7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa

Koko: px
Aloita esitys sivulta:

Download "7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa"

Transkriptio

1 1 7. KUSTANNUS-HYÖTYANALYYSI 7.1 Johdantoa Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi sosiaaliturva-, terveydenhoito- tai koulutusreformien yhteiskuntataloudellisen kannattavuuden arviointiin Keskeinen piirre sovelluksissa on se, että - kustannukset ja hyödyt eri hankkeissa jakautuvat yli ajan - päätös (usein peruuttamaton) on tehtävä koko pötköstä - arviointi edellyttää käsitystä tulevista hinnoista, määristä jne Pyritään arvioimaan tärkeimmät vaikutukset, jos - hanke (tai paras vaihtoehtoisista hankkeista) toteutetaan - jos hanketta ei toteuteta. Esimerkki: koituu viideksi vuodeksi rakennusaikaisia kustannuksia ja sen jälkeen käyttömenoja 20 vuoden ajan. Toisaalta hankkeesta saadaan vuosittain tuloa (hyötyä) rakentamisen jälkeen seuraavien 20 vuoden aikana. Tulot 0 Aika Kustannukset

2 2 EHDOTUS kustannus-hyötysäännöksi: jos hyödyt B B 20 ovat suuremmat kuin kustannukset C C 5 on hanke toteuttamisen arvoinen. MIKÄ TÄSSÄ ON ONGELMANA? TAI VÄÄRIN? - Jos hyöty on vuosittain 1 euro ja jos me pidämme niitä samanarvoisina, niin yllä tehty yhteen laskeminen on sallittua. - Mutta euro tänään on arvokkaampi kuin euro huomenna. - Tämän päivän euro talletettuna pankkiin 5 % korolla tuottaa 1.05 euroa vuoden päästä. - myös ihmiset pitävät hyötyjä nyt parempina kuin joskus tulevaisuudessa. - ihmisillä on positiivinen aikapreferenssi. Ekonomistit käyttävät nykyarvoa tai diskontattua nykyarvoa ilmaistessaan, miten paljon pienempi euro huomenna (vuoden päästä) on arvoltaan kuin euro tänään. Esimerkiksi vuoden päästä saatavan 100:n euron nykyarvo on 100 /(1+r). - Jos 100 euroa talletetaan tänään pankkiin, vuoden päästä siellä on 100 (1+r). - Näin ollen jos nykyarvo 100 /(1+r) talletetaan pankkiin, vuoden päästä siellä on [100 /(1+r)]x(1+r) = 100. (tässä x on kertomerkki) - Näin tulee vahvistetuksi edeltävä johtopäätös, että 100 /(1+r) tänään on sama kuin 100 vuoden päästä. - Kahden vuoden päästä saatuna 100:n euron nykyarvo on [1/1+r)]x [100/(1+r)] = 100/(1+r) 2 - ja yleisesti T:n vuoden päästä 100/(1+r) T. KHA:N menettely on se, että määrittelemme tuotot ja kustannukset kunakin vuonna ja muunnamme ne niiden nykyarvoiksi ja summaamme nämä yhteen. - eli katsomme eri ajankohtien hyötyjä ja kustannuksia nykyhetkestä käsin. - tältä pyrkimykseltään julkisen sektorin kustannus-hyöty analyysi ja yksityisen sektorin investointien kannattavuuden analyysi näyttävät samankaltaisilta.

3 3 Julkisten ja yksityisten investointihankkeiden arvioinnin erot? Julkisissa hankkeissa KHA:n keskeinen ongelma on panosten ja tuotosten arvottaminen. Ongelmia julkisissa hankkeissa aiheutuu mm. siitä, että - osalle panoksista ja/tai tuotoksista ei ole markkinahintoja lainkaan, vaan ne joudutaan arvottamaan muulla tavoin - osa markkinahinnoista ei vastaa yhteiskuntataloudellisia kustannuksia ja/tai hyötyjä ja niitä joudutaan korjaamaan - voitto ei yleisenä sääntönä ole sopiva investointikriteeri valittaessa parasta hanketta vaihtoehtoisten julkisen sektorin hankkeiden joukosta. - lisäksi osa hyötyjä ja/tai kustannuksia aiheuttavista tekijöistä on sellaisia, että niiden arvottaminenkin on hankalaa, joten ne täytyy ottaa huomion varsinaisen laskelman ulkopuolisina tekijöinä. Julkisen investoinnin arvioinnin voi sanoa koostuvan kolmesta korista, joista yhdessä on markkinahintoja, toisessa on arvotettuja suureita ja kolmannessa on tekijöitä, joita ei edes yritetä arvottaa, mutta nekin on otettava huomioon. Edellä mainituista syistä julkisten projektien arviointi on yleensä hankalampaa kuin yksityisten projektien arviointi, jos jälkimmäisessä voidaan käyttää markkinahintoja. Mutta molempiin liittyy vaikeus ennakoida tulevaisuuteen ajoittuvia investointilaskelman osia. Tarkastellaan seuraavaksi kolmea kriteeriä, joita käytetään investointien arviointiin yrityksissä. 7.2 Kolme investointikriteeriä Tarkastellaan tilannetta, jossa yritys arvioi kahden toisensa poissulkevan projektin x ja z kannattavuutta. Arvion on annettava vastaus kahteen kysymykseen. - onko kumpikaan hanke kannattava ja siten toteutettavissa? - jos molemmat osoittautuvat kannattaviksi hankkeiksi, kumpi tulisi valita? Nykyarvomenetelmä: lasketaan tuottojen ja kustannusten eron nykyarvo (present value = PV), seuraavalla kaavalla PV i = B 0 i -C 0 i + (B 1 i -C 1 i )/(1+r) (B T i -C T i )/(1+r) T, i = x, z. missä r on markkinakorko.

4 4 Jos nettonykyarvo on - positiivinen, investointihanke hyväksytään - negatiivinen, hanke hylätään. - jos molemmat x ja z saavat positiivisen nettonykyarvon ja jos ne ovat vaihtoehtoja toisilleen, valitaan se, jonka nettonykyarvo on suurin. HUOM: yrityksen (osakekannan) markkina-arvo määritellään sen tulevien nettotuottojen nettonykyarvoksi. KHA laskelma voidaan tehdä niin, että tuotot, kustannukset ja korko ilmaistaan joko reaalihintaisina tai vaihtoehtoisesti kaikki nimellisin hinnoin (käyvin hinnoin ja nimellistä korkoa käyttäen). Nettonykyarvon ja diskonttokoron välistä suhde ilmenee kuviosta 7.1. Kuvio 7.1 Investointikriteerejä Netto Nykyarvo x z r*= korko Tyypillisessä investointihankkeessa kustannukset ajoittuvat alkuvaiheeseen ja hyödyt koko toiminnan käynnissä olon ajalle. Näin nettonykyarvo on aluksi negatiivinen nousten myöhemmin positiiviseksi. Hankkeiden paremmuusjärjestys riippuu käytetystä korosta. Kuviossa 7.1, kun korko on pienempi kuin r* hanke x valitaan ja koron ollessa suurempi kuin r* hanke z tulee valituksi.

5 5 Numeroesimerkki: Hankkeiden x ja z vuosittaiset nettohyödyt (tulot-kustannukset) kolmena vuotena ovat seuraavat: - hanke x: (-100, 0, 120) - hanke z: (-100, 115, 0) Kuviossa 7.1 hankkeen x:n nettonykyarvonkuvaaja leikkaa r-akselin arvolla r= 9.5 % ja z:n nettonykyarvo vastaavasti arvolla r= 11,5 %. Koron ylittäessä 9,5 % hanke x muuttuu kannattamattomaksi. Hanke z taas muuttuu kannattamattomaksi koron ylittäessä 11,5 %. Numeroesimerkissämme r* eli kuvaajien leikkauspiste on 4,4 % koron kohdalla. Sisäisen korkokannan menetelmä: Investointiprojektin j sisäiseksi korkokannaksi kutsutaan sitä korkoa i j, jolla hankkeen nettotuottojen nykyarvo (PV j ) on nolla. Projekteille x ja y se voidaan laskea kaavasta: B 0 j -C 0 j + (B 1 j -C 1 j )/(1+ i j ) (B T j -C T j )/(1+ i j ) T = 0, j = x, z. Kaavassa i x ja i z kuvaavat projektien x ja z sisäisiä korkokantoja, jotka saadaan yhtälön ratkaisuina kummallekin projektille erikseen. Sisäisen korkokannan menetelmän mukaan - hanke on (ei ole) kannattava, jos sisäinen korkokanta on suurempi (pienempi) kuin vaihtoehtoisen sijoituksen tuotto (eli diskonttokorko r nykyarvon PV kaavassa). Tällöin ajatellaan, että hanke tuottaa sisäisen korkokannan mukaisen tuoton. - jos molemmat ovat kannattavia, valitaan se, jolla korkeampi sisäinen korkokanta. Mahdollisia ongelmia: Yhtälö yllä on astetta T oleva polynomi, joten sillä voi olla useita nollakohtia eli sisäisen korkokannan ratkaisuja. Ratkaisujen lukumäärä riippuu siitä, kuinka usein B-C eri vuosina vaihtaa merkkiä. - jos hankkeiden nettokustannukset ovat aina suuret alkuvaiheessa ja nettotuotot sen jälkeen, tämä ei ole ongelma Kuviossa 7.1 hankkeen x sisäinen korkokanta eli i x = 9.5 % ja hankkeen z sisäinen korkokanta eli i z = 11.5 %. Eli z tulee valita, kunhan markkinakorko r on alle 11.5 %. Toisaalta diskonttokorolla r*= 4.4 % hankkeiden x ja z nykyarvot ovat samat ja - alle 4.4 diskonttokorolla nykyarvokriteeri PV sanoo valitse x - yli 4.4 % (mutta alle 11.5 %) diskonttokorolla PV -kriteerillä tulee valita z ELI NÄMÄ MENETELMÄT VOIVAT TUOTTAA ERI LOPPUTULOKSEN.

6 6 Hyöty-kustannussuhde määritellään hyötyjen ja kustannusten nykyarvojen suhteena B/C, missä hyötyjen nykyarvo on B= B 0 i + (B 1 i )/(1+r) (B T i )/(1+r) T, i = x,z ja kustannusten nykyarvo on C = C 0 i + C 1 i /(1+r) C T i /(1+r) T, i = x, z Investointihanke on kannattava, - jos suhdeluku B/C on suurempi kuin yksi. - tällöin myös investointien nettonykyarvo (PV) on positiivinen eli hyötykustannussuhde johtaa yksittäisten investointien kohdalla oikeaan tulokseen. - vaihtoehtoisista hankkeista valitaan se, jolla on korkein B/C suhde - ONGELMIA: Kriteeri ei aina aseta vaihtoehtoisia hankkeita oikeaan järjestykseen. - ESIMERKKI: Olkoon hyötyjen ja kustannusten nykyarvot 200 ja 100 hankkeessa x ja vastaavasti 170 ja 80 hankkeessa z. Hyöty-kustannus suhteen perusteella hanke z on kannattavampi (170/80 > 2) kuin x (200/100). Hankkeen x nettonykyarvo ( ) on kuitenkin suurempi kuin z hankkeella (170-80). - aina ei ole selvää tulisiko joku erä tulkita kustannus- vai hyötypuolen tekijäksi ja valinta vaikuttaa hyöty-kustannus suhteeseen. Kolmesta vaihtoehtoisesta kannattavuuskriteeristä on yleisesti suositeltavaa käyttää nykyarvomenetelmää. Jos hankkeiden toteuttamiseen on kiinteä budjetti, silloin hankkeet kannattaa toteuttaa Hyöty/Kustannus -suhteen perusteella paremmuus järjestyksessä niin laajasti kuin rahaa budjetissa riittää.

7 7 KAIKILLE INVESTOINTIKRITEEREILLE YHTEISIÄ ONGELMIA: - kriteerit ovat eteenpäin katsovia ja riippuvat tulevista hinnoista, määristä ja teknologioista - kaikkiin näihin liittyy epävarmuutta, joka kaavoissa on sivuutettu olettamalla mm. hinnat vakioiksi yli ajan - yrityksen kohtaamat panosten ja tuotteiden hinnat heijastavat yksityistaloudellisia suureita ja niiden voitto yksityistaloudellista voittoa. Jos yrityksen toiminnalla ei ole (on) positiivisia tai negatiivisia ulkoisvaikutuksia, ko. hinnat ovat oikeita ( vääriä ) yhteiskuntataloudellisesta näkökulmasta Yhteiskunnallinen kustannus-hyötyanalyysi Kertausta siitä, miksi yritystaloudellisia kriteerejä ei voi suoraan käyttää julkisissa hankkeissa - markkinahintoja ei ole olemassa. Esimerkiksi ei ole markkinahintaa aarniometsien säilyttämiselle luonnontilassa tai liito-oraville ja niitä on vaikea arvottaa ylipäänsä - esimerkiksi liikennehankkeissa hyödyn keskeinen komponentti on säästetty matkaaika, joka arvotetaan esim. 50 % palkasta ko, säästettynä matka-aikana - ihmishenkien pelastumisen hintakin joudutaan arvottamaan esim. menetetyllä tulovirran nykyarvolla tms. - jos hankkeella on ympäristövaikutuksia, kuten saaste- tai meluvaikutuksia ne joudutaan arvottamaan (esim. kiinteistöjen arvojen avulla, jos tiedetään miten melu- ja saateet vaikuttavat ko. arvoihin). - tällaisista syistä julkinen hanke ei voi tyytyä pelkästään voittokriteerin soveltamiseen - julkisella hankkeella on usein yksityistä investointia laajempia vaikutuksia talouteen, siksi hankkeet ovat useimmiten julkisia hankkeita. - silloinkin kun markkinahinnat on olemassa ne eivät saata heijastaa yhteiskunnallisia rajakustannuksia - pääomamarkkinat eivät välttämättä toimi hyvin, joten julkisella sektorilla ei ole perusteita käyttää markkinakorkoa tulevien kustannusten ja hyötyjen diskonttaamisessa. - julkinen sektori on myös eri asemassa riskien kantajana kuin pienet yksityistaloudelliset yksiköt Keskustellaan näistä ongelmista tarkastelemalla - moottoritiehanketta - ydinvoimalaa ja pohtimalla miten käsitellä kolmen korin asioita eli niitä panoksia ja tuotoksia - joilla on markkinahinnat, jotka vastaavat yhteiskuntataloudellisia hintoja - joilla on markkinahinnat, jotka eivät vastaa yhteiskuntataloudellisia hintoja

8 8 - joilla ei ole hintoja, ja vaan ne on arvotettava (asetettava hinnat muuten) - joilla ei ole hintoja ja arvottaminenkin tuntuu ylivoimaiselta Jos jollekin panokselle ei ole hintoja, tai ne eivät vastaa yhteiskuntataloudellisesti oikeita hintoja, niin niiden tilalla KHA:ssa käytettäviä hintoja kutsutaan usein varjohinnoiksi. Epätäydellisillä markkinoilla markkinahinta ei heijasta sen yhteiskunnallista rajakustannusta tai rajahyötyä. Juuri tässä tilanteessa syntyy tarve varjohintojen käytölle (tai muulle arvottamiselle). Entä miten tulisi ottaa huomioon riskit. Esimerkiksi se, että tulevaisuuteen sijoittuvat hinnat eivät ole varmasti tiedossa. Perusoppi on se, että muunna kunkin periodin riskipitoiset erät niiden varmuusekvivalenteiksi ja sovella sitten laskentakriteeriä (nykyarvokaavaa). Riskin huomioon ottaminen esimerkiksi käyttämällä korkeampaa diskonttokorkoa ei ole oikein. Jos riski liittyy esimerkiksi ydinvoimalan purkukustannuksiin 50 vuoden päästä, mitä korkeampi korko sitä vähemmän kustannusriskillä on väliä (vaikutus nykyarvoon vähenee kun korko kasvaa). LOPUKSI: - KHAn käytännön sovellukset ovat yleensä enemmän karkeata haarukointia kuin eksaktia laskentaa. Toisaalta ilman KHA-arvioita on vaara tehdä aivan vääriä valintoja. - Kaikki politiikkavalinnat ovat aina jossain mielessä vääriä. On vain yritettävä arvioida mikä on vähemmän väärin. - Paljon saavutetaan jo sillä, jos huonoimmat vaihtoehdot saadaan karsittua pois. Tässä KHA:sta järkevästi sovellettuna on apua.

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Investoinnin takaisinmaksuaika

Investoinnin takaisinmaksuaika Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Millaisia ovat finanssipolitiikan kertoimet

Millaisia ovat finanssipolitiikan kertoimet Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

1. Keskimääräisen nimellistuottoprosentin laskenta

1. Keskimääräisen nimellistuottoprosentin laskenta 1 3.10.2011/TELA/Tuotonlaskentaryhmä/R.Vanne Yli vuoden mittaisen aikavälin tuoton raportointi 1. Keskimääräisen nimellistuottoprosentin laskenta FIVAn määräykset yksityisalojen työeläkevakuuttajille sisältävät

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky)

Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky) Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky) Hallinto / 2009: 1. Osio 1 / Tosi; Yritys tarjoaa ydinsegmenttiin kuuluville muun muassa työturvan (s.47). Osio 2 / Epätosi; Ei, vaan ydinryhmä

Lisätiedot

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä Memo-työryhmä 23.9.2010 Lauri Valsta 4.11.2010 1 Metsänomistaja ja liiketaloudellinen kannattavuus Metsänomistajan välineet

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010 » Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Rahoitusinnovaatiot kuntien teknisellä sektorilla

Rahoitusinnovaatiot kuntien teknisellä sektorilla Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Elinkaarimallit ja -palvelut tulosseminaari Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Hanna Kaleva KTI Kiinteistötieto Oy 26.9.2006 ELINKAARIMALLIT kehityshanke: KTI:n osaprojekti:

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Myynnin tila Prof. Jaakko ASPARA Aalto-yliopiston Kauppakorkeakoulu TOP MANAGEMENT FORUM/080214/PP/AMS Miksi selvittää muotoiluinvestointien

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Eettinen sijoittaminen tänään ja huomenna. Professori Eva Liljeblom Hanken

Eettinen sijoittaminen tänään ja huomenna. Professori Eva Liljeblom Hanken Eettinen sijoittaminen tänään ja huomenna Professori Eva Liljeblom Hanken Eettinen sijoittaminen tänään ja huomenna 1. Etiikka ja yritystoiminta Shareholders kontra stakeholders 2. Etiikka ja sijoitustoiminta

Lisätiedot

Kauppakorkean pääsykoe 2015 / Ratkaisut

Kauppakorkean pääsykoe 2015 / Ratkaisut Kauppakorkean pääsykoe 2015 / Ratkaisut Johtaminen ja markkinointi: 1. / Ratk: Osiot 1, 2 ja 3 / Tosia (s.1 ja s. 1 sekä s. 2). Osio 4 / Epätosi; Ei, vaan klassisissa organisaatioteorioissa tutkimuksen

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke PORONLIHAN SUORAMYYNTI KOULUTUS HINNOITTELU Erkki Viero HINNOITTELU TAVOITTEET SISÄLTÖ OPETTAA KUSTANNUS- VASTAAVAA HINNOITTELUA

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Inflaatio, deflaatio, valuuttakurssit ja korot

Inflaatio, deflaatio, valuuttakurssit ja korot Studia monetaria Rahatalouden perusasioita I Inflaatio, deflaatio, valuuttakurssit ja korot Lauri Kajanoja, VTT Rahapolitiikka- ja tutkimusosasto Suomen Pankki 25 20 15 10 5 0-5 Inflaatio Suomessa Kuluttajahintaindeksin

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics)

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Vähäpäästöisen talouden haasteita Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Haaste nro. 1: Kasvu Kasvu syntyy työn tuottavuudesta Hyvinvointi (BKT) kasvanut yli 14-kertaiseksi

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

ICT:n johtamisella tuloksia

ICT:n johtamisella tuloksia Tuottava IT ICT:n johtamisella tuloksia Data: Tietohallintojen johtaminen Suomessa 2012 Tietääkö liiketoimintajohto mitä IT tekee? Ei osaa sanoa tietääkö Ei tiedä Osittain Tietää 0 % 10 % 20 % 30 % 40

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

12 Lineaarialgebran sovelluksia

12 Lineaarialgebran sovelluksia Lineaarialgebran sovelluksia, Panos-tuotos -analyysi 1 12 Lineaarialgebran sovelluksia Tässä kappaleessa esitellään sovelluksia. Ainakin osa sovelluksista on luennoilla syytä käydä läpi niin varhain kuin

Lisätiedot

MK-Law. Kumppanisi lakiasioissa. Voiton kotiuttaminen ja konsernin rahavirrat Venäjällä

MK-Law. Kumppanisi lakiasioissa. Voiton kotiuttaminen ja konsernin rahavirrat Venäjällä Kumppanisi lakiasioissa Voiton kotiuttaminen ja konsernin rahavirrat Venäjällä Siirtohinnoittelu - etenkin 1.1.2012 voimaan astuvat lainsäädäntömuutokset Osakas, OTM Puh: 0400-538022 Relevantit liiketoimet

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin Tyynelän tila, Joutseno Kevät 2013 www.tyynelantila.fi 2. PÄIVÄ I Investointien järkevyys II Heikon lenkin korjaaminen eloperäisen aineksen lisäämisen

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

Vaikuttaako kokonaiskysyntä tuottavuuteen?

Vaikuttaako kokonaiskysyntä tuottavuuteen? Vaikuttaako kokonaiskysyntä tuottavuuteen? Jussi Ahokas Itä-Suomen yliopisto Sayn laki 210 vuotta -juhlaseminaari Esityksen sisällys Mitä on tuottavuus? Tuottavuuden määritelmä Esimerkkejä tuottavuudesta

Lisätiedot

Uudet ominaisuudet: Invest for Excel 3.6

Uudet ominaisuudet: Invest for Excel 3.6 Uudet ominaisuudet: Invest for Excel 3.6 Microsoft Excel versiot... 2 Käyttöoppaat... 2 Sähköinen allekirjoitus... 2 Mallikansiot... 2 Liikearvon poisto ja tuloverotus... 4 Sisäinen korkokanta ennen veroja...

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Inflaatio, deflaatio, valuuttakurssit ja korot

Inflaatio, deflaatio, valuuttakurssit ja korot Studia Generalia Rahatalouden perusasioita I Inflaatio, deflaatio, valuuttakurssit ja korot Lauri Kajanoja, VTT Ekonomisti, kansantalousosasto Suomen Pankki Rahan käsite mitä raha on? Rahan voi määritellä

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

Pellonkäytön muutokset ja tuottoriskien hallinta. Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3.

Pellonkäytön muutokset ja tuottoriskien hallinta. Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3. Pellonkäytön muutokset ja tuottoriskien hallinta Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3.2013 www.helsinki.fi/yliopisto 20.3.2013 1 Tausta ja tavoitteet

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Inflaatio, deflaatio, valuuttakurssit ja korot

Inflaatio, deflaatio, valuuttakurssit ja korot Studia monetaria Rahatalouden perusasioita I Inflaatio, deflaatio, valuuttakurssit ja korot Lauri Kajanoja, VTT Rahapolitiikka- ja tutkimusosasto Suomen Pankki Mitä teen työkseni Suomen Pankin tehtävät

Lisätiedot

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: 6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010

Y55 Kansantaloustieteen perusteet sl 2010 Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Kustannus-vaikuttavuusanalyysin mahdollisuudet pelastustoimen palvelujen optimoinnissa (SMDno 2014 1171)

Kustannus-vaikuttavuusanalyysin mahdollisuudet pelastustoimen palvelujen optimoinnissa (SMDno 2014 1171) Kustannus-vaikuttavuusanalyysin mahdollisuudet pelastustoimen palvelujen optimoinnissa (SMDno 2014 1171) Tutkimuksen tausta Tutkimuksen lähtökohtana on, että pelastustoimelle kohdistuu jatkossa kasvavia

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Pro kuntapalvelut verkoston arvioita ja ehdotuksia uudelle valtuustolle Helsingin kaupungin taloudesta ja budjetista

Pro kuntapalvelut verkoston arvioita ja ehdotuksia uudelle valtuustolle Helsingin kaupungin taloudesta ja budjetista Pro kuntapalvelut verkoston arvioita ja ehdotuksia uudelle valtuustolle Helsingin kaupungin taloudesta ja budjetista Kulut kaupunkilaisten tarpeiden mukaan Kuluvan vuoden budjetti on laadittu pitäen lähtökohtana

Lisätiedot

Hyvän pientalon rakentamisen perusteita. Kajaanin kaupunki Rakennusvalvonta Kari Huusko Rakennustarkastaja

Hyvän pientalon rakentamisen perusteita. Kajaanin kaupunki Rakennusvalvonta Kari Huusko Rakennustarkastaja Hyvän pientalon rakentamisen perusteita Kajaanin kaupunki Rakennusvalvonta Kari Huusko Rakennustarkastaja Rakennusprojekti Oman talon rakentaminen on meille useimmille elämän ylivoimaisesti suurin ja tärkein

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu Pilkeyrityksen liiketoimintaosaamisen kehittäminen Timo Värre Jyväskylän ammattikorkeakoulu 1 Talouden hallinnan keskeiset osat Tulevaisuus Pitääkö kasvaa? KASVU KANNATTAVUUS Kannattaako liiketoiminta?

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Kunnallisveroprosentin noston vaikutus kunnan verotuloihin ja valtionosuuksien tasaukseen

Kunnallisveroprosentin noston vaikutus kunnan verotuloihin ja valtionosuuksien tasaukseen 1 Suomen Kuntaliitto 8.10.2010 Henrik Rainio, Jouko Heikkilä Kunnallisveroprosentin noston vaikutus kunnan verotuloihin ja valtionosuuksien tasaukseen Veroprosentin korotuksesta kunta saa aina täysimääräisen

Lisätiedot

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

OP-Säästö tulevaisuuteen -sijoituskori Myyntiesite/säännöt

OP-Säästö tulevaisuuteen -sijoituskori Myyntiesite/säännöt OP-Säästö tulevaisuuteen -sijoituskori Myyntiesite/säännöt Voimassa 24.9.2014 alkaen. OP-Säästö tulevaisuuteen -sijoituskori OP-Säästö tulevaisuuteen -sijoituskori (jäljempänä sijoituskori) tarjoaa valmiin,

Lisätiedot

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd .* Mat-2.11 4 Investointiteoria Tentti 6.9.2005 Ki{oita jokaiseen koepapcriin selveisti: o Mat-2.114 Investointiteoria o opintoki{'an numero sekii sukunimi ja viralliset etunimet tekstaten o koulutusohjelma

Lisätiedot

Paljonko metsäsijoitus tuottaa?

Paljonko metsäsijoitus tuottaa? Paljonko metsäsijoitus tuottaa? Metsä on yksi mahdollinen sijoituskohde. Metsäsijoituksen tuotto riippuu mm. siitä, kuinka halvalla tai kalliilla metsän ostaa, ja siitä, kuinka metsää käsittelee. Kuvan

Lisätiedot

Kuntien talous. Työllisyys ja elinkeino seminaari Savonlinna 11.7.2013. Pääekonomisti Juhani Turkkila Suomen Kuntaliitto

Kuntien talous. Työllisyys ja elinkeino seminaari Savonlinna 11.7.2013. Pääekonomisti Juhani Turkkila Suomen Kuntaliitto Kuntien talous Työllisyys ja elinkeino seminaari Savonlinna 11.7.213 Pääekonomisti Juhani Turkkila Suomen Kuntaliitto Vuosikate: Tietoja kuntien taloudesta vuosilta 26-212 Sisältää liikelaitokset. Lähde:

Lisätiedot

Työkalut rahoitusriskien hallintaan käytännön ratkaisuja. Jukka Leppänen rahoituspäällikkö, johdannaiset

Työkalut rahoitusriskien hallintaan käytännön ratkaisuja. Jukka Leppänen rahoituspäällikkö, johdannaiset 1 Työkalut rahoitusriskien hallintaan käytännön ratkaisuja Jukka Leppänen rahoituspäällikkö, johdannaiset KORKORISKI KOKONAISKORKO = Markkinakorko Marginaali Muut kulut Markkinakorko Markkinakorko aiheuttaa

Lisätiedot

Pääsykoe 2002/Ratkaisut. Hallinto

Pääsykoe 2002/Ratkaisut. Hallinto Pääsykoe 2002/Ratkaisut Hallinto 1. Osio 1 / Tosi (sivu 34). Osio 2 / Epätosi; Näin ei todeta kirjassa. Osio 3 / Tosi (sivu 34). Osio 4 / Tosi (sivu 35). 2. Väite A / Tosi (sivu 51). Väite B / Tosi (sivu

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Asuntosijoittamisen alueelliset tuotot vuosina 2014-2018. Julkaisuvapaa 24.6.2014 klo 10

Asuntosijoittamisen alueelliset tuotot vuosina 2014-2018. Julkaisuvapaa 24.6.2014 klo 10 Asuntosijoittamisen alueelliset tuotot vuosina 2014-2018 Julkaisuvapaa 24.6.2014 klo 10 Lähestymistapa Tutkimus tehtiin edellisen kerran vuonna 2013. Asuntosijoittamisen kannattavuuteen vaikuttavat tekijät:

Lisätiedot

Määräykset ja ohjeet 4/2011

Määräykset ja ohjeet 4/2011 Määräykset ja ohjeet 4/2011 Asuntoluoton ennenaikaisesta takaisinmaksusta perittävän enimmäiskorvauksen laskentaan käytettävät Dnro FIVA 9/01.00/2011 Antopäivä 15.12.2011 Voimaantulopäivä 31.3.2012 FIASSIVALVOTA

Lisätiedot

Tutkimus yritysten uudistumishalusta ja kyvystä. Vastaajia n. 250 13.12.2013

Tutkimus yritysten uudistumishalusta ja kyvystä. Vastaajia n. 250 13.12.2013 Tutkimus yritysten uudistumishalusta ja kyvystä Vastaajia n. 250 13.12.2013 Mistä tämä tutkimus kertoo Tutkimuksemme perusteella voimme entistä vahvemmin todeta, että uudistuminen lähtee ihmisistä - ja

Lisätiedot

ETELÄ-KARJALAN HANKINTAPALVELUN VASTINE EKSOTEN CHAINANALYTICS ROCELTA TILAAMAAN SELVITYKSEEN HANKINNAN, VARASTOINNIN JA LOGISTIIKAN TOIMINTAMALLEISTA

ETELÄ-KARJALAN HANKINTAPALVELUN VASTINE EKSOTEN CHAINANALYTICS ROCELTA TILAAMAAN SELVITYKSEEN HANKINNAN, VARASTOINNIN JA LOGISTIIKAN TOIMINTAMALLEISTA 28.4.2014 ETELÄ-KARJALAN HANKINTAPALVELUN VASTINE EKSOTEN CHAINANALYTICS ROCELTA TILAAMAAN SELVITYKSEEN HANKINNAN, VARASTOINNIN JA LOGISTIIKAN TOIMINTAMALLEISTA Etelä-Karjalan hankintapalvelut on tutustunut

Lisätiedot

Kerrostalojen korjaustoiminnan energiataloudellisten valintojen vertailu

Kerrostalojen korjaustoiminnan energiataloudellisten valintojen vertailu Rakennusperinnön hoidon ja korjausrakentamisen neuvottelupäivät 5. Kerrostalojen korjaustoiminnan energiataloudellisten valintojen vertailu Antti Kurvinen Juhani Heljo Tampereen teknillinen yliopisto Rakennustekniikan

Lisätiedot

ENNAKKOHARJOITTELUTEHTÄVÄT 2010 LASKENTATOIMI

ENNAKKOHARJOITTELUTEHTÄVÄT 2010 LASKENTATOIMI ENNAKKOHARJOITTELUTEHTÄVÄT 2010 LASKENTATOIMI Ennakkoharjoittelutehtävät 2010 / Laskentatoimi (1) 1. Tilinpäätös 1) T / E : Kaikkien osakeyhtiöiden täytyy julkistaa tilinpäätöksensä. (s.13) 2) Tilinpäätöstä

Lisätiedot

Metron kulunvalvontatekniikan uusiminen. Osaraportti 3 Automatisointivaihtoehtojen vaikuttavuus

Metron kulunvalvontatekniikan uusiminen. Osaraportti 3 Automatisointivaihtoehtojen vaikuttavuus Metron kulunvalvontatekniikan uusiminen Osaraportti Automatisointivaihtoehtojen vaikuttavuus SUY C: 4/200 Sisällysluettelo Johdanto 2 Metroinvestointien taloudellisuuden ja vaikuttavuuden laskenta 2 Metron

Lisätiedot

Pankkijärjestelmä nykykapitalismissa. Rahatalous haltuun -luentosarja Jussi Ahokas 4.11.2014

Pankkijärjestelmä nykykapitalismissa. Rahatalous haltuun -luentosarja Jussi Ahokas 4.11.2014 Pankkijärjestelmä nykykapitalismissa Rahatalous haltuun -luentosarja Jussi Ahokas 4.11.2014 Mistä raha tulee? Luennon sisältö Yksityiset pankit ja keskuspankki Keskuspankit ja rahapolitiikka Rahan endogeenisuus

Lisätiedot

INVESTOINNIN LASKENTA

INVESTOINNIN LASKENTA YT22 INVESTOINNIN LASKENTA Yrityssalo Oy www.yrityssalo.fi Sivu 2 (8) INVESTOINNIN LASKENTA SISÄLTÖ SIVU 1. INVESTOINNIN SUUNNITTELU 3 1.1 Investointien rahoitus 3 1.2 Investointien luokittelu 4 2. INVESTOINTIKUSTANNUSTEN

Lisätiedot

RAHOITUSSUUNNITELMA JA TOTEUTETTAVUUS Tuukka Forsell, Jyrki Harjula, Annikki Niiranen ja Inspira 5/16/2013 1

RAHOITUSSUUNNITELMA JA TOTEUTETTAVUUS Tuukka Forsell, Jyrki Harjula, Annikki Niiranen ja Inspira 5/16/2013 1 RAHOITUSSUUNNITELMA JA TOTEUTETTAVUUS Tuukka Forsell, Jyrki Harjula, Annikki Niiranen ja Inspira 5/16/2013 1 Rahoitus- ja toteutusmallien arviointi 1. Hankeen lähtökohtien määrittely 2. Vaihtoehtoiset

Lisätiedot

SAMPO PANKKI KORKO-OBLIGAATIO 1609: KORKOKAULURI XV

SAMPO PANKKI KORKO-OBLIGAATIO 1609: KORKOKAULURI XV Danske Bank Oyj, www.danskebank.fi SAMPO PANKKI KORKO-OBLIGAATIO 1609: KORKOKAULURI XV Tietoa lainasta: Lainan liikkeeseenlaskija: Danske Bank Oyj Lainan ISIN-koodi: FI4000050000 KORKOKAULURI XV Viiden

Lisätiedot

Veroprosentin korottamispaine porin selvityksestä, Eurajoella ei vahvan taseen takia korottamispainetta:

Veroprosentin korottamispaine porin selvityksestä, Eurajoella ei vahvan taseen takia korottamispainetta: Veroprosentin korottamispaine porin selvityksestä, Eurajoella ei vahvan taseen takia korottamispainetta: Kuntakohtainen paine veroprosentin korottamiseksi 2012 2017e 2021e 2025e Harjavalta 23,6 23,4 25,0

Lisätiedot

Invest for Excel 3.5 uudet ominaisuudet

Invest for Excel 3.5 uudet ominaisuudet Invest for Excel 3.5 uudet ominaisuudet Excel 2007 -valikkorivi...2 Venäjän kieli...3 Lisää rivejä tunnuslukutaulukkoon...3 Suhteellisen nykyarvon määritelmä muuttunut...3 Kannattavuuslaskelma, joka perustuu

Lisätiedot

Verkkokurssin tuotantoprosessi

Verkkokurssin tuotantoprosessi Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...

Lisätiedot