Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.
|
|
- Laura Aro
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn välissä vrkko, oss on usit rinnkkisi ohto. Käyrä kuv luidn välistä siirtoyhtyttä. Kuormituslull on muutmi gnrttorit. Toimintpist häll vrkoll on piirrtty kuvn X:llä. ) Mitn toimintpist siirtyy, kun kuormituslull yksi gnrttori irto vrkost korvv tho tul tuotntolun pyörivistä rsrvistä? Olttn, ttä PV-käyrä pysyy muuttumttomn. Piirrä oku mhdollinn uusi toimintpist PV-käyräll. V (kv) X P(MW) b) Tutkitn dlln PV-käyrää. Mitn PV-käyrä muuttuu, kun yksi luidn välisistä ohdoist irto? Piirrä uusi käyrä. Miksi käyrä muuttuu rilisksi? c) Mitä tphtuu PV-käyräll, kun kikki ohdot tuotnto- kuormituslun välillä srkompnsoidn? Piirrä uusi PV-käyrä. Miksi käyrä muuttuu? d) Mitä tphtuu tuotntolutt kuvvn kvivlnttignrttorin kuormituslutt kuvvn kvivlnttignrttorin välisll thokulmll, kun ohto irto? Miksi näin käy? ) Mitn PV-käyrä muuttuu, os kuormpuolll kompnsoidn kikki loistho? f) Mitä PV-käyrä krtoo siirtokpsittist? Vstukst. V (kv) ) uusi toimintpist z c) b) P(MW)
2 S-8. Sähkönsiirtoärstlmät Tntti 8..7 ) Kun kuorm-lult irto yksi gnrttori, korvv tho tul tuotntolult. Toimintpist siirtyy oikll PV-käyrällä s on mrkitty kuvn ympyrällä. b) PV-käyrä lyhn, kosk vrkon rktnssi ksv yhdn ohdon irrottu. c) PV-käyrä ksv käännpist siirtyy suurmmn thon kohdll. d) Kulm ksv, kun sm tho kulk hikntynn vrkon (suurmpi rktnssi) kutt. ) Muutos on smntpinn kuin kohdss c, li käyrä vnyy pidmmäksi. f) Käyrä krtoo, plonko voidn siirtää pätötho ilmn, ttä ännit lsk liik ohdon loppupäässä.. Tutkitn km:n pituist 4 kv ohto. Johto olttn häviöttömäksi sitä voidn lsk käyttämällä nimllis-π-siiskytkntää. Johdon induktnssi pituutt kohti L on,88 mh/km kpsitnssi pituutt kohti C on,4nf/km. Johdon lkupää on kiinni äykässä vrkoss sn ännit on 4 kv. Lsk ohdon loppupään ännit surviss tpuksiss. )Johdon loppupäässä on kuorm, ok voidn mllint tähtn kytktyillä rsistnssill, oidn rvot ovt RΩ / vih. b) Johdon loppupäähän kytktään )-kohdn kuormn lisäksi tähtikytkntäist kpsitnssipristot. Kpsitnssi vihtt kohti on,8 µf. c) Johto on tyhäkäynnissä li kuorm on irronnut ikä ohdon loppupää ol kytktty mihinkään. d) Tyhäkäyvän ohdon loppupäähän on kytktty ännittn liillisn nousn stämisksi tähtn kytktyt rktorit. Rktorin induktnssi L 5,6 H vihtt kohti. Rtkisu: Lsktn loppupään ännit ännittn oll. Voi tämän lsk virrn vull myös, mutt silloin pitää ott huomioon rinnn kytkntä loppupäässä. X Y/ -X Y Z /(Y)
3 S-8. Sähkönsiirtoärstlmät Tntti 8..7 Z Z Y ( Z ) Y ( YZ ) Z () Z Z Z X XYZ X X ( YZ ) Y ( Z ) Y Johdon rktnssi X on π 5,88 Ω 8,9Ω 9 Johdon suskptnssi Y on π 5,4 S, 687mS Loppupään ännit on Z Z X XYZ Z Z 65,8Ω,967 Z ) Johdon loppupäässä on rsistnssi Ω, otn impdnssi Z on Ω. Tämä rsistnssi on Y/:n rinnll, i srss. Z Z 65,8Ω,967 Z ) 4Ω 4 8,66Ω 65,8Ω 45,,5 Loppupään ännit on 45 kv b) 4Ω 4Ω 65,8Ω,967 ),964 44,6kV,5 Johdon päähän kytktään kpsitnssit, oidn impdnssi on Ω 768Ω. Yhtälön () Impdnssi Z on nyt rsistnssin 6 π 5,8 kpsitnssin rinnnkytkntä li Z Ω Ω 98,7 6,46 (97,47,6) Ω ,54 Johdon pään ännit on nyt: 98,7 6,46 97,46 6,46 98,7 6,46 65,8Ω,967 98,7 6,46 ) 75,84,4 97,46 6,46 95,54 8,4,49 4,6 4kV 4,6 Loppupään ännit on 4 kv. c) Johto on tyhäkäynnissä. Nyt i trvits käyttää yhtälöä (), vn käyttään suorn ännittn ko π-siiskytknnästä.
4 S-8. Sähkönsiirtoärstlmät Tntti 8..7 Y X Y,969 XY,5 44kV XY XY 8,9Ω,687mS Johdon loppupään ännit on 44 kv. d) Johdon loppupäähän kytktään rktorit, oidn impdnssi vihtt kohti on Z π 5 5,6Ω 76Ω Lsktn loppupään ännit yhtälön () vull. Z Z X XYZ ) 76Ω ,8 7, 55, ,8 5 54,8 Johdon loppupään ännit on 4 kv. 76Ω 65,8Ω,967,5 4kV 76Ω 4
5 S-8. Sähkönsiirtoärstlmät Tntti Tämä thtävä käsittl vrkon mdoittmist msulku. ) Krro vrkon mdoittmisst. Käsittl inkin survi sioit: Miksi Suomss 4, kv vrkot on osittin ti kokonn mdoitttu? Mitä tu mdoittmisst sdn? Mitn muuntin tähtipistn mdoittminn ti mdoittmtt ättäminn vikutt msulkuvirrn suuruutn? Arvostlu: Suomn tilnn krrottu (,5 p), dut: isompi virt, hlpompi suous (,5 p)., nmmän tähtipistitä miss, isompi virt (,5 p.), yht.,5 p. b) Sähkösmll tul msulku. Vrkon Thvninin impdnssit ovt survt: Z,5pu, Z,5pu Z,4pu. Prusthon on MVA prusännittnä on 4 kv. Vik sttuu vihss A vikimpdnssi on noll. Lsk vikvirt suhtllisrvoin prusrvoin. Vikpikn ännit nnn vik oli,95 pu. Arvostlu. Kikki oikin:,5 p. Muutn oikin, mutt os puuttuu :ll krtominn ti nliöuuri kolmll kminn fys. rvoill lskttss, niin vähnntään,5 p. c) Sähkösmll tul -vihinn moikosulku. Vrkon Thvninin impdnssit ovt survt: Z,5pu, Z,5pu Z,4pu. Prusthon on MVA prusännittnä on 4 kv. Vik sttuu vihiss B C. Vikimpdnssi on noll. Lsk komponnttivrkkon virrt suhtllisrvoin prusrvoin. Vikpikn ännit nnn vik oli,95 pu. d) Piirrä ll olvin muuntin nollvrkon kytknnät. ) Vrtil Yy- Dy-kytkntäistn muuntin nollvrkko. D f, rvostltu yhdssä. Kikki oikin:,5 p. Rtkisu: ) Trvidn vihidn ännittn nousu msuluss pinn, kun vrkko mdoittn. Mdoitus lisää msulkuvirt, mikä utt msulkusuouksn totuttmist. Mitä nmmän muuntin tähtipistitä on mdoitttu, sitä suurmmt msulkuvirrt. b) Prusimpdnssi on 76,4Ω prusvirt on 74,64A. Msuluss komponnttivrkkon impdnssit ovt srss. Komponnttivrkoiss kulkv virt on u,95 I I I,76 pu 49A z z z,4,5,5 Vikvirt on kolminkrtinn komponnttivrkkon virtn vrrttun, otn vikvirt on I A I,76 pu 5,8pu 758A 5
6 S-8. Sähkönsiirtoärstlmät Tntti 8..7 c) Prusimpdnssi on 76,4Ω prusvirt on 74,64A. -vihisss moikosuluss myötävrkon impdnssi on srss vst- nollvrkon impdnssin rinnnkytknnän knss. Komponnttivrkoiss kulkvt virrt ovt u F,95 I,96 pu 5,44kA Z Z,4,5 Z,5 Z Z,4,5 I I Z I Z Z Z I Z Z,96,96,5,4,5,4,4,5,5pu,4 pu,48ka,96ka d) ) Muuntin nollvrkot ovt smnlist, kun siiskytkntää ktsotn nsiö- toisiopuoln liittimistä. 4. Krro kulmstbiiliudst. ) Mitä on kulmstbiilius? Mukn oltv gnrttorin kyky pysyä thdiss. b) Mitkä sikt vikuttvt ohdon vrkon kulmstbiiliutn? Toimintpist (kuormn suuruuus), vrkon rktnssi, ännittnsäätö, vikon lukisuik, c) Mitn kulmstbiiliutt voidn prnt? (lisää ohto, srkompnsointi, nop ännittnsäätö, lisästbilointi, FACTS, nop vin lukisu) d) Mitn gnrttorin ännittnsäätö vikutt kulmstbiiliutn? (nop ännittnsäätö prnt trnsinttistbiiliutt, mutt hikntää vimnnust. Lisästbilointi ännittnsäädössä prnt vimnnust.) ) Mikä on pint-lkritri? Kuv slitys sist. Vin ksto poistuminn, sähköisn mknisn thon rotust intgroidn vrtilllnn pint-lo) f) Mitn kulmstbiiliutt voidn prnt? Arvostlu: kukin koht, p. 5. Trkstlln siirtorittiä, ok koostuu rinnkkisist ohdoist, oidn rktnssi on Ω. Millinn ännit knntt vlit? Montko ohto trvitn rinnkkin, os ritin pitää siirtää 6 MW tho vrkko käyttään (n-) prittn mukn. Olttn, ttä suurin sllittu kulmro ohdon päidn välillä on kikiss tpuksiss. Rtkisu: Jos ännit on 4 kv, yhdllä ohdoll voidn siirtää (4kV ) P sin 8MW Ω 6
7 S-8. Sähkönsiirtoärstlmät Tntti MW:n siirtämisn trvitn 6/8 7,5 ohto. Siis ohto on rknnttv khdksn, os mikään ohto i koskn luk. Kosk in on vruduttv ohdon lukmisn, trvitn 9 rinnkkist ohto. Jos vlittisiin siirtoännittksi kv, trvittisiin rinnkkisi ohto: 6MW Ω n 99,7,7 ohto. (kv ) sin 6. Trkstlln päsymmtrisiä ännittitä, oidn rvot ovt survt. A,9, B,5 8, C,6. Piirrä ännittidn osoittimt lsk myötä- vst nollkomponntit piirrä n. Vstukst:,8 6,,85 6,, 77. Jos ossi sioitt kvn rvot, lsk oikin piirtää kuvn, sin 5 p. Jos ossi vilä piirtää ok komponnttiännittll kolm osoitint, si 6 p. Rtkisu: V c V 8 vihännittt V b Lsktn symmtrist komponntit: 7
8 S-8. Sähkönsiirtoärstlmät Tntti Piirrtään symmtrist komponntit. 77 5, ,9,849,76,7,9,,87,,4,46,86,48,7,9,4,59,8,958,9,564,5,,7,9,6,5,9,6,5,9,6,5,9,6,5,9 C B A 5,9 b c 6,4,b,c b c vstkomponntit nollkomponntit myötäkomponntit -77
ELEC-E8419 tentti joulukuu 2016
ELECE849 tntti oulukuu 6 rtkisut. Erilisiss päsymmtrisissä vioiss komponnttivrkot kytktään yhtn ri tvoin. Ehot komponnttivrkkon kytknnöill päsymmtrisissä vioiss ovt survt: vihinn msulku: vihinn moikosulku:
Lisätiedot2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.
ELECE849 k 6. Lk 6 Hz:n vrko olvn 5 :n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. Vrtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän ohdon ltoimpdni. Lk
LisätiedotELEC-E8419 tentti ratkaisut. johto. z 0 = j0,5
ELECE849 tntti 5.4.6 rtkiut. Trktlln kuvn ukit vrkko. z z, z, z Y_G, B C G z z z, ohto z z, z,5 ohto z z, z,5 E z N, z z z, F z z, z, G z Y_G, Koh F thtuu vihinn ulku vih. Vikini on noll, vrkon ännit vikkoh
Lisätiedot2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.
ELECE849 iirtoohdot, lkuhroituki. Lk 6 Hz:n vrko olvn 5 k:n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. rtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän
LisätiedotS Laskennallinen systeemibiologia
S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.
LisätiedotOUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050
OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin
Lisätiedot( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,
Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d
Lisätiedot10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
LisätiedotKertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
LisätiedotELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1.
ELE- E89 väliko 8..5 rkiu. ll olvn kuvn muki vrko on onglmi. Tiln ov kuvillii ikä kiki vihohdoi ol kyä mnlinn vrkko. Vli opivi oimnpiiä, oill onglm dn poiu miä hdään minn nn rkiulli prulu. Vikk ohonkin
LisätiedotSyksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
Lisätiedot= = 1600W = Z = 1600W. ELEC-E8419 Välikoe ratkaisut
ELEE849 Väliko..5 rtkiut. Trktlln kuvn mukit vrkko, ok olttn häviöttömäki. Kikki ohdot ovt Finchohto, oidn rktni pituutt kohti on,33 Ohm/ ukptni pituutt kohti 3,58 ms/. Johtopituudt on nnttu kuv. Suhtllirvon
LisätiedotHakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto
kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto
LisätiedotTee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!
MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske
LisätiedotTehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi
Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,
LisätiedotNäytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.
Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä
LisätiedotRiemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
LisätiedotTasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.
KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt
LisätiedotOUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT
OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden
LisätiedotKnauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus.
Knuf Sfor Sätilysuojlvy 03/2009 Knuf Sfor Sätilysuojlvy 0% lyijyä. 100% turvllisuus. Knuf Sfor Knuf Sfor Suoj röntgnsätiltä Lyijytön Suoj plolt Hlppo snt Hyvä äännristävyys Ympäristöystävällinn hävittää
LisätiedotPreliminäärikoe Pitkä Matematiikka 5.2.2013
Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)
LisätiedotSATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen
LisätiedotOSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
LisätiedotIntegraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
Lisätiedota) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että
TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij
Lisätiedotx k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b
5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),
Lisätiedot4 Pinta-alasovelluksia
Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion
LisätiedotSarjaratkaisun etsiminen Maplella
Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.
LisätiedotRunkovesijohtoputket
Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist
LisätiedotSäännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki
Säännöllisstä luskkst dtrministisksi tilkonksi: simrkki Hikki Turiinn Yksinkrtistn säännöllistn luskkidn muuttminn dtrministisiksi tilkoniksi onnistuu usin plkästään lusktt tutkimll. Jos luskkn rknn on
LisätiedotKäydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
LisätiedotLaskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja
582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko
Lisätiedot11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
LisätiedotSATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi
ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys
Lisätiedot1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
Lisätiedotθ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö
22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2
LisätiedotRistitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
LisätiedotSähkömagneettinen induktio
ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä
LisätiedotSuorakaidekanavat. lindab suorakaidekanavat
Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist
LisätiedotReaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,
LisätiedotT Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.
T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
Lisätiedot2.4 Pienimmän neliösumman menetelmä
2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn
LisätiedotLINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat
(0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset
LisätiedotAsentajan viiteopas. Jaetut ilmastointilaitteet RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B
Asntjn viitops Jtut ilmstointilittt RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B RZQSG100L9V1B RZQSG125L9V1B RZQSG140L9V1B RZQSG100L8Y1B RZQSG125L8Y1B
Lisätiedot6 Kertausosa. 6 Kertausosa
Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)
Lisätiedot4 DETERMINANTTI JA KÄÄNTEISMATRIISI
4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.
Lisätiedotr u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a
LisätiedotII.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
LisätiedotL 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )
76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden
Lisätiedot9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET
DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,
LisätiedotJäykän kappaleen tasokinetiikka harjoitustehtäviä
ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti
MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.
LisätiedotHAVAINNOINTI JA TUTKIMINEN
ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä
LisätiedotMATEMATIIKAN HARJOITTELUMATERIAALI
SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.
LisätiedotTYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.
TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk
LisätiedotMatematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista
Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,
LisätiedotPainopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1
Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon
LisätiedotAsennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)
Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.
LisätiedotPuolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla
OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn
LisätiedotKertaustehtävien ratkaisut
Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,
Lisätiedot6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
LisätiedotAutomaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007
Automttinn puntunnitu Tmu Hirimki Informtiotkniikn lbortorio 30.1.2007 1 Mit puntunnitu on? Puntunnitin on jrjtlm, jok pyrkii tulkitmn putt jollin tvll. Kyttökotit: kyttöliittymn oju,
LisätiedotMS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,
Lisätiedot3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko
3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu
LisätiedotTuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama
Tuen rkenteiden toteuttminen Pispln kouluss Rehtorin näkökulm ren työhön Rehtori Stu Sepänniitty- Vlkm Pispln koulu Khdess toimipisteessä Pispl vl 1.-6. oppilit 232 Hyhky vl 1.-6. oppilit 164 yht. 396
LisätiedotRiemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
Lisätiedot12. Liikenteenhallinta verkkotasolla
2. Liikntnhllint vrkkotsoll 2. Liikntnhllint vrkkotsoll Vrkon topologi Liiknnmtriisi Liikntnhllint vrkkotsoll Kuormntsus lunto2.ppt S-38. Liiknntorin prustt Kvät 200 2 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint
Lisätiedot2.2 Monotoniset jonot
Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (
LisätiedotPakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
LisätiedotKytkentäopas. Windows-ohjeet paikallisesti liitettyä tulostinta varten. Mitä paikallinen tulostaminen on? Ohjelmiston asentaminen CD-levyltä
Sivu 1/6 Kytkntäopas Winows-ohjt paikallissti liitttyä tulostinta vartn Huomautus: Kun asnnat paikallissti liitttyä tulostinta ikä Ohjlmisto ja käyttöoppaat -CD-lvy i tu käyttöjärjstlmää, käytä ohjattua
LisätiedotVuokrahuoneistojen välitystä tukeva tietojärjestelmä.
Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.
Lisätiedot763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
LisätiedotA-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.
MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin
Lisätiedot2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
LisätiedotNeliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
Lisätiedotsin θ θ θ r 2 sin 2 θ φ 2 = 0.
Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin
LisätiedotMITEN MÄÄRITÄN ASYMPTOOTIT?
MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti
LisätiedotSATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta!
SAT5 Piirinlyysi II syksy 6 / 8 skuhrjoius / Trnsini-ilmiö (rkisu muodosn diff. yhälö, I s käyä plc-muunnos!) Thävä. All olvss kuvss siyssä piirissä kykin siiryy hkllä = snnos snoon viivä (= induknssin
LisätiedotMatematiikan perusteet taloustieteilijöille 2 800118P
Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4
Lisätiedot766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)
7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ
LisätiedotY56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset
Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on
Lisätiedotmissä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min
S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä
LisätiedotKirjallinen teoriakoe
11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015
MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen
LisätiedotGeometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200
Geometrie lukujoo 7. Geometrise lukujoo esimmäie jäse o = 0 j peräkkäiste jäsete suhde =. Määritä lukujoo kolme seurv jäsetä. = 0 = 00 = 0 = 800 = 0 = 00 8. Geometrie lukujoo lk seurvsti: ), 0, 0, b) 000,
LisätiedotDifferentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset
Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen
Lisätiedotl s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS
0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö
LisätiedotAsennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi
Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen
LisätiedotAutomaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
Lisätiedot601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,
Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.
LisätiedotValmennuksen ja arvioinnin tukijärjestemä (VAT)
Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen
Lisätiedota = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1
5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },
Lisätiedot