinen pisteessä z, jos se on analyyttinen jossakin tämän pisteen ympäristössä. Kompleksifunktion derivaatan määrittely erotusosamäärän avulla on mahdollista, koska kompleksiluvut voidaan jakaa keskenään. Jos tarkastellaan vektorimuuttujan x R n vektoriarvoisia funktioita f : R n R n, niin derivaatan määrittely tällä tavalla ei onnistu, kun n. Tämä johtuu siitä, että lukualuetta ei voida laajentaa tasoa useampiulotteiseksi. (Hamilton ja kvaternionit 844.) Kirjoitetaan f(z + ) f(z) ε() a. Silloin f(z + ) f(z) a + ε(), () joten a on funktion f derivaatta pisteessä z, jos ja vain jos kehitelmä () pätee ja ε() 0, kun 0. Tätä kautta kompleksinen derivaatta a f (z) ja Analyysi4:n yleinen derivaatta (lineaarikuvauksena) liittyvät toisiinsa. Esimerkkejä.. Vakiokuvaus f(z) c on analyyttinen koko tasossa ja f (z) 0, sillä f(z + ) f(z) Tässä 0 f (z) ja ε() Identtinen kuvaus f(z) z on analyyttinen koko tasossa ja f (z), sillä f(z + ) f(z) + 0. Tässä f (z) ja ε() 0.. Funktio f(z) z 2 on analyyttinen koko tasossa ja f (z) 2z, sillä f(z + ) f(z) (z + ) 2 z 2 z 2 + 2z + 2 z 2 2z +.

12 Tässä f (z) 2z ja ε() 0, kun Funktiolla f(z) z ei ole derivaattaa missään pisteessä z C. Todistus. Tarkastellaan erotusosamäärää f(z + ) f(z) z + z säteillä { t, t > 0 it, t > 0 it te iϕ ϕ t Kuva 0: f(z + ) f(z) f(z + ) f(z), kun t > 0 it it, kun it, t > 0. Annetaan t 0+. Erotusosamäärällä on eri raja-arvot ( ja -) näillä säteillä, joten sillä ei ole raja-arvoa kompleksitason topologiassa. On mielenkiintoista huomata, että erotusosamäärällä on raja-arvo jokaisella origosta lähtevällä -tason säteellä te iϕ : f(z + ) f(z) te iϕ te iϕ e 2ϕ cos 2ϕ i sin 2ϕ. Jokaisella origon kautta kulkevalla suoralla saadaan eri raja-arvo. 2

13 Kehitelmän () avulla voidaan tavalliseen tapaan perustella summan, tulon, osamäärän, käänteisfunktion ja yhdistetyn funktion derivointikaavat kompleksifunktioille. Esimerkiksi, jos niin joten f (z + ) f (z) a + ε (), f 2 (z + ) f 2 (z) a 2 + ε 2 (), (f + f 2 )(z + ) (z + f 2 )(z) (a + a 2 ) + (ε () + ε 2 ()), (f + f 2 ) (z) f (z) + f 2(z). Käänteisfunktion derivaatta: Oletetaan, että funktiolla f on pisteessä z derivaatta f (z) 0 ja että käänteisfunktio f on määritelty ja jatkuva eräässä pisteen f(z) ympäristössä V. Silloin f on differentioituva pisteessä ja ( ) f () f (z) f (f ()). Todistus. (Huomaa merkinnän muuttuminen. Nyt on f(z). Merkitään siksi z:n lisäystä h:lla.) f + k f(z + h) z z + h U f (V ) f(z) V Kuva : f:n jatkuvuuden nojalla k 0, kun h 0, f : U V jatkuva bijektio, jonka käänteiskuvaus f : V U on jatkuva ja f :n jatkuvuuden nojalla h 0, kun k 0. Jos + k V, k 0, niin merkitään f ( + k) z + h. Silloin h 0 ja f ( + k) f() k z + h z f(z + h) f(z) h f (z)h + hε(h) f (z) + ε(h), kun k 0. f (z)

14 H f f(z) z 2 E z f () Kuva 2: Esimerkki. Funktio f(z) z 2 on injektio ylemmässä puolitasossa H {z Im z > 0} ja E f(h) on pitkin positiivista reaaliakselia aukileikattu taso C\[0, [. Neliöjuuri voidaan määritellä kuvauksena f : E H. Merkitään f (). Osoitetaan, että f on jatkuva E:ssä. Olkoon, 2 E ja z x + iy z 2 x 2 + iy 2 2, jolloin y > 0 ja y 2 > 0. Saadaan arvio 2 z 2 2 z 2 z2 z z + z 2 z 2 z (x + x 2 ) 2 (y + y 2 ) 2 z 2 z (y + y 2 ) > y z 2 z, mistä saadaan z 2 z < 2 y. Pidetään (ja siis myös y ) vakiona ja annetaan 2. Silloin 2 0, joten myös z 2 z 2. Näin ollen on jatkuva pisteessä. Koska (ja 2 ) valittiin mielivaltaisesti E:stä, on jatkuva E:ssä. 4

15 Käänteisfunktion derivaattaa koskevasta tuloksesta seuraa, että on derivoituva E:ssä ja sen derivatta on sillä f(z) z 2 ja f (z) 2z. Vastaavalla tavalla nähdään, että f (z) f ( ) 2, f(z) z z E Kuva : kuutiojuuri on jatkuva E:ssä ja sen derivaatta on Tulos yleistyy n:teen juureen n. f (z) f ( ) ( ) 2. Cauchy-Riemannin -yhtälöt Olkoon f : A C kuvaus ja z Ajoukon A sisäpiste. Oletetaan, että f on differentioituva pisteessä z x + iy, jolloin f(z + ) f(z) a + ε(), (2) missä ε() 0, kun 0. Hajotetaan kaikki termit reaali- ja imaginaariosiinsa: f(z) u(x, y) + iv(x, y) a α + iβ h + ik ε() ε () + iε 2 (). 5

16 Yhtälö (2) hajoaa tällöin kahdeksi reaaliseksi yhtälöksi: Koska u(x + h, y + k) u(x, y) αh βk + hε () kε 2 () v(x + h, y + k) v(x, y) βh + αk + kε () + hε 2 (). hε () kε 2 () 2 (h, k) (ε (), ε 2 ()) 2 Scharzin ey. (h, k) 2 (ε (), ε 2 ()) 2 (h 2 + k 2 )(ε () 2 + ε 2 () 2 ), on hε () kε 2 () lim 0. h 2 +k 2 0 h2 + k 2 Näin ollen funktio u : A R on (Analyysi:n ja Analyysi4:n mielessä) differentioituva pisteessä z (x, y) ja D u u x α, D 2 u u y β. Samalla perusteella v : A R on differentioituva pisteessä z (x, y) ja D v v x β, D 2 v y α. Funktiot u ja v toteuttavat siis ns. Cauchy-Riemannin differentiaaliyhtälöt { ux v y () u y v x. Oletetaan kääntäen, että funktiot u : A R ja v : A R ovat differentioituvia joukon A sisäpistessä z (x, y) ja toteuttavat tässä pisteessä Cauchy- Riemannin differentiaaliyhtälöt (). Muodostetaan funktio f u + iy : A C. Väitös: f on differentioituva pisteessä z ja f (z) u x (x, y) + iv x (x, y) v y (x, y) u y (x, y). Todistus: Differentioituvuuden määritelmän perusteella u:lla ja v:llä on kehitelmät u(x + h, y + k) u(x, y) u x (x, y)h + u y (x, y)k + ε () v(x + h, y + k) v(x, y) v x (x, y)h + v y (x, y)k + ε 2 (), 6

17 missä h + ik ja ε j 0, kun 0, j, 2,.... Yhtälöiden () nojalla on f(z + ) f(z) u x h + u y k + iv x h + iv y k + ε () + i ε 2 () Merkitään Silloin missä ε() 0, kun 0. On siis todistettu u x h + iv y k + i(v x h iu y k) + ε () + i ε 2 () u x h + iu x k + i(v x h + iv x k) + (ε () + iε 2 ()) u x (h + ik) + iv x (h + ik) + (ε () + iε 2 ()) (u x + iv x ) + (ε () + iε 2 )). a u x (x, y) + iv x (x, y) ε() (ε () + iε 2 ()). f(z + ) f(z) a + ε(), Lause Funktio f u + iv : G C on analyyttina en alueessa G, jos ja vain jos funktiot u : G R ja v : G R ovat G:ssä differentioituvia ja toteuttavat Cauchy-Riemannin yhtälöt (). Oletetaan, että olemme unohtaneet Cauchy-Riemannin yhtälöt. Miten ne voidaan palautta mieleen? Oletetaan, että derivaatta f (z) lim 0 f(z + ) f(z) on olemassa pisteessä z G. Valitaan :lle sopivia teitä lähestyä nollaa, h + ik (h, k), z x + iy (x, y): ) menee reaalisena kohti nollaa. Merkitään h (h, 0) f(z + ) f(z) u(x + h, y) + iv(x + h, y)u(x, y) iv(x, y) h u(x + h, y) u(x, y) v(x + h, y) v(x, y) + i h h u x (x, y) + iv x (x, y) f (z). 7

18 2) menee puhtaasti imaginaarisena kohti nollaa. Merkitään ik (0, k). f(z + ) f(z) u(x, y + k) + iv(x, y + k) u(x, y) iv(x, y) ik u(x, y + k) u(x, y) i(v(x, y + k) v(x, y)) i + k ik iu y (x, y) + v y (x, y) v y (x, y) iu y (x, y) f (z). Oletetaan, että f (z) on olemassa. Kohdassa on f:n osittaisderivaatta x:n suhteen: f(z + h) f(z) f x (x, y) lim f (z), h R. h 0 h Kohdassa 2 on f:n osittaisderivaatta y:n suhteen vakiolla kerrottuna: f y (x, y) lim k 0 f(z + ik) f(z) k i lim k 0 f(z + ik) f(z) k lim k 0 i(f(z + ik) f(z)) ik if (z). Siis f x (x, y) i f y(x, y) if y (x, y). Saadaan Cauchy-Riemannin yhtälöiden kompleksimuoto f x if y. 8

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (

Lisätiedot

Kompleksianalyysi Funktiot

Kompleksianalyysi Funktiot Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

Mat-1.1331 Matematiikan pk KP3-i - kertaus

Mat-1.1331 Matematiikan pk KP3-i - kertaus Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,

Lisätiedot

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Funktioteoria I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Kari Astalan muistiinpanoista (2005) muokannut Pekka Nieminen Kuvat: Martti Nikunen Funktioteorian eli kompleksianalyysin

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun. 17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Pro gradu -tutkielma

Pro gradu -tutkielma Pro gradu -tutkielma Kolmen pisteen Schwarzin-Pickin lemma Ahmed Khalif Matematiikan Pro Gradu -tutkielma Helsingin yliopisto Matematiikan ja tilastotieteen laitos Joulukuu 2012 Tiivistelmä Tässä opinnäytetyössä

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x i sin x

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x i sin x 2 1. Trigonometriset ja hyperboliset funktiot Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x + i sin x, e ix = cos x i sin x Jos

Lisätiedot

Reaalimuuttujan kompleksiarvoisen funktion integraali

Reaalimuuttujan kompleksiarvoisen funktion integraali Reaalimuuttujan kompleksiarvoisen funktion integraali Määritelmä 1 Olkoon f(t) = u(t) + jv(t) jatkuva funktio välillä [a, b]. Tällöin (1) b b b f(t)dt = u(t)dt + j v(t)dt. a a a Jatkossa oletetaan, että

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Harmoniset funktiot kompleksialueessa ja konformikuvaukset

Harmoniset funktiot kompleksialueessa ja konformikuvaukset Harmoniset funktiot kompleksialueessa ja konformikuvaukset Hanna-Kaisa Karttunen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2014 Tiivistelmä: Hanna-Kaisa Karttunen,

Lisätiedot

Analyyttinen jatke ja Riemannin pinnat

Analyyttinen jatke ja Riemannin pinnat Analyyttinen jatke ja Riemannin pinnat Eero Hakavuori Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä: Eero Hakavuori, Analyyttinen jatke ja Riemannin

Lisätiedot

Sini- ja kosinifunktio

Sini- ja kosinifunktio Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA

HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA Markus Glader Pro gradu -tutkielma Syyskuu 2011 MATEMATIIKAN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan laitos GLADER, MARKUS: Hyperbolinen ja kvasihyperbolinen

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

Kompleksitermiset jonot ja sarjat

Kompleksitermiset jonot ja sarjat Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä

Lisätiedot

Kompleksiluvut. JYM, Syksy /99

Kompleksiluvut. JYM, Syksy /99 Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi. Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo. Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia Mat-1.1331 Matematiikan peruskurssi KP3-i A.Rasila J.v.Pfaler TKK27 19. lokakuuta 27 A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 27 1 / 353 A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3 Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Valtteri Isaksson. Möbius-kuvaukset

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Valtteri Isaksson. Möbius-kuvaukset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Valtteri Isaksson Möbius-kuvaukset Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö Isaksson, Valtteri: Möbius-kuvaukset

Lisätiedot

Kompleksianalyysi 1. Tero Kilpeläinen

Kompleksianalyysi 1. Tero Kilpeläinen Kompleksianalyysi 1 Tero Kilpeläinen Luentomuistiinpanoja keväälle 2015 6. maaliskuuta 2015 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja Kompleksianalyysi 1 -kurssille. Nämä on muokattu kompleksianalyysin

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Analyysi I. Visa Latvala. 3. joulukuuta 2004

Analyysi I. Visa Latvala. 3. joulukuuta 2004 Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2 LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot