7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa

Koko: px
Aloita esitys sivulta:

Download "7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa"

Transkriptio

1 1 7. KUSTANNUS-HYÖTYANALYYSI 7.1 Johdantoa Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi sosiaaliturva-, terveydenhoito- tai koulutusreformien yhteiskuntataloudellisen kannattavuuden arviointiin Keskeinen piirre sovelluksissa on se, että - kustannukset ja hyödyt eri hankkeissa jakautuvat yli ajan - päätös (usein peruuttamaton) on tehtävä koko pötköstä - arviointi edellyttää käsitystä tulevista hinnoista, määristä jne Pyritään arvioimaan tärkeimmät vaikutukset, jos - hanke (tai paras vaihtoehtoisista hankkeista) toteutetaan - jos hanketta ei toteuteta. Esimerkki: koituu viideksi vuodeksi rakennusaikaisia kustannuksia ja sen jälkeen käyttömenoja 20 vuoden ajan. Toisaalta hankkeesta saadaan vuosittain tuloa (hyötyä) rakentamisen jälkeen seuraavien 20 vuoden aikana. Tulot 0 Aika Kustannukset

2 2 EHDOTUS kustannus-hyötysäännöksi: jos hyödyt B B 20 ovat suuremmat kuin kustannukset C C 5 on hanke toteuttamisen arvoinen. MIKÄ TÄSSÄ ON ONGELMANA? TAI VÄÄRIN? - Jos hyöty on vuosittain 1 euro ja jos me pidämme niitä samanarvoisina, niin yllä tehty yhteen laskeminen on sallittua. - Mutta euro tänään on arvokkaampi kuin euro huomenna. - Tämän päivän euro talletettuna pankkiin 5 % korolla tuottaa 1.05 euroa vuoden päästä. - myös ihmiset pitävät hyötyjä nyt parempina kuin joskus tulevaisuudessa. - ihmisillä on positiivinen aikapreferenssi. Ekonomistit käyttävät nykyarvoa tai diskontattua nykyarvoa ilmaistessaan, miten paljon pienempi euro huomenna (vuoden päästä) on arvoltaan kuin euro tänään. Esimerkiksi vuoden päästä saatavan 100:n euron nykyarvo on 100 /(1+r). - Jos 100 euroa talletetaan tänään pankkiin, vuoden päästä siellä on 100 (1+r). - Näin ollen jos nykyarvo 100 /(1+r) talletetaan pankkiin, vuoden päästä siellä on [100 /(1+r)]x(1+r) = 100. (tässä x on kertomerkki) - Näin tulee vahvistetuksi edeltävä johtopäätös, että 100 /(1+r) tänään on sama kuin 100 vuoden päästä. - Kahden vuoden päästä saatuna 100:n euron nykyarvo on [1/1+r)]x [100/(1+r)] = 100/(1+r) 2 - ja yleisesti T:n vuoden päästä 100/(1+r) T. KHA:N menettely on se, että määrittelemme tuotot ja kustannukset kunakin vuonna ja muunnamme ne niiden nykyarvoiksi ja summaamme nämä yhteen. - eli katsomme eri ajankohtien hyötyjä ja kustannuksia nykyhetkestä käsin. - tältä pyrkimykseltään julkisen sektorin kustannus-hyöty analyysi ja yksityisen sektorin investointien kannattavuuden analyysi näyttävät samankaltaisilta.

3 3 Julkisten ja yksityisten investointihankkeiden arvioinnin erot? Julkisissa hankkeissa KHA:n keskeinen ongelma on panosten ja tuotosten arvottaminen. Ongelmia julkisissa hankkeissa aiheutuu mm. siitä, että - osalle panoksista ja/tai tuotoksista ei ole markkinahintoja lainkaan, vaan ne joudutaan arvottamaan muulla tavoin - osa markkinahinnoista ei vastaa yhteiskuntataloudellisia kustannuksia ja/tai hyötyjä ja niitä joudutaan korjaamaan - voitto ei yleisenä sääntönä ole sopiva investointikriteeri valittaessa parasta hanketta vaihtoehtoisten julkisen sektorin hankkeiden joukosta. - lisäksi osa hyötyjä ja/tai kustannuksia aiheuttavista tekijöistä on sellaisia, että niiden arvottaminenkin on hankalaa, joten ne täytyy ottaa huomion varsinaisen laskelman ulkopuolisina tekijöinä. Julkisen investoinnin arvioinnin voi sanoa koostuvan kolmesta korista, joista yhdessä on markkinahintoja, toisessa on arvotettuja suureita ja kolmannessa on tekijöitä, joita ei edes yritetä arvottaa, mutta nekin on otettava huomioon. Edellä mainituista syistä julkisten projektien arviointi on yleensä hankalampaa kuin yksityisten projektien arviointi, jos jälkimmäisessä voidaan käyttää markkinahintoja. Mutta molempiin liittyy vaikeus ennakoida tulevaisuuteen ajoittuvia investointilaskelman osia. Tarkastellaan seuraavaksi kolmea kriteeriä, joita käytetään investointien arviointiin yrityksissä. 7.2 Kolme investointikriteeriä Tarkastellaan tilannetta, jossa yritys arvioi kahden toisensa poissulkevan projektin x ja z kannattavuutta. Arvion on annettava vastaus kahteen kysymykseen. - onko kumpikaan hanke kannattava ja siten toteutettavissa? - jos molemmat osoittautuvat kannattaviksi hankkeiksi, kumpi tulisi valita? Nykyarvomenetelmä: lasketaan tuottojen ja kustannusten eron nykyarvo (present value = PV), seuraavalla kaavalla PV i = B 0 i -C 0 i + (B 1 i -C 1 i )/(1+r) (B T i -C T i )/(1+r) T, i = x, z. missä r on markkinakorko.

4 4 Jos nettonykyarvo on - positiivinen, investointihanke hyväksytään - negatiivinen, hanke hylätään. - jos molemmat x ja z saavat positiivisen nettonykyarvon ja jos ne ovat vaihtoehtoja toisilleen, valitaan se, jonka nettonykyarvo on suurin. HUOM: yrityksen (osakekannan) markkina-arvo määritellään sen tulevien nettotuottojen nettonykyarvoksi. KHA laskelma voidaan tehdä niin, että tuotot, kustannukset ja korko ilmaistaan joko reaalihintaisina tai vaihtoehtoisesti kaikki nimellisin hinnoin (käyvin hinnoin ja nimellistä korkoa käyttäen). Nettonykyarvon ja diskonttokoron välistä suhde ilmenee kuviosta 7.1. Kuvio 7.1 Investointikriteerejä Netto Nykyarvo x z r*= korko Tyypillisessä investointihankkeessa kustannukset ajoittuvat alkuvaiheeseen ja hyödyt koko toiminnan käynnissä olon ajalle. Näin nettonykyarvo on aluksi negatiivinen nousten myöhemmin positiiviseksi. Hankkeiden paremmuusjärjestys riippuu käytetystä korosta. Kuviossa 7.1, kun korko on pienempi kuin r* hanke x valitaan ja koron ollessa suurempi kuin r* hanke z tulee valituksi.

5 5 Numeroesimerkki: Hankkeiden x ja z vuosittaiset nettohyödyt (tulot-kustannukset) kolmena vuotena ovat seuraavat: - hanke x: (-100, 0, 120) - hanke z: (-100, 115, 0) Kuviossa 7.1 hankkeen x:n nettonykyarvonkuvaaja leikkaa r-akselin arvolla r= 9.5 % ja z:n nettonykyarvo vastaavasti arvolla r= 11,5 %. Koron ylittäessä 9,5 % hanke x muuttuu kannattamattomaksi. Hanke z taas muuttuu kannattamattomaksi koron ylittäessä 11,5 %. Numeroesimerkissämme r* eli kuvaajien leikkauspiste on 4,4 % koron kohdalla. Sisäisen korkokannan menetelmä: Investointiprojektin j sisäiseksi korkokannaksi kutsutaan sitä korkoa i j, jolla hankkeen nettotuottojen nykyarvo (PV j ) on nolla. Projekteille x ja y se voidaan laskea kaavasta: B 0 j -C 0 j + (B 1 j -C 1 j )/(1+ i j ) (B T j -C T j )/(1+ i j ) T = 0, j = x, z. Kaavassa i x ja i z kuvaavat projektien x ja z sisäisiä korkokantoja, jotka saadaan yhtälön ratkaisuina kummallekin projektille erikseen. Sisäisen korkokannan menetelmän mukaan - hanke on (ei ole) kannattava, jos sisäinen korkokanta on suurempi (pienempi) kuin vaihtoehtoisen sijoituksen tuotto (eli diskonttokorko r nykyarvon PV kaavassa). Tällöin ajatellaan, että hanke tuottaa sisäisen korkokannan mukaisen tuoton. - jos molemmat ovat kannattavia, valitaan se, jolla korkeampi sisäinen korkokanta. Mahdollisia ongelmia: Yhtälö yllä on astetta T oleva polynomi, joten sillä voi olla useita nollakohtia eli sisäisen korkokannan ratkaisuja. Ratkaisujen lukumäärä riippuu siitä, kuinka usein B-C eri vuosina vaihtaa merkkiä. - jos hankkeiden nettokustannukset ovat aina suuret alkuvaiheessa ja nettotuotot sen jälkeen, tämä ei ole ongelma Kuviossa 7.1 hankkeen x sisäinen korkokanta eli i x = 9.5 % ja hankkeen z sisäinen korkokanta eli i z = 11.5 %. Eli z tulee valita, kunhan markkinakorko r on alle 11.5 %. Toisaalta diskonttokorolla r*= 4.4 % hankkeiden x ja z nykyarvot ovat samat ja - alle 4.4 diskonttokorolla nykyarvokriteeri PV sanoo valitse x - yli 4.4 % (mutta alle 11.5 %) diskonttokorolla PV -kriteerillä tulee valita z ELI NÄMÄ MENETELMÄT VOIVAT TUOTTAA ERI LOPPUTULOKSEN.

6 6 Hyöty-kustannussuhde määritellään hyötyjen ja kustannusten nykyarvojen suhteena B/C, missä hyötyjen nykyarvo on B= B 0 i + (B 1 i )/(1+r) (B T i )/(1+r) T, i = x,z ja kustannusten nykyarvo on C = C 0 i + C 1 i /(1+r) C T i /(1+r) T, i = x, z Investointihanke on kannattava, - jos suhdeluku B/C on suurempi kuin yksi. - tällöin myös investointien nettonykyarvo (PV) on positiivinen eli hyötykustannussuhde johtaa yksittäisten investointien kohdalla oikeaan tulokseen. - vaihtoehtoisista hankkeista valitaan se, jolla on korkein B/C suhde - ONGELMIA: Kriteeri ei aina aseta vaihtoehtoisia hankkeita oikeaan järjestykseen. - ESIMERKKI: Olkoon hyötyjen ja kustannusten nykyarvot 200 ja 100 hankkeessa x ja vastaavasti 170 ja 80 hankkeessa z. Hyöty-kustannus suhteen perusteella hanke z on kannattavampi (170/80 > 2) kuin x (200/100). Hankkeen x nettonykyarvo ( ) on kuitenkin suurempi kuin z hankkeella (170-80). - aina ei ole selvää tulisiko joku erä tulkita kustannus- vai hyötypuolen tekijäksi ja valinta vaikuttaa hyöty-kustannus suhteeseen. Kolmesta vaihtoehtoisesta kannattavuuskriteeristä on yleisesti suositeltavaa käyttää nykyarvomenetelmää. Jos hankkeiden toteuttamiseen on kiinteä budjetti, silloin hankkeet kannattaa toteuttaa Hyöty/Kustannus -suhteen perusteella paremmuus järjestyksessä niin laajasti kuin rahaa budjetissa riittää.

7 7 KAIKILLE INVESTOINTIKRITEEREILLE YHTEISIÄ ONGELMIA: - kriteerit ovat eteenpäin katsovia ja riippuvat tulevista hinnoista, määristä ja teknologioista - kaikkiin näihin liittyy epävarmuutta, joka kaavoissa on sivuutettu olettamalla mm. hinnat vakioiksi yli ajan - yrityksen kohtaamat panosten ja tuotteiden hinnat heijastavat yksityistaloudellisia suureita ja niiden voitto yksityistaloudellista voittoa. Jos yrityksen toiminnalla ei ole (on) positiivisia tai negatiivisia ulkoisvaikutuksia, ko. hinnat ovat oikeita ( vääriä ) yhteiskuntataloudellisesta näkökulmasta Yhteiskunnallinen kustannus-hyötyanalyysi Kertausta siitä, miksi yritystaloudellisia kriteerejä ei voi suoraan käyttää julkisissa hankkeissa - markkinahintoja ei ole olemassa. Esimerkiksi ei ole markkinahintaa aarniometsien säilyttämiselle luonnontilassa tai liito-oraville ja niitä on vaikea arvottaa ylipäänsä - esimerkiksi liikennehankkeissa hyödyn keskeinen komponentti on säästetty matkaaika, joka arvotetaan esim. 50 % palkasta ko, säästettynä matka-aikana - ihmishenkien pelastumisen hintakin joudutaan arvottamaan esim. menetetyllä tulovirran nykyarvolla tms. - jos hankkeella on ympäristövaikutuksia, kuten saaste- tai meluvaikutuksia ne joudutaan arvottamaan (esim. kiinteistöjen arvojen avulla, jos tiedetään miten melu- ja saateet vaikuttavat ko. arvoihin). - tällaisista syistä julkinen hanke ei voi tyytyä pelkästään voittokriteerin soveltamiseen - julkisella hankkeella on usein yksityistä investointia laajempia vaikutuksia talouteen, siksi hankkeet ovat useimmiten julkisia hankkeita. - silloinkin kun markkinahinnat on olemassa ne eivät saata heijastaa yhteiskunnallisia rajakustannuksia - pääomamarkkinat eivät välttämättä toimi hyvin, joten julkisella sektorilla ei ole perusteita käyttää markkinakorkoa tulevien kustannusten ja hyötyjen diskonttaamisessa. - julkinen sektori on myös eri asemassa riskien kantajana kuin pienet yksityistaloudelliset yksiköt Keskustellaan näistä ongelmista tarkastelemalla - moottoritiehanketta - ydinvoimalaa ja pohtimalla miten käsitellä kolmen korin asioita eli niitä panoksia ja tuotoksia - joilla on markkinahinnat, jotka vastaavat yhteiskuntataloudellisia hintoja - joilla on markkinahinnat, jotka eivät vastaa yhteiskuntataloudellisia hintoja

8 8 - joilla ei ole hintoja, ja vaan ne on arvotettava (asetettava hinnat muuten) - joilla ei ole hintoja ja arvottaminenkin tuntuu ylivoimaiselta Jos jollekin panokselle ei ole hintoja, tai ne eivät vastaa yhteiskuntataloudellisesti oikeita hintoja, niin niiden tilalla KHA:ssa käytettäviä hintoja kutsutaan usein varjohinnoiksi. Epätäydellisillä markkinoilla markkinahinta ei heijasta sen yhteiskunnallista rajakustannusta tai rajahyötyä. Juuri tässä tilanteessa syntyy tarve varjohintojen käytölle (tai muulle arvottamiselle). Entä miten tulisi ottaa huomioon riskit. Esimerkiksi se, että tulevaisuuteen sijoittuvat hinnat eivät ole varmasti tiedossa. Perusoppi on se, että muunna kunkin periodin riskipitoiset erät niiden varmuusekvivalenteiksi ja sovella sitten laskentakriteeriä (nykyarvokaavaa). Riskin huomioon ottaminen esimerkiksi käyttämällä korkeampaa diskonttokorkoa ei ole oikein. Jos riski liittyy esimerkiksi ydinvoimalan purkukustannuksiin 50 vuoden päästä, mitä korkeampi korko sitä vähemmän kustannusriskillä on väliä (vaikutus nykyarvoon vähenee kun korko kasvaa). LOPUKSI: - KHAn käytännön sovellukset ovat yleensä enemmän karkeata haarukointia kuin eksaktia laskentaa. Toisaalta ilman KHA-arvioita on vaara tehdä aivan vääriä valintoja. - Kaikki politiikkavalinnat ovat aina jossain mielessä vääriä. On vain yritettävä arvioida mikä on vähemmän väärin. - Paljon saavutetaan jo sillä, jos huonoimmat vaihtoehdot saadaan karsittua pois. Tässä KHA:sta järkevästi sovellettuna on apua.

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

8. KUSTANNUS-HYÖTYANALYYSI (VANHASSA PAINOKSESSA LUKU 18)

8. KUSTANNUS-HYÖTYANALYYSI (VANHASSA PAINOKSESSA LUKU 18) 327 8. KUSTANNUS-HYÖTYANALYYSI (VANHASSA PAINOKSESSA LUKU 18) Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous)

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous) INVESTOINTIEN EDULLISUUSVERTAILU Tero Tyni Erityisasiantuntija (kuntatalous) 25.5.2007 Mitä tietoja laskentaan tarvitaan Investoinnista aiheutuneet investointikustannukset Investoinnin pitoaika Investoinnin

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

Millaisia ovat finanssipolitiikan kertoimet

Millaisia ovat finanssipolitiikan kertoimet Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Investoinnin takaisinmaksuaika

Investoinnin takaisinmaksuaika Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

LCA IN LANDSCAPING. Kestävien, kierrätysmateriaaleja hyödyntävien viherrakennuskohteiden kustannus-hyöty-analyysi. Tiina Ruuskanen

LCA IN LANDSCAPING. Kestävien, kierrätysmateriaaleja hyödyntävien viherrakennuskohteiden kustannus-hyöty-analyysi. Tiina Ruuskanen Kestävien, kierrätysmateriaaleja hyödyntävien viherrakennuskohteiden kustannus-hyöty-analyysi Tiina Ruuskanen Kustannus-hyötyanalyysi (KHA, CBA) on yhteiskunnallisen päätöksenteon apuväline. KHA:n avulla

Lisätiedot

Rahavirtojen diskonttaamisen periaate

Rahavirtojen diskonttaamisen periaate Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta

Lisätiedot

Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky)

Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky) Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky) Hallinto / 2009: 1. Osio 1 / Tosi; Yritys tarjoaa ydinsegmenttiin kuuluville muun muassa työturvan (s.47). Osio 2 / Epätosi; Ei, vaan ydinryhmä

Lisätiedot

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Elinkaarimallit ja -palvelut tulosseminaari Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Hanna Kaleva KTI Kiinteistötieto Oy 26.9.2006 ELINKAARIMALLIT kehityshanke: KTI:n osaprojekti:

Lisätiedot

Uusien keksintöjen hyödyntäminen

Uusien keksintöjen hyödyntäminen Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Panos-tuotos -analyysi ja omakustannusarvo, L28b

Panos-tuotos -analyysi ja omakustannusarvo, L28b , L28b -analyysi (Input-output analysis) Menetelmän kehitti Wassily Leontief (1905-1999). Venäläissyntyinen ekonomisti. Yleisen tasapainoteorian kehittäjä. 1953: Studies in the Structure of the American

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Investointiajattelu ja päätöksenteko

Investointiajattelu ja päätöksenteko Investointiajattelu ja päätöksenteko Ismo Vuorinen yliopettaja (laskentatoimi ja rahoitus) Investointien suunnittelu / erikoistumisopinnot 2010 Hämeenlinna / syksy 2010 Investointi käsitteenä investointi

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

1. Keskimääräisen nimellistuottoprosentin laskenta

1. Keskimääräisen nimellistuottoprosentin laskenta 1 3.10.2011/TELA/Tuotonlaskentaryhmä/R.Vanne Yli vuoden mittaisen aikavälin tuoton raportointi 1. Keskimääräisen nimellistuottoprosentin laskenta FIVAn määräykset yksityisalojen työeläkevakuuttajille sisältävät

Lisätiedot

Rahoitusinnovaatiot kuntien teknisellä sektorilla

Rahoitusinnovaatiot kuntien teknisellä sektorilla Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010 » Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki

Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki 14.2.2017 Kuinka tunnistaa edullisin korjauslaajuus? Kustannusoptimaalisuuden arvioinnin menetelmät Juhani Heljo Tampereen teknillinen

Lisätiedot

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332.

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332. Laudatur MAA ratkaisut kertausharjoituksiin. Polynomit. Vakiotermi 8 Kolmannen asteen termin kerroin, 5 8 = 9, Neljännen asteen termi n kerroin, 8 9, = 7,6 Kysytty polynomi P(a) = 7,6a + 9,a +a + ya +

Lisätiedot

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta MML 3.5.2010 Eero Autere (MH) Raito Paananen Metsävaratietoasiantuntija (MMM, LKV) 5.5.2010 1 5.5.2010 2 Arvokäsitteitä Käyttöarvo

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Myynnin tila Prof. Jaakko ASPARA Aalto-yliopiston Kauppakorkeakoulu TOP MANAGEMENT FORUM/080214/PP/AMS Miksi selvittää muotoiluinvestointien

Lisätiedot

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa

Lisätiedot

Salmonellavalvonnan ja torjunnan kustannushyötyanalyysi

Salmonellavalvonnan ja torjunnan kustannushyötyanalyysi Salmonellavalvonnan ja torjunnan kustannushyötyanalyysi Jarkko Niemi ja Katriina Heinola Luonnonvarakeskus, Talous ja yhteiskunta 1 12.10.2016 Johdanto Suomalaisissa elintarvikkeissa salmonellan esiintyvyys

Lisätiedot

Luku 34 Ulkoisvaikutukset

Luku 34 Ulkoisvaikutukset Luku 34 Ulkoisvaikutukset Markkinoiden kilpailutasapaino ei ole Pareto-tehokas, jos taloudessa esiintyy ulkoisvaikutuksia. Kertaus: Pareto-tehokas tasapaino on tasapaino, jossa yhden toimijan asemaa markkinoilla

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Pankkibarometri I/2012 14.3.2012

Pankkibarometri I/2012 14.3.2012 Pankkibarometri I/2012 1 Sisältö Sivu Kotitaloudet 2 Yritykset 6 Finanssialan Keskusliitto kysyy Pankkibarometrin avulla pankinjohtajien käsityksiä ja odotuksia luotonkysynnän ja eri sijoitusmuotojen kehityksestä.

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Tietoa hyödykeoptioista

Tietoa hyödykeoptioista Tietoa hyödykeoptioista Tämä esite sisältää tietoa Danske Bankin kautta tehtävistä hyödykeoptiosopimuksista. Hyödykkeet ovat jalostamattomia tuotteita tai puolijalosteita, joita tarvitaan lopputuotteiden

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen

Lisätiedot

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa? TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä Memo-työryhmä 23.9.2010 Lauri Valsta 4.11.2010 1 Metsänomistaja ja liiketaloudellinen kannattavuus Metsänomistajan välineet

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3] Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot