PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1"

Transkriptio

1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus 1(7 PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1 Pallomaisen solun relaksaatiotaajuus f r = 1 πhc m ( 1 σ i + 1 σe cm = 1µF/cm = 10 - F/m, solukalvon kapasitanssi pinta-alayksikköä kohti i = S/m, soluliman johtavuus e = 1 S/m, soluväliaineen johtavuus Solun halkaisija h = µm = 10 µm = 10 - m f r = 1 π 10 m 10 As/( ( mv A = 7 MHz Solun halkaisija h = 400 µm = m 1 f r = π m 10 As/( ( mv = 9 khz A Koska soluja on harvakseltaan kudoksessa, Ee = sisäisen sähkökentän voimakkuus = 10 V/m. Solukalvon yli indusoituva jännite Um pallomaisille soluille (K1 = 7 U m = K 1 h 1 + ( f f r E e Solun halkaisija = 10 µm, Um = 7 µv taajuudella 0 Hz ja Um = 70 µv taajuudella 00 khz. Solun halkaisija =800 µm, Um = 6,0 mv taajuudella 0 Hz ja Um = 19 mv taajuudella 00 khz. Solukalvon sisäisen sähkökentän voimakkuus Um Em, missä d on solukalvon paksuus = nm d Solun halkaisija = 10 µm, Em = 1 kv/m taajuudella 0 Hz ja Em = 14 kv/m taajuudella 00 khz. Solun halkaisija = 800 µm, Em = 100 kv/m taajuudella 0 Hz ja Em = 38 kv/m taajuudella 00 khz.

2 (7 Solun sisäisen sähkökentän voimakkuus Ei taajuuksilla 0 Hz ja 100 khz. E i = (1 + σ i σ e f/f r 1 + ( f f r E e Solun halkaisija = 10 µm: Ei = 47 mv/m taajuudella 0 Hz ja Ei = 4,4 V/m taajuudella 00 khz. Solun halkaisija = 800 µm: Ei = 37,7 mv/m taajuudella 0 Hz ja Ei = 1 V/m taajuudella 00 khz. HARJOITUSTEHTÄVÄ Sähkökentän voimakkuus Eo = 10 kv/m taajuudella f = 0 Hz. Päälaen iholle syntyvä pintavaraus Qs = 0kenEo, ken = 18. Sinimuotoisessa sähkökentässä virrantiheys päälaen ihossa Js = j0keneo Virrantiheyden itseisarvo = π 0 8, A/m = 01 µa/m Ihon sisäinen sähkökentän voimakkuus Ei= Js/s, s = S/m Ei= / V/m =, mv/m a Keskikokoinen henkilö on täysin kontaktissa johtavaan maahan, pyörähdysellipsoidin mitat a = 8 m, a/b = 8, b = 14 m ja N= 0137 Lihaksella ε rm = " ja ε rm = σ m = ωε 0 Keskimääräisellä kudoksella rave = /3 lihaksen r. ε rave = " ja ε rave =, johtavuus ave = σm/3 = 3/3= 13 S/m Ulkoisen sähkökentän indusoima sisäinen sähkökenttä Ei,e =Eo/C 3 = 8,7 107 π 0 8, C1 = 1 + (r 1N = 1+(18 - j, = (6-j 7, 10 Ei,e= Eo/C1= /7,7 10 = 9 mv/m

3 3(7 Likimääräisellä kaavalla E i,e = ωε 0E o = π 0 1 As 8, s V m Nσ ave A b Keskikokoinen henkilö on täysin eristetty maasta. a = 9 m, a/b = 6,4, b = 9/6,4 m =14 m ja N= 039 Ulkoisen sähkökentän indusoima sisäinen sähkökenttä Ei,e =Eo/C C1 = 1 + (r 1N = 1+(18 - j, = (4,60-j 10 Ei,e= Eo/C1= /, 10 6 = 4, mv/m = 13, mv/m Ulkoisen sähkökentän indusoima sisäinen sähkökenttä likimääräiskaavalla E i,e = ωε 1 0E o π 0 = s 8,84 As V m Nσ ave A = 4, 7 mv/m HARJOITUSTEHTÄVÄ 3 Tasoaallon tehotiheys S = Eo /Z0 = H Z0 = 00 W/m, Z0 = 376,7 Sähkökentän voimakkuuden tehollisarvo E o = SZ 0 = ,7 V/m = 434 V/m Magneettikentän voimakkuuden tehollisarvo H o = S/Z 0 = 00/376,7 A/m = 1 A/m. Lihaksen permittiivisyys taajuudella 963 khz " ε rm = 1910 ja ε rm = σ m = ωε 0 π = , " Keskimääräisellä kudoksella rave = /3 lihaksen r. ε rave = 173 ja ε rave = 6 johtavuus ave = m/3= 33 S/m Keskikokoinen henkilö on täysin kontaktissa johtavaan maahan, pyörähdysellipsoidin mitat a = 8 m, a/b = 8, b = 14 m ja N= 0137 sekä tiheys ρ = 1000 kg/m 3 Ulkoisen sähkökentän indusoima sisäinen sähkökenttä Ei,e =Eo/C C1 = 1 + (r 1N = 1 + (173 -j = 18,43 j 8,4 Ei,e= Eo/C1= 434/87, =,0 V/m Likimääräisellä kaavalla E i,e = ωε 0E o = π As 8, s 434 V m =,1 V/m Nσ ave A

4 4(7 Ulkoisen magneettikentän indusoima suurin sisäinen sähkökenttä Ei,m = -jb0ho Ei,m= b0ho = π π = 3 V m Koko kehon keskimääräinen ominaisabsorptionopeus SAR wba = SAR wba,e + SAR wba,m = σ ave E i,e ρ = 0084 W/kg + σ ave E i,m ρ = (,0 + 3 W kg Henkilö on täysin kontaktissa maahan. Jalkojen kautta maahan kulkeva virta I sc = K 0 h fe o Keskikokoiselle miehelle sopiva K0 = 086 na/(m Hz -1 Isc = A = 117 ma Pyörähdysellipsoidimallilla K 0 = π ε 0 K0 = 078 na/(m Hz -1 Isc = 106 ma R N, R=a/b= 8, N=0137 Keskikokoinen henkilö on täysin eristetty maasta. a = 9 m, a/b = 6,4, b = 9/6,4 m =14 m ja N= 039 sekä tiheys ρ = 1000 kg/m 3 Ulkoisen sähkökentän indusoima sisäinen sähkökenttä Ei,e =Eo/C C1 = 1 + (r 1N = 1 + (173 -j = 6 j 43 Ei,e= Eo/C1= 434/48 = 7 V/m Ulkoisen sähkökentän indusoima sisäinen sähkökenttä likimääräiskaavalla E i,e = ωε 0E o = π s 8,84 As V m Nσ ave A = 78 V/m Ulkoisen magneettikentän indusoima suurin sisäinen sähkökenttä Ei,m = 3 V/m (sama kuin edellä. Koko kehon keskimääräinen ominaisabsorptionopeus SAR wba = SAR wba,e + SAR wba,m = σ ave E i,e ρ = 0011 W/kg + σ ave E i,m ρ = (7 + 3 W kg

5 (7 HARJOITUSTEHTÄVÄ 4 Magneettikentän voimakkuus H etäisyydellä r suorasta virtajohtimesta lasketaan kaavalla I H r. Vastaava magneettivuon tiheys saadaan yhtälöstä B = μ0h, missä μ0 = Vs/(Am on tyhjiön permeabiliteetti. Sijoittamalla permeabiliteetin ja etäisyyden numeroarvot ( m kaavaan, saadaan magneettivuon tiheydelle lauseke B [µt] = 1 I [A]. Taulukossa 1 esitetään virtajohtimen virran aiheuttama magneettivuon tiheys m etäisyydellä seisovaan henkilöön perustaajuudella 0 Hz ja sen harmonisilla. Lisäksi esitetään sosiaalija terveysministeriön asetuksen 94/00 (STM mukaiset väestön suositusarvot ja valtioneuvoston asetuksen 388/016 (VNA mukaiset työntekijöiden matalat toimenpidetasot magneettivuon tiheydelle. Altistumissuhteet (AS lasketaan kaavasta AS n Bi B i1 L, i, missä Bi on magneettivuon tiheys taajuudella fi ja BL,i on magneettivuon tiheyden suositusarvo tai toimenpidetaso taajuudella fi. Taulukko 1. Henkilöön kohdistuvan magneettivuon tiheys perustaajuudella ja sen harmonisilla sekä vertailu magneettivuon tiheyden suositusarvoihin ja toimenpidetasoihin. Taajuus Hz Virta A Magneettivuon tiheys B µt STM VNA Suhde B/STM Suhde B/VNA µt µt , , , Altistumissuhde (AS 8,0 4 Taulukosta 1 nähdään, että henkilön altistumissuhde virtajohtimen aiheuttamalle magneettikentälle on a AS = 8, kun sovelletaan sosiaali- ja terveysministeriön asetuksen 94/00 mukaisia väestön suositusarvoja b AS = 4, kun sovelletaan valtioneuvoston asetuksen 388/016 mukaisia työntekijöiden matalia toimenpidetasoja.

6 6(7 HARJOITUSTEHTÄVÄ y (x p,y p B x1 B 1 B y1 (x 1,y 1 (x,y (x 3,y 3 x -10 I 1 I 0 I 10 3 x1 = -3 m x = 0 m x3 = 3 m xp = 0 m y1 = 0 m y = 0 m y3 = 0 m yp = m Virtajohtimien virtojen tehollisarvot vaiheineen I1 = 11 A (cos(-10 + j sin(-10 = 11 A (--j 866 I = 11 A I3 = 11 A (cos(10 + j sin(10 = 11 A (-+j 866 I1 + I + I3 = 0 Magneettivuon tiheyden x-suuntainen komponentti pisteessä (xp,yp saadaan summaamalla virtojen aiheuttamat magneettivuon tiheydet B x y 3 0 p k Ik 1 x k p x k y p y k y ja y-suuntainen komponentti pisteessä (xp,yp saadaan vastaavasti 3 x 0 p xk By Ik x x y y k 1 p k p k Sijoitetaan numeroarvot ja lasketaan Bx ja By-komponenttien tehollisarvot ja vaihekulmat B x ( j = T 017 = 3,4 µt 1 ( j T

7 7(7 B y ( j = T (-j 173 = j 40 µt 0 1 ( 3 j T Bx = 3,4 µt, vaihekulma x = 0 By = 40 µt, vaihekulma y = 90 Magneettivuon tiheyden tehollisarvo jakson ajalta B rms = B x + B y = 4 µt Magneettivuon tiheys on lähes lineaarisesti polarisoitunut pystysuunnassa ja sen hetkellinen arvo saadaan yhtälöstä B = B x sin (ωt + x + B y sin (ωt + y Suurin hetkellinen magneettivuon tiheyden arvo on 6,6 µt ja pienin,0 µt.

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo.

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo. N:o 94 641 Liite 1. Staattise mageettiketä (0 Hz) vuotiheyde suositusarvo. Altistumie Koko keho (jatkuva) Mageettivuo tiheys 40 mt Tauluko selityksiä Suositusarvoa pieemmätki mageettivuo tiheydet saattavat

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta ELEC-E5770 Sähkömagneettisten kenttien ja optisen säteilyn biologiset vaikutukset ja mittaukset Syksy 2016 SÄHKÖ- JA MAGNEETTIKENTÄN KYTKEYTYMINEN IHMISEEN (DOSIMETRIA) Lauri Puranen Säteilyturvakeskus

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Sähkö- ja magneettikentät työpaikoilla 11.10. 2006, Teknologiakeskus Pripoli SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus

Lisätiedot

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle. TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Voimalinjat terveydensuojelulain näkökulmasta

Voimalinjat terveydensuojelulain näkökulmasta Ympäristöterveydenhuollon valtakunnalliset koulutuspäivät Yyterin kylpylähotelli 5.5.2015 Voimalinjat terveydensuojelulain näkökulmasta Ylitarkastaja Lauri Puranen Säteilyturvakeskus lauri.puranen@stuk.fi

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Atomiteknillinen seura 28.11.2007, Tieteiden talo SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus Ionisoimaton

Lisätiedot

PIENTAAJUISTEN KENTTIEN ALTISTUMISRAJAT

PIENTAAJUISTEN KENTTIEN ALTISTUMISRAJAT ELEC-E5770 Sähkömagneettisten kenttien ja optisen säteilyn biologiset vaikutukset ja mittaukset Syksy 2016 PIENTAAJUISTEN KENTTIEN ALTISTUMISRAJAT Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Sähkö fysiologiset vaikutukset Osa 2 Sähkö- ja magneettikentät

Sähkö fysiologiset vaikutukset Osa 2 Sähkö- ja magneettikentät Sähkö fysiologiset vaikutukset Osa 2 Sähkö- ja magneettikentät 1 Tarina Kotona on useita sähkömagneettisten kenttien lähteitä: Perhe Virtanen on iltapuuhissa. Rouva Virtanen laittaa keittiössä ruokaa ja

Lisätiedot

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa.

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa. Säteilyturvakeskus Toimintajärjestelmä #3392 1 (7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

Valtioneuvoston asetus

Valtioneuvoston asetus Valtioneuvoston asetus työntekijöiden suojelemiseksi sähkömagneettisista kentistä aiheutuvilta vaaroilta Valtioneuvoston päätöksen mukaisesti säädetään työturvallisuuslain (738/2002) nojalla: 1 Soveltamisala

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta ATE11 taattinen kenttäteoria kevät 17 1 / 6 askuharjoitus 13: ajapintaehdot ja siirrosvirta Tehtävä 1. Alue 1 ( r1 = 5) on tason 3 + 6 + 4z = 1 origon puolella. Alueella r =. 1 Olkoon H1 3, e,5 e z (A/m).

Lisätiedot

3 Yhteenveto sosiaali- ja terveysministeriön asetuksesta (294/2002) 'ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta'

3 Yhteenveto sosiaali- ja terveysministeriön asetuksesta (294/2002) 'ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta' 3 Yhteenveto sosiaali- ja terveysministeriön asetuksesta (294/2002) 'ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta' Tähän lukuun on poimittu pientaajuisia sähkö- ja magneettikenttiä

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

SM-direktiivin perusteet ja altistumisrajat

SM-direktiivin perusteet ja altistumisrajat SM-direktiivin perusteet ja altistumisrajat Sähkö- ja magneettikentät työpaikoilla Tommi Alanko Työterveyslaitos Työympäristön kehittäminen Uudet teknologiat ja riskit 11.10.2006 SM-direktiivi Euroopan

Lisätiedot

DOSIMETRIA. Kari Jokela

DOSIMETRIA. Kari Jokela 3 DOSIMETRIA Kari Jokela SISÄLLYSLUETTELO 3.1 Yleistä... 60 3.2 Kudosten ja solujen sähköiset ominaisuudet... 60 3.3 Kenttien kytkeytyminen kehoon... 78 3.4 Kvasistaattinen alue... 81 3.5 Resonanssialue...

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

PIENTAAJUISTEN SÄHKÖ- JA MAGNEETTIKENTTIEN VAIKUTUKSET

PIENTAAJUISTEN SÄHKÖ- JA MAGNEETTIKENTTIEN VAIKUTUKSET ELEC-E5770 - Sähkömagneettisten kenttien ja optisen säteilyn biologiset vaikutukset ja mittaukset Syksy 2016 PIENTAAJUISTEN SÄHKÖ- JA MAGNEETTIKENTTIEN VAIKUTUKSET Lauri Puranen Säteilyturvakeskus Ionisoimattoman

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

IONISOIMATTOMAN SÄTEILYN VALVONTA NIR

IONISOIMATTOMAN SÄTEILYN VALVONTA NIR IONISOIMATTOMAN SÄTEILYN VALVONTA NIR Ylitarkastaja Lauri Puranen 1 IONISOIMATON SÄTEILY Röntgensäteily Gammasäteily Alfasäteily Beetasäteily Neutronisäteily 2 MITEN IONISOIMATON SÄTEILY TUNKEUTUU JA VAIKUTTAA

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE.2010 Dynaaminen kenttäteoria syksy / 5 Laskuharjoitus 1: Siirrosvirta ja indusoitunut sähkömotorinen voima ATE.1 Dynminen kenttäteori syksy 11 1 / 5 Lskuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys on kksinkertinen verrttun siirrosvirrn tiheyteen

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

EUROOPAN PARLAMENTTI

EUROOPAN PARLAMENTTI EUROOPAN PARLAMENTTI 1999 2004 Konsolidoitu lainsäädäntöasiakirja 30. maaliskuuta 2004 EP-PE_TC2-COD(1992)0449C ***II EUROOPAN PARLAMENTIN KANTA vahvistettu toisessa käsittelyssä 30. maaliskuuta 2004 Euroopan

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Sähkö- ja magneettikentät työpaikoilla. 11.10.2006, Teknologiakeskus Pripoli, Pori KENTTIEN MITTAUSPERIAATTEET JA -ONGELMAT

Sähkö- ja magneettikentät työpaikoilla. 11.10.2006, Teknologiakeskus Pripoli, Pori KENTTIEN MITTAUSPERIAATTEET JA -ONGELMAT Sähkö- ja magneettikentät työpaikoilla 11.10.2006, Teknologiakeskus Pripoli, Pori KENTTIEN MITTAUSPERIAATTEET JA -ONGELMAT Ylitarkastaja Lauri Puranen Säteilyturvakeskus 1 Esityksen sisältö SM-direktiivin

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Matkapuhelimesta imeytyy kudoksiin paikallisesti lämpötehoa

Matkapuhelimesta imeytyy kudoksiin paikallisesti lämpötehoa Matkapuhelimesta imeytyy kudoksiin paikallisesti lämpötehoa Maks. lämmönnousu aivojen pinnalla on 0,3 astetta, kun SAR-arvo on 2 W/kg (STM:n enimmäisarvo). T ρ C = k 2 T wcbt + ρsar t jos veren lämmönkuljetus

Lisätiedot

Pientaajuisten kenttien lähteitä teollisuudessa

Pientaajuisten kenttien lähteitä teollisuudessa Pientaajuisten kenttien lähteitä teollisuudessa Sähkö- ja magneettikentät työpaikoilla -seminaari, Pori 11.10.2006 Sami Kännälä, STUK RADIATION AND NUCLEAR SAFETY AUTHORITY TYÖNANTAJAN VELVOITTEET EU:N

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

Elektrodynamiikka, kevät 2008

Elektrodynamiikka, kevät 2008 Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

5. Sähkönsiirto- ja jakelujohtojen sähkö- ja magneettikentät

5. Sähkönsiirto- ja jakelujohtojen sähkö- ja magneettikentät 5. Sähkönsiirto- ja jakelujohtojen sähkö- ja magneettikentät 5.1 Asetuksen määrittelemät suositusarvot Uudessa sosiaali- ja terveysministeriön (STM) asetuksessa ionisoimattoman säteilyn väestölle aiheuttaman

Lisätiedot

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

BIOSÄHKÖMAGNETIIKAN FYSIKAALISIA PERUSTEITA

BIOSÄHKÖMAGNETIIKAN FYSIKAALISIA PERUSTEITA 2 BIOSÄHKÖMAGNETIIKAN FYSIKAALISIA PERUSTEITA Kari Jokela SISÄLLYSLUETTELO 2.1 Staattiset ja kvasistaattiset kentät... 28 2.2 Sähkömagneettinen aalto... 44 2.3 Ominaisabsorptionopeus... 48 2.4 Maxwellin

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

Turvallinen työskentely tukiasemien lähellä

Turvallinen työskentely tukiasemien lähellä Turvallinen työskentely tukiasemien lähellä Teksti: Tommi Alanko ja Maila Hietanen Kuvat: Tommi Alanko ja Patrick von Nandelstadh TYÖTERVEYSLAITOS Työympäristön kehittäminen -osaamiskeskus Uudet teknologiat

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Sähkömagneettiset kentät työympäristössä

Sähkömagneettiset kentät työympäristössä Sähkömagneettiset kentät työympäristössä Opaskirja työntekijöiden altistumisen arvioimiseksi Maila Hietanen Patrick von Nandelstadh Tommi Alanko TYÖYMPÄRISTÖTUTKIMUKSEN RAPORTTISARJA 14 Työterveyslaitos

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Sähkömagneettisten kenttien vaarat. Tarua vai totta.

Sähkömagneettisten kenttien vaarat. Tarua vai totta. Ostrobotnia 18.1. 2017 Sähkömagneettisten kenttien vaarat. Tarua vai totta. Kari Jokela Säteilyturvakeskus (tutk. prof, eläkkeellä) ICNIRP (PG-HF) Sisältö Sähkömagneettisten kenttien tunnetut vaikutukset

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot