(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01)

Koko: px
Aloita esitys sivulta:

Download "(0 1) 0 (0 1) 01 = (0 1) (0 01) = (0 1 ) (0 01)"

Transkriptio

1 M M ( ) ( ) M, Tehtävä 24. Muodot äännöllitä luekett (0 ) 0 (0 ) 0 = (0 ) (0 0) = (0 ) (0 0) vtv äärellinen utomtti. Tehtävä 25. Muodot C-kielen liukuluvut tunnitv utomtti äännöllietä luekkeet (d +.d.d + )( ((e E)(+ )d + )) d + (e E)(+ )d + jo d = {0,, 2, 3, 4, 5, 6, 7, 8, 9} ovt 0-järjetelmän numeromerkit. Toilt ekvivlentti äännöllinen lueke voidn eittää monell tp, j outomtit jot lopullinen rtkiu dn voivt oll erilii. Eli rtkiuj on erilii (iihen kk kunne on determinioitu j minimoitu) Automtit äännöllinen lueke Lue 5. Jokinen äärelliellä utomtill tunnitettv kieli on äännöllinen. Toditu: Riittää elittää, miten nnetut äärellietä utomtit M voidn kirjoitt itä vtv äännöllinen lueke r M, jok trkoitt m kieltä, eli joll L(r M ) = L(M). Voimme olett, ettei utomti M ole -iirtymiä (kok voiimme enin poit ne, jo niitä iinä olii). 69

2 Voimme myö olett, että utomtin M tilt on numeroitu, 2, 3,..., n. (Ei ole väliä, miä järjetykeä.) Todituken ytimenä on muodot 3-ulotteinen tulukko, jonk indekeinä ovt nämä til(nnumero)t, j jonk pik R[i][j][k] on ellinen äännöllinen lueke, että yötemerkkijono c c 2 c 3...c m kuuluu luekkeen R[i][j][k] määrittelemään kieleen tämälleen illoin kun utomti M on jokin polku muoto c 2 c 3 c 4 c 5 cm c m j. (4) } {{ } mikään näitä välitiloit ei ole k+,k+2,k+3,...,n i c Toiin noen, R[i][j][k] ilmiee ne polut, joit pitkin lähtötilt i pääee kohdetiln j vierilemtt mtkn ikn miään kielletyitä välitiloit k +, k + 2, k + 3,...,n. Huom: S oll i > k (eli polku lähteä muuten kielletytä tilt) ti j > k (eli polku päättyä muuten kiellettyyn tiln). Nämä luekkeet R[i][j][k] voidn muodot induktioll indekin k uhteen. Tämä induktio lk rvoll k = 0. Siinä lähtötilt i on päätävä kohdetiln j vierilemtt mtkn ikn miään til. Vlitn ii { } c c: M iältää iirtymän i j kun i j R[i][j][0] = { } c (5) c: M iältää iirtymän i j {} kun i = j. Ylemmää hr i j ii luetelln yhtenä äännöllienä luekkeen kikki ne yötemerkit c, joill on iirtymä lähtötilt i kohdetiln j. Jo tällii c ei ole yhtään kpplett, niin tämä lueke on illoin ehän on opertion neutrlilkio. Alemm hr i = j otetn mukn myö kok illoinhn lähtötilt i päätään kohdetiln j myö pyymällä pikoilln. Oletetn itten induktiivie tpuke k > 0 että kikki luekkeet R[...][...][k ] on jo muodotettu, j muodotetn niiden vull hlutut luekkeet R[i][j][k] = vnh o {}}{ R[i][j][k ] uui o {}}{ R[i][k][k ] R[k][k][k ] R[k][j][k ]. (6) }{{}}{{}}{{} lkuo välio loppuo Millä eri tvoill pääemme lähtötilt i kohdetiln j kun mme nyt vierill myö ennen kielletyä välitil k? Voimme nytkin jättää vierilemtt välitil k. Siitä mme vnhn on. Uuden on poluill vierilln välitil k inkin kerrn. Aluki ellinen polku kulkee lähtötilt i enimmäieen vieriluun välitiln k kk. Siitä mme lkuon. 70

3 Kuv 4: Hyväkyvien tilojen yhditäminen yhdeki. Lopuki ellinen polku kulkee viimeietä vierilut välitiln k kohdetiln j. Siitä mme loppuon. Niiden väliä polku kulkee välitilt k poi j pl iihen tkiin. Siitä mme välion. Edetään näin kunne myö k = n on muodotettu. Olkoon itten utomtin M lkutiln numero j hyväkyvien tilojen numerot,, 3,..., q. Lopuki muodotmme hluttun vtukenmme luekkeen r M = R[][ ][n] R[][ 2 ][n] R[][ 3 ][n] R[][ q ][n] eli jokinen polku, jok kulkee lkutilt johonkin hyväkyvään tiln, j jok vierill miä välitil thn. Voimme lli utomti M myö -iirtymät: Yhtälöä (4) ei c c 2 c 3...c m enää oliikn yötemerkkijono, kok jotkut c i polun iirtymill oliivtkin nyt. Mutt ite menetelmä ei muutu. Näiden -iirtyminen myötä voimme myö olett, että utomti M on vin yki hyväkyvä til tätä ei lähde iirtymiä tämä on eri til kuin utomtin M lkutil. (Kuv 4.) Voimme kirjoitt tämän todituken kontruktion lgoritmin 7

4 or i, 2, 3,...,n 2 do or j, 2, 3,...,n 3 do yhtälö (5) 4 or k, 2, 3,...,n 5 do or i, 2, 3,...,n 6 do or j, 2, 3,...,n 7 do yhtälö (6) 8 return R[][][n] j d menetelmän, jok lkee nnetulle utomtille M itä vtvn luekkeen r M. Tämä lgoritmi on ite i uku kurin TRA II ihepiiriin kuuluvlle Wrhllin lgoritmille, jok lkee nnetun yöteverkon trnitiivien ulkeumn. On myö toinen tätä kevyempi j intuitiiviempi menetelmä muodot nnetut utomtit M itä vtv äännöllinen lueke r M. (Kirjlliuude on toki näiden khden liäki mont muutkin menetelmää!) Tämä toinen menetelmä etenee poitmll trpeettomiki käyneitä välitiloj utomtit M. Lueen 5 todituken menetelmähän eteni toiin päin: kvttmll llittujen välitilojen joukko, {}, {, 2}, {, 2, 3},... yki uui til k kerrlln. Menetelmän lähtökoht on m kuin yhtälöä (4): Seurtn utomti M polku en tilt i toieen tiln j, j kerätään polun iirtymilt niiden merkit c, c 2, c 3,...,c m iinä järjetykeä kuin ne kohdtn. Menetelmän edeteä tällinen kokoninen polku korvtn oikotiellä eli yhdellä iirtymällä uorn tilt i tiln j. Tälliell oikotiellä pitää yhä oll kikki ne mt merkkijonot c c 2 c 3...c m, jotk kerättäiiin, jo tilt i tiln j kuljettiiinkin ilmn oikoteitä, eli jo kuljettiiinkin lkuperäiiä iirtymiä pitkin. Niinpä oikotiell i merkkijonot. r j onkin kokoninen äännöllinen lueke r jok kuv nämä Menetelmää käytetään ii n. luekeutomttej: Ne ovt utomttej, joiden iirtymillä on kokoninen yötekkoton äännöllinen lueke pelkän yötemerkin ijt. Luekeutomtin intuitio on, että kun til i otetn iirtymä i r j, niin. enin luetn jäljellä olevn yötteen lut jokin luekkeen r mukinen merkkijono tää yhdeä kele 2. itten jtketn tilt j illä jäljellä olevn yötteen loppuoll jot ei vielä luettu. Tvlliet utomtit voidn tulkit elliiki luekeutomteiki, joiden luekkeet ovt mhdolliimmn ykinkertii: pelkkiä merkkejä. 72

5 p i j = i p q j q Kuv 5: Kki rinnkkit iirtymää yhdeki. Ohitmme kuitenkin tällä kurill niiden ormlin määritelmän, kok käytämme niitä vin tää menetelmää. Tällii oikoteitä voi vetää khdell tvll:. Jo utomti on kki eri rinnkkit iirtymää i p q j j i j, niin ne voi korvt yhdellä yhteiellä iirtymällä i p q j kuten kuv 5. Selväti tämä äilyttää moin ne merkkijonot, jotk kerättäiiin kulkemll näitä iirtymiä pitkin olmut i olmuun j: Uui lueke p q kuv tämälleen ne merkkijonot, jotk kuv inkin toinen vnhoit luekkeit p ti q. 2. Käytetään enin tp kunne rinnkkii iirtymiä ei enää ole. Sitten trktelln mielivltit välitil k,. p i Välitiln k tulee iirtymiä i k muult joi ii i k. Ti jo ei tule, niin välitil k voidn poit trpeettomn, kok iihen ei päätä lähtötilt. Välitilt k kulkee ilmukkiirtymä k q k tkiin iteenä. Ti jo ei kulje, niin itä vtv o q voidn jättää poi lopputuloket (7). Välitilt k lähtee iirtymiä k r j j muulle joi ii j k. Ti jo ei lähde, niin välitil k voidn poit trpeettomn, kok iitä ei pääe lopputiln. Silloin tämä nimenominen polku muult muulle tämän välitiln k kutt voidn korvt yhdellä oikotiellä i p iq r j j (7) kuten kuv 6. Smll perutelull kuin yhtälön (6) uude o voidn nytkin nähdä, että merkkijonot äilyvät moin: p i on lku-, q on väli- j r j on loppuo. S oll myö i = j k: illoin iirtymä (7) on ilmukk i p iq r i i. Kun on käyty läpi kikki tälläiet polut muult muulle tämän välitiln k kutt (eli kikki olmuprit i, j) j korvttu ne oikoteillä (7), niin tämä välitil k 73

6 q j i p i k r j.. p i q r j Kuv 6: Oikotie muult muulle. ekä kikki iihen liittyvät iirtymät voidn poit, kok niiden merkkijonot on eitetty näillä oikoteillä. Kun on käytetty tpoj j 2 niin mont kert kuin mhdollit, niin: Automti on jäljellä vin en lkutil j hyväkyvä til. Tilt on ilmukk q tkiin iteenä. Ti jo ei ole, niin itä vtv o q voidn jättää poi lopputuloket (8). Tilt on iirtymä r tiln. Ti jo ei ole, niin tilt ei pääe tiln, j illoin utomtin hyväkymä kieli onkin tyhjä kieli. Tilt ei lähde iirtymiä, kuten näkyy kuvt 4. Tämän kuv 7 olevn ykinkertituneen utomtin hyväkymä kieli on jok dn ykinkertitmll yhtälöä (7). q r (8) Eitetään tämä menetelmä vielä lgoritmin: 74

7 q r r q Kuv 7: Lueke kutituneet utomtit. liää kuvn 4 mukinen uui hyväkyvä til ellei ellit jo ole p q 2 while on rinnkkiet iirtymät i j j i j 3 do korv ne yhdellä yhteiellä iirtymällä i p q j 4 while on muitkin tiloj kuin lkutil j tämä 5 do k jokin (mikä thn) ellinen muu til p i 6 or ech iirtymä i k jo i k 7 do or ech iirtymä k r j j jo j k 8 do i on iirtymä k q k 9 then t p i q r j 0 ele t p i r j u i on iirtymä i j 2 then päivitä e muotoon i u t j 3 ele liää ellinen muoto i t j 4 poit til k j kikki nämä iihen liittyvät iirtymät 5 i on iirtymä r 6 then i on iirtymä q 7 then return q r 8 ele return r 9 ele return Tämä menetelmä on uein kevyempi j intuitiiviempi kuin lueen 5 todituken menetelmä, kok: 75

8 Automtit ovt uein modulrii eli niiä on tilrykelmiä, joiden iällä kulkee pljon iirtymiä, mutt joiden välillä kulkee vin vähän iirtymiä. Eimerkiki liukulukuvkion lukev utomti on modulit. lue kokonio 2. lue deimlio joit kumpikin on om ilmukkn, joi luetn numeromerkkejä, mutt iirtymä edellietä jälkimmäieen on vin deimlipiteellä.. Tällä menetelmällä voimme käydä tilt läpi moduli kerrlln mehän mme vlit tiln k kuten hlumme. Silloin tulokeen muodotuu näitä modulej vtvi liluekkeit, jolloin e heijt utomtin intuitiot. Todituken menetelmä ei (inkn uorn) hyödynnä tätä modulriuutt, vn tuott kikki yhteydet jokiet tilt jokieen tiln. Otetn eimerkki tätä menetelmätä: (i) lkuperäinen utomtti: (ii) liätään : (iii) yhditetään rinnkkiet: (iv) poitetn til: (0 ) (v) poitetn til: (vi) poitetn til: (0 )( (0 )) (0 )( (0 )) 0 0 Nyt voidn luke lopputulo (0 ) (0 )( (0 )) jot voidn vielä hiemn ieventää muotoon (0 ) (0 )( 0 ) jot voidn luke vtu: lkuperäinen utomtti hyväkyy ne inäärikkoton merkkijonot, joiden toieki ti kolmnneki viimeinen merkki on. 76

9 Voimme j knnttkin ievennellä luekkeit jo menetelmän ikn. Tehtävä 26. Lue äännöllinen lueke eurvt utomtit:, Säännölliten kielten rjoitukit Kyymy: Kuink voidn hvit, ettei ongelm rtkekn äärelliillä utomteill? Eli ettei vtv ormlikieli olekn äännöllinen? Eimerkki 27. Onko tpinoiten ulkujonojen muodotm kieli L mtch = {( k ) k : k 0} äännöllinen? Yritetään tehdä ille utomtti: ( ( ( ( q 0 q q n q n ) ) ) ) q 2n q n+2 q n+ q 2n ) ( ( ( ( q 0 q q n q n ) ) ) ) Mutt entäpä jo iäkkäiiä ulkuprej onkin n + kpl.? 77

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 Kevät 2004 Tietojenkäittelyteorin peruteet Hrjoitu 7 Demontrtiotehtävien rtkiut 4. Tehtävä: Ooit, että yhteydettömien kielten luokk on uljettu yhdite-, ktentioj ulkeumopertioiden uhteen, o. jo

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Siirtojohdot. Siirtojohdot

Siirtojohdot. Siirtojohdot iirtoohot uku iirtoohot iirtoohtoteori kytkee toiiin kenttäteorin tutun piiriteorin. iirtoohtoteori trktelee vin kenttien etenemitä niien käyttäytymitä eriliten ineien rpinnoill. Mutkikkt kenttätehtävät

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä

RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää

Lisätiedot

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla

1.a) f(x) = 2x(x 2 3) = 0 2x = 0 tai x 2 3 = 0 x = 0 tai x 2 = 3. Anne: Tulo on nolla, jos jokin tulon tekijöistä on nolla . f( = ( = 0 = 0 ti = 0 = 0 ti = Anne: Tulo on noll, jo jokin tulon tekijöitä on noll b f( = ( = 6 f ( = 6-6 f '( 6( 6 Anne: Peruderivointi ottv moin ijoitu luekkeeeen c ( 6 d / ( 4 (8 (8 0 Anne: Käytä

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen

järjestelmät Jatkuva-aikaiset järjestelmät muunnostason ratkaisu Lineaariset järjestelmät Risto Mikkonen DEE- Lineiet jäjetelmät Jtkuv-ikiet jäjetelmät muunnoton tkiu Lineiet jäjetelmät Rito Mikkonen Lplce-muunno Aikton DY Aikton tkiu Lplcemuunno Käänteimuunno Rtkiu -to 2 Lineiet jäjetelmät Rito Mikkonen

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE

SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE HYKS-SAIRAANHOITOALUEEN LAUTAKUNTA 33 09.06.2015 SYDÄNKATETRISAATIOLABORATORION RÖNTGENLAITTEISTON JA SYDÄNKATETRISAATION MITTAUSLAITTEISTON HANKINTA MEILAHDEN TORNISAIRAALAN SYDÄNTUTKIMUSOSASTOLLE HYKS

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

6 Numeerisesta integroinnista

6 Numeerisesta integroinnista MAA 6 Numeeriet integroinnit Numeerien integroimien (numericl integrtion) intuitiivien kulmkivenä on pint-l. Kikki menetelmät lähtevät tätä jtuket, jok on määrätyn integrlin enimmäinen pprokimtio. On kuitenkin

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947

Sosiaali- ja terveysministeriön vahvistamissa vastuunjakoperusteissa esiintyvien tasauskertoimien arvot vuodelle 2011 = 0, = 0,036947 Soili- j terveyminiteriön 25.11.2010 vhvitmi vtuunjkoperutei eiintyvien tukertoimien rvot vuodelle = 0,403097 = 0,036947 = 0,000569 TVR(j) = 0,008056 TVR(m) = 0,008051 TVR(y) = 0,008046 ELÄKETURVAKESKUS

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

LASKENTA laskentakaavat

LASKENTA laskentakaavat LASKENA lketkvt Kvkokoelm älle ivulle o koottu yleiiät j ueiite trvitut lketkvt. Näitä käytetää hihleveyde j keliväli lket. Liäki o koottu muutmi muuokvoj. Hhih mitoittmie käy helpoti Heomitoituohjelmll.

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista TAMPEREEN YLIOPISTO Vlinnisten opintojen syventäviin opintoihin kuuluv tutkielm Luri Kumpulinen Büchin utomteist Luonnontieteiden tiedekunt Tietojenkäsittelytieteiden tutkinto-ohjelm Huhtikuu 2017 Tmpereen

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAINEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSU VUODELTA 2008 uunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen)

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen) 58226 Lskennn mllit Erilliskoe 4.2.2, rtkisuj (Jyrki Kivinen). [6+6+3+3 pistettä] () Kieli A koostuu niistä kkoston {, } merkkijonoist, joiss esiintyy osjono. Esitä kielelle A sekä deterministinen äärellinen

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva. ELECE849 k 6. Lk 6 Hz:n vrko olvn 5 :n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. Vrtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän ohdon ltoimpdni. Lk

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007

TYÖNTEKIJÄN ELÄKELAIN (TYEL) 182 :N MUKAISEN TYÖTTÖMYYSVAKUUTUSRAHASTON MAKSUN KORJAUS VUODELTA 2007 Suunnitteluoto.8.009 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAISE TYÖTTÖMYYSVAKUUTUSRAHASTO MAKSU KORJAUS VUODELTA Vuoden mkun korjuken yy O uoden mkun lkenn huomioitit etuupäiitä oli rioitu, kok mkun lkenthetkellä

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

Valmennuksen ja arvioinnin tukijärjestemä (VAT)

Valmennuksen ja arvioinnin tukijärjestemä (VAT) Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen

Lisätiedot

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.

2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva. ELECE849 iirtoohdot, lkuhroituki. Lk 6 Hz:n vrko olvn 5 k:n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. rtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän

Lisätiedot

CA Clarity PPM. Projektinhallinnan käyttöopas. Julkaisu 13.3.00

CA Clarity PPM. Projektinhallinnan käyttöopas. Julkaisu 13.3.00 CA Clrity PPM Projektinhllinnn käyttöop Julkiu 13.3.00 Tämä dokumenttio, jok iältää ulutettuj ohjejärjetelmiä j ähköieti jettuj ineitoj (jäljempänä Dokumenttio ), on vin informointitrkoitukiin, j CA voi

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1.

ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1. ELE- E89 väliko 8..5 rkiu. ll olvn kuvn muki vrko on onglmi. Tiln ov kuvillii ikä kiki vihohdoi ol kyä mnlinn vrkko. Vli opivi oimnpiiä, oill onglm dn poiu miä hdään minn nn rkiulli prulu. Vikk ohonkin

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55. SÄHKÖTKNKK 9.5.998 Kimmo Silvonen Tentti: tehtävät,,5,7,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muitnut täyttää plutekyelyn Teeenytj huku mll välikokeet.. Lke virt. =4Ω, =2Ω,

Lisätiedot

olevat ansiot vuonna v ja

olevat ansiot vuonna v ja uunnitteluoto.8.00 / TYÖTEKIJÄ ELÄKELAI (TYEL) 8 : MUKAIE TYÖTTÖMYYVAKUUTURAHATO MAKU VUODELTA Yleitä TyEL 8 :n mukn Työttömyykuuturhton on uoritett Eläketurkekukelle mku jok hitetn oili- j tereyminiteriön

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Aiheet. ICS-C2000 Tietojenkäsittelyteoria M := Äärelliset automaatit vs. säännölliset lausekkeet. Äärelliset automaatit

Aiheet. ICS-C2000 Tietojenkäsittelyteoria M := Äärelliset automaatit vs. säännölliset lausekkeet. Äärelliset automaatit Aiheet ICS-C2000 Tietojenkäsittelyteori Luento 4: Säännölliset lusekkeet Alto-yliopisto Perustieteiden korkekoulu Tietotekniikn litos Kevät 2016 Säännöllisten lusekkeiden syntksi Säännöllisten lusekkeiden

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

// Tulostetaan liukulukutyyppinen muuttuja riviä vaihtamatta // yhden desimaalin tarkkuudella. System.out.printf("%.

// Tulostetaan liukulukutyyppinen muuttuja riviä vaihtamatta // yhden desimaalin tarkkuudella. System.out.printf(%. Nämä tehtävät on trkoitettu inostn opiskelijoille, jotk pystyvät svuttmn 40 % rjn (21 pistettä) tekemällä 1 8 kpl ll olevist lisätehtävistä. Ole huolellinen j tee kikki pyydetty. Puutteellisi rtkisuj ei

Lisätiedot

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06 NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016 OY/PJKOMP R6 016 Puolijohekoponenttien peruteet 51071A Rtkiut 6, Kevät 016 1. MOS-konenttori (Metl-Oxie-Seiconuctor) kootuu nienä ukieti etlliet hilt, okii-eriteetä j ouptut puolijohteet (Kuv 1). Ielieti

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007 Automttinn puntunnitu Tmu Hirimki Informtiotkniikn lbortorio 30.1.2007 1 Mit puntunnitu on? Puntunnitin on jrjtlm, jok pyrkii tulkitmn putt jollin tvll. Kyttökotit: kyttöliittymn oju,

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Sosiaali- ja terveysministeriö on vahvistanut vastuunjakoperusteet 27.11.2006.

Sosiaali- ja terveysministeriö on vahvistanut vastuunjakoperusteet 27.11.2006. Eläketurkeku (83) Suunnittelu- j lkentoto 9..2006 VASTUUNJAKOPERUSTEET Soili- j tereminiteriö on hitnut tuunjkoperuteet 27..2006. Siällluettelo VASTUUNJAKOPERUSTEET...4 PERUSTEIDEN SOVELTAMINEN...4 Soeltmil...4

Lisätiedot

Jotta rakentaminen ja sen ylläpitäminen onnistuu Junkohalli Oy:n voimin seuraavat 22 vuotta, esitämme että

Jotta rakentaminen ja sen ylläpitäminen onnistuu Junkohalli Oy:n voimin seuraavat 22 vuotta, esitämme että 1 Junkohlli Oy ESITYS KEI AREENA Titoktu 6 94600 Kmi ri.vinionp@junkohlli.fi 03.06.2013 p. 040 757 7124 Kmin Kupunginhllitu Kupunginjohtj Tro Niinn ESITYS KEI AREENA Junkohlli Oy:llä on hlu j vlmiu rknt

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen.

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen. 2.8 Säännöllisten kielten rjoituksist Krdinliteettisyistä on oltv olemss (pljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituv määrä, säännöllisiä lusekkeit vin numeroituvsti. Voidnko löytää konkreettinen,

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

2.5 Säännöllisten kielten rajoituksista

2.5 Säännöllisten kielten rajoituksista 68 2.5 Säännöllisten kielten rjoituksist Minkä thns kkoston formlej kieliä (= päätösongelmi, tunnistusongelmi) on ylinumeroituv määrä kun ts säännöllisiä lusekkeit (= merkkijonoj) on numeroituv määrä Näin

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys

Lisätiedot

Laskennan perusmallit 2013: Kertausta

Laskennan perusmallit 2013: Kertausta Lskennn perusmllit 13: Kertust Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi 8. helmikuut 13 Lähtökoht j trkstelun kohde Lskentongelmt erityisesti

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot