6 Numeerisesta integroinnista

Koko: px
Aloita esitys sivulta:

Download "6 Numeerisesta integroinnista"

Transkriptio

1 MAA 6 Numeeriet integroinnit Numeerien integroimien (numericl integrtion) intuitiivien kulmkivenä on pint-l. Kikki menetelmät lähtevät tätä jtuket, jok on määrätyn integrlin enimmäinen pprokimtio. On kuitenkin huomttv, että vikk oiken geometrien lueen pint-l on in noll ti uurempi, määrätty integrli voi oll myö negtiivinen. Silti pint-ln jtteleminen utt hhmottmn tilnnett. On vin pidettävä vrn. Eimerkki 44 Lke määrätty integrli 3 x dx. 3 x dx= 3 x x= A. Vtu: Integrlin rvo on. Eimerkki 45 Lke määrätty integrli 3 xdx. A 3 xdx= 3 x x= I Vtu: Integrlin rvo on. Eimerkki 46 Lke määrätty integrli 5 x 3dx. I ()

2 MAA 5 x 3dx= 5 x 3x=0 I Vtu: Integrlin rvo on 0. Muit: b f xdx= b f xdx. Kert muutkin määrätyn integrlin lkuäännöt. Suorkideääntö Oletetn, että funktio f(x):n määrätty integrli on olem välillä [;b] j rvoltn A. Silloin yki krke A:n rvio on f b. Toinen, yhtä krke rvio, on f bb. Nämä ovt uorkideäännön (rectngle rule) kki eri eitytä. Käytännöä tämä onkin tällien liin krke rvio. Prempi tulo dn, kun väli [;b] jetn pieniin oväleihin j käytetään kunkin välin päätepiteen ijt ovälin kekipitettä rvion lkemieen. Tätä notn kekipiteäännöki. ()

3 MAA Olkoon A kuten edellä. Jo ii väli jetn n kppleeeen välejä [ x i - ; x i ],i...n ; x 0 =, x n =b j h= b n 0 niin määrätyn integrlin rvolle dn rvio A h x x 0 h x x...h x n x n =h[ f x 0 f x... f x n] n =h f x i i=0 Lyhyeti nottun: Kekipiteääntö (uorkideäännön ovellu) n A h f x i () i=0 Kekipiteääntö on monetkin yytä uoiteltvmpi menetelmä kuin mikään muu yllä eitelty ykinkertiempi keino, mutt jtko eittelen vielä prempi. Se opii hyvin myö tietokoneell ti lkimell ohjelmoitvki. Lken kikki tähän kppleeeen liittyvät eimerkit kekipiteäännön vull j ivuutn uorkideäännön ykinkertiimmn verion kokonn. Jo hlut, voit ite kokeill niitten lkemieen jotin yllä minituit muit keinoit. Eimerkki 47 Lke normlijkumn tiheyfunktion integrli rjoin j f x= x e, kun tiheyfunktion prmetrein ovt noll j yki. Piirtäköön kone kuvn t! Aik tutun näköinen iitä tuli. 3()

4 MAA Symmetriyitä nyt on voim yhtälö f xdx= 0 f xdx. Lken tämän koneell käyttämällä kekipiteääntöä n:n rvoill 0 j 00. Merkiten kummkin tpuke tvoiteltv, m integrlin trkk rvo I:llä. Aloitn n:n rvot 0. Kunkin uorkiteen levey on nyt 0, j korkeu tiheyfunktion rvo kunkin välin päätepiteen kekipiteeä. Edellä olevn yhtälön () mukn on I n h f x i i=0 4()

5 MAA = 0, 9 i=0 0,6889. e 0,05i 0, Tämä ei ole kovin lähellä koneen trkn kvn peruteell ntm 9 - deimlit rvo I = 0, Kokeilen itten n:n rvo 00. I = 0,0 99 i=0 0, e 0,005i 0,0 Tämä on jo prempi! Toin käytännön tilnteit jtellen enimmäinenkin rvio on trkk. Vtu: Integrlin rvo on noin 0, Puoliuunnikääntö (;f()) A (b;f(b)) b Kun uorkideääntöä kehitetään eteenpäin, niin enimmäinen mieleen tulev mhdolliuu on tehdä juuri niin kuin puoliuunnikääntöä (trpezoidl rule) käytettäeä tehdään: edetään uorkiteet puoliuunnikkeen j pprokimoidn integrli illä. Teen ii niin. Puoliuunnikkn ln kvt dn, kun käytetään kuvion merkintöjä: A= b [ f f b] b f xdx 5()

6 MAA Tämä on puoliuunnikäännön perumuoto. Eimerkki 48 Lke määrätyn integrlin puoliuunnikäännön perumuoto.,5 e x dx rvo vähintään kolmen deimlin trkkuudell. Käytä 0,5 Arvio on,833. e0,5 e,5,5 0,5 3,065. Trkn kvn vull lkettu integrli rvo on Vtu: Arvo on noin 3,065. 6()

7 MAA Trkennetn puoliuunnikmenetelmää. Ajtelln rvioitv l jetuki ueiiin puoliuunnikkiiin kuten yllä olev kuv. Siinä ininen viiv eittää trkteltv funktiot eli on käyrän y = f(x) kuvj. Puniet pytyviivt ovt eri x:n rvojen kutt kulkevi uori. Kun näiden leikkupiteet inien kuvjn kn yhditetään, yntyy murtoviiv, jonk ojnoit etittävät puoliuunnikkt dn. b Olkoon rvioitv integrli I = f x dx, miä f(x) on yllä minittu funktio. Jo yllä olevn kuvn tpn kht peräkkäitä x:n rvo merkitään x i :llä j x i :llä, niin oveltmll puoliuunnikäännön perumuoto kuhunkin o-ln, dn I h [ f x 0 f x ] h [ f x f x ] h [ f x f x 3 ] h [ f x n f x n ] h [ f x n f x n ] 7()

8 MAA Tää x 0 = j x n = b j h= b n. Otetn tää vielä h tekijäki, niin dn Puoliuunnikääntö I h [ f x 0 f x f x... f x n- f x n- f x n ] Eimerkki 49 Arvioi määrätyn integrlin eitemään oväliin. Arvioi tuloken trkkuutt. in xdx rvo puoliuunnikäännön vull. J väli 0 Kok nyt h= 7 in x dx 0, niin puoliuunnikäännön vull dn 7 [ 6 in 0 in i 7 in ]=,84. i= Tulo on trkempi kuin minä oliin intuitiivieti, menetelmän tekniikk jtellen odottnut. Trkk rvo on nimittäin promille. in co,89, jolloin uhteellinen virhe on noin neljä Vtu: Integrlin rvo on noin,89. Eimerkki 50 Tutkij mitti veden virtunopeutt putke in yhtä pitkin ikvälein. Se vihteli oheien tulukon mukieti. Lke mittupiteen ohi virrnneen veden määrä koko mittuikn. 0 h h h 3 h 4 h 5 h 6 h 7 h 0,5 m3 0,6 m3 0,35 m3 0,36 m3 0,30 m3 0,5 m3 0,8 m3 0,0 m3 Jo mittupiteitä piirretään murtoviiv, tämän murtoviivn j ik-kelin väliin jäävä pint-l rvioi virrnneen veden määrää, kok veden määrä on virtunopeu kert ik. Arvioidn tätä 8()

9 MAA l puoliuunnikäännöllä. Edellä käytettyjen merkintöjen mukieti dn (eimerkiki [;b] = [0;7], h = ) I h [ f x 0 f x f x... f x n f x n f x n] = [ 0,50,60,350,360,300,50,8 0,0 ] =,85 Toki vei virti ennen mittuten loittmit j myö niitten jälkeen, mutt itä ei kyytty. Vtu: Vettä virti noin,8 m 3. Simponin ääntö Kehitän nyt hyväki lopuki vielä puoliuunnikääntöä eteenpäin. Approkimoin funktiot äärelliellä välillä elliell toien teen polynomill, jok mt rvot välin päätepiteiä j kekipiteeä kuin pprokimoitv funktio. Tätä n itten pprokimointikvt määrätylle integrlille. Menetelmää notn Simponin äännöki (Simpon' rule) ti Simponin menetelmäki. En uorit yhtälöitten johtmit tää, vn nnn ne vlmiin. Ooittutuu, että tällä tvll tv pprokimtio riippuu inotn funktion tunnetuit kolmet rvot ekä välin pituudet. Trktelen enin Simponin äännön perumuoto eli minittu tekniikk kerrll koko integrointiväliin. Vrininen Simponin ääntö ovelt tätä peritett integrointivälin oväleihin vtvll tvll kuin puoliuunnikäännön tpuke. Aloitn eimerkit lkemll yhden integrlin pelkän perumuodon vull. Jo pprokimoitv funktio on y = f(x) j integroitv väli on [;b], niin Simponin äännön perumuodon mukn on Eimerkki 5 b f xdx b b [ f 4 f 6 f b]. Arvioi määrätyn integrlin väli eitemään oväliin. Arvioi tuloken trkkuutt. 0,5 in xdx rvo Simponin äännön perumuodon vull. J 0,5 9()

10 MAA Kvn ijoittmll. kun = 0,5, b = 0,5 j f(x) = in (x): 0,5 in xdx 0,5 [ 0,5 0,5] [ f 0,54 f 0,50,5 f 0,5]=7, Lketn virheen rvioimieki tämä vielä lkukoneen integroimitoiminnoll trjomll koneelle trkk kv. Sdn tulo kvn ntm boluuttinen virhe on 0,7 0 - verrttun iempiin eimerkkeihin! 0,5 in xdx=7,93 0-0,5. Tällä peruteell Simponin. Tämä on kolme proentti. Ei kovin pljon Jetn integroimiväli nyt n kppleeeen ovälejä. Kun Simponin ääntöä ovelletn niin, että integroimiväli jetn oväleihin, e jetn prillieen määrään ovälejä. Nytkin ii n on prillinen. Oheie kuv ovälejä on khdekn eli n = 8. =x 0 x... b=x n Merkitään tvllieen tpn = x 0, b = x n, h= b j n on jkovälien lukumäärä. Seurv n yhtälöä Simponin äännöä knntt huomt, että termien kertoimin ovt vuorotellen j 4 muuten piti enimmäien j viimeien termin kertoimin ovt ykköet. 0()

11 MAA Simponin ääntö b f xdx h 3 [ f x 04f x f x 4f x 3 f x 4...4f x n - f x n ] Eimerkki 5 Lke integrlin kymmeneen oväliin.,0 e in x dx likirvo Simponin äännön vull. J integroimiväli 0,5 Nyt h =,5, f x=e in x, f x 0 = f 0,5=e in0,5, f x = f 0,500,5=e in 0,65 j niin edelleen, joten,0 e inx dx 0,5,0 0,5 3 0 [ e in0,5 4e,0-0,5,0-0,5 in0,5+ in0,5+ 0 e 0 4e 4e in0,5 +3,0-0,5 0 = 3, Vtu: Integrlin rvo on 3,59. [in 0,5+ 4,0-0,5 ] [ in0,5+5 e 0 4e,0-0,5,0-0,5 [ in0,5 +7,0-0,5] [in 0,5 +8 ] [in 0, e 0 4e 0,0-0,5,0-0,5 ] [in 0,5+ 6 ] 0 e 0 ] [in0,5+ 0,0-0,5 ] e 0 ] Jo vertt tätä huiken trkn lkimen ntmn rvoon 3,59 650, huomt, että kukn ei oll. Jo inull ei ii ole ohjelmito, jok integroi, käytä Simponin kv. Tulukkolkentohjelmi on Simponin kv trvittvt funktiot. Jo inull on ohjelmoitv lkin, lkimei on luultvti myö numeerien integroinnin toiminto. Se käyttää jotin numeerien integroimien pprokimointikv. Eimerkki 53 Lke integrlin 3,0 in x dx likirvo Simponin äännön vull. Käytä kymmentä oväliä.,5 Tällä kert h =,5, f x=e in x, f x 0 = f 0,5=e in0,5, f x = f 0,500,5= ()

12 MAA e in0,65 3,0 in x dx,5 j niin edelleen, joten,0 0,5 3 0 [ in 0,5 4,0-0,5 in 0,5+ in 0,5+,0-0, ,0-0,5,0-0,5 in 0,5+3 in 0,5 + 4 in 0,5+5,0-0, in0,5+ 6,0-0, in 0,5+7,0-0,5 in 0,5 +8,0-0,5 in0,5+ 9,0-0,5,0-0,5 in 0, ], Erään lkimen numeerien integroinnin toiminto ntoi tuloken,77 3 pyöritettynä eitemään merkitevään numeroon. Vtu: Kyytyn integrlin rvo on noin,73. ()

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla . f( = ( = 0 = 0 ti = 0 = 0 ti = Anne: Tulo on noll, jo jokin tulon tekijöitä on noll b f( = ( = 6 f ( = 6-6 f '( 6( 6 Anne: Peruderivointi ottv moin ijoitu luekkeeeen c ( 6 d / ( 4 (8 (8 0 Anne: Käytä

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

Siirtojohdot. Siirtojohdot

Siirtojohdot. Siirtojohdot iirtoohot uku iirtoohot iirtoohtoteori kytkee toiiin kenttäteorin tutun piiriteorin. iirtoohtoteori trktelee vin kenttien etenemitä niien käyttäytymitä eriliten ineien rpinnoill. Mutkikkt kenttätehtävät

Lisätiedot

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947 Soili- j terveyminiteriön 25.11.2010 vhvitmi vtuunjkoperutei eiintyvien tukertoimien rvot vuodelle = 0,403097 = 0,036947 = 0,000569 TVR(j) = 0,008056 TVR(m) = 0,008051 TVR(y) = 0,008046 ELÄKETURVAKESKUS

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55. SÄHKÖTKNKK 9.5.998 Kimmo Silvonen Tentti: tehtävät,,5,7,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muitnut täyttää plutekyelyn Teeenytj huku mll välikokeet.. Lke virt. =4Ω, =2Ω,

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen DEE- Lineiet jäjetelmät Jtkuv-ikiet jäjetelmät muunnoton tkiu Lineiet jäjetelmät Rito Mikkonen Lplce-muunno Aikton DY Aikton tkiu Lplcemuunno Käänteimuunno Rtkiu -to 2 Lineiet jäjetelmät Rito Mikkonen

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007 Suunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAISE TYÖTTÖMYYSVAKUUTUSRAHASTO MAKSU KORJAUS VUODELTA Vuoden mkun korjuken yy O uoden mkun lkenn huomioitit etuupäiitä oli rioitu, kok mkun lkenthetkellä

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE

SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE HYKS-SAIRAANHOITOALUEEN LAUTAKUNTA 33 09.06.2015 SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE HYKS

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Analyyttiset funktiot ja integrointiteorian alkeita

Analyyttiset funktiot ja integrointiteorian alkeita Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016 OY/PJKOMP R6 016 Puolijohekoponenttien peruteet 51071A Rtkiut 6, Kevät 016 1. MOS-konenttori (Metl-Oxie-Seiconuctor) kootuu nienä ukieti etlliet hilt, okii-eriteetä j ouptut puolijohteet (Kuv 1). Ielieti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

2.4. Juurifunktio ja -yhtälöt

2.4. Juurifunktio ja -yhtälöt .. Juurifuktio j -yhtälöt.. Juurifuktio j -yhtälöt Juurifuktio lähtökoht void pitää potessifuktiot: f (x) x, missä o luoollie luku;,,,, j yhdistety potessifuktio määrittelee puolest yhtälö f (x) [g(x)],,,,,...

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008 uunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

****************************************************************** MÄÄRITELMÄ 4:

****************************************************************** MÄÄRITELMÄ 4: . Murtopotessi MÄÄRITELMÄ : O Olkoo prillie, positiivie kokoisluku. Ei egtiivise luvu :s juuri trkoitt sellist ei-egtiivist luku b, jok :s potessi o. Merkitää b. Kute eliöjuureki tpuksess, luku b täyttää

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE PROMOTION JYRSIMET VALURAUDOILLE NEW CAST IRON FACE MILLING CUTTERS FI-00 AHX0W AHX l Uui tehok -ärmäinen kääntöterä. AHX0W [UUSIA RATKAISUJA [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] JYRSINTÄÄN VALURAUTOJEN

Lisätiedot

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää

Lisätiedot

olevat ansiot vuonna v ja

olevat ansiot vuonna v ja uunnitteluoto.8.00 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1.

ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1. ELE- E89 väliko 8..5 rkiu. ll olvn kuvn muki vrko on onglmi. Tiln ov kuvillii ikä kiki vihohdoi ol kyä mnlinn vrkko. Vli opivi oimnpiiä, oill onglm dn poiu miä hdään minn nn rkiulli prulu. Vikk ohonkin

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

CA Clarity PPM. Projektinhallinnan käyttöopas. Julkaisu 13.3.00

CA Clarity PPM. Projektinhallinnan käyttöopas. Julkaisu 13.3.00 CA Clrity PPM Projektinhllinnn käyttöop Julkiu 13.3.00 Tämä dokumenttio, jok iältää ulutettuj ohjejärjetelmiä j ähköieti jettuj ineitoj (jäljempänä Dokumenttio ), on vin informointitrkoitukiin, j CA voi

Lisätiedot

LASKENTA laskentakaavat

LASKENTA laskentakaavat LASKENA lketkvt Kvkokoelm älle ivulle o koottu yleiiät j ueiite trvitut lketkvt. Näitä käytetää hihleveyde j keliväli lket. Liäki o koottu muutmi muuokvoj. Hhih mitoittmie käy helpoti Heomitoituohjelmll.

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01)

(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01) M M ( ) ( ) M, Tehtävä 24. Muodot äännöllitä luekett (0 ) 0 (0 ) 0 = (0 ) (0 0) = (0 ) (0 0) vtv äärellinen utomtti. Tehtävä 25. Muodot C-kielen liukuluvut tunnitv utomtti äännöllietä luekkeet (d +.d.d

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot