Nykyarvo ja investoinnit, L9

Koko: px
Aloita esitys sivulta:

Download "Nykyarvo ja investoinnit, L9"

Transkriptio

1 Nykyarvo ja investoinnit, L9 netto netto netto netto

2 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n n j netto netto Tulovirran saadaan diskonttaamalla jokainen tuloerä nykyhetkeen ja laskemalla näin saadut yksittäiset t yhteen n k j NA = (1 + i) j j=1

3 2 Tulovirran riippuu käytetystä laskentakorosta. Esimerkki 1. Tarkastellaan kahta kassavirtaa, A ja B, joiden nettokassaerät ovat kuukausittain seuraavan taulukon mukaiset: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 10% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.11/ / /12 NA B = 1000e 1000e 1050e + + = e 1.11/ / /12

4 3 Esimerkki 1 jatkuu Jos laskentakorko nostetaan 15%:iin (tod. vuosikorko), niin t muuttuvat: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 15% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.151/ / /12 NA B = 1000e 1000e 1050e + + = e 1.151/ / /12

5 4 Esimerkki 1 jatkuu Laskentakorko vaikuttaa on! Mitä isompi laskentakorko, sitä pienempi. Laskentakorolla on myös merkitystä eri kassavirtojen vertailussa. Kun i tod = 0.10, niin B-kassavirta on arvokkaampi. Ero selittyy tietenkin sillä, että B:n kassakertymä on isompi. netto netto Kun i tod = 0.15, niin A-kassavirta on arvokkaampi. Ero selittyy sillä, että B:n kolmas erä, joka saadaan 8:nnen jakson lopussa, pienenee diskonttauksessa enemmän kuin A:n kolmas erä, joka saadaan kolmannen jakson lopussa.

6 5 Laskentakorko Mikä määrää laskentakoron? Laskentakorko valitaan siten, että Laskentakorko kuvastaa pääoman kustannuksia. (1) Vieras pääoma: Millä korolla on mahdollista saada lainaa? (2) Oma pääoma: Miten suuret korkotulot menetämme, jos käytämme omaa rahaa? netto netto Laskentakorko kuvastaa toiminnalle asetettua tuottovaatimusta. Laskentakorko voi sisältää riskipremion.

7 6 Esimerkki 1 Tarkastellaan vakiotulovirtaa, jossa kassaan tulee n = 36 kuukauden ajan k = 800e joka jakson lopussa. Kuukausijaksoon liittyvä laskentakorkokanta on i = on: NA = = = n j=1 k (1 + i) j k (1 + i) + k (1 + i) + k 2 (1 + i) + + k 3 (1 + i) ( ( ) n n ) k (1 + i) i ( i = k ((1 + i)n 1) i (1 + i) n ) = k i ( 1 1 (1 + i) n ) netto netto

8 7 Sijoitetaan arvot lausekkeeseen (n = 36, k = 800e, ja i = 0.005) NA = k ((1 + i)n 1) i (1 + i) ( n (1.005) 36 ) 1 = 800e = e (1.005) 36 netto netto Kun a verrataan kirjanpidolliseen kertymään e = e, niin huomataan pienemmäksi. Tämä ei ole tietenkään yllätys.

9 8 Esimerkki 2 Lasketaan edellinen esimerkki vielä uudelleen niin, että lähdemme liikkeelle todellisesta vuosikorosta. Olkoon n = 36 (kuukautta), k = 800e (per kuukausi) ja i tod = (todellinen vuosikorko on 6.0%). on NA = k ((1 + i)n 1) i (1 + i) n ( (1 + itod ) n/12 ) 1 = k [ (1 + itod ) 1/12 ] 1 (1 + i tod ) n/12 ( (1.06) 36/12 ) 1 = 800e = [1.06 1/ e 1] (1.06) 36/12 netto netto

10 netto 9 Tyypilli projektin nettokassavirta sisältää kolme osaa: Perusinvestointi H hetkellä t = 0. Tyypillinen perusinvestointi syntyy siitä, että yrittäjä hankkii projektissa tarvittavat koneet, laitteet ja luvat. Myös rekrytointi voi aiheuttaa perusinvestointiin kuuluvia kustannuksia. Nettokassavirta k t jaksojen t = 1, 2,..., n lopussa. Kassavirtaerä k t realisoituu siis jakson t lopussa. Jos tämä tuntuu väärältä tulkinnalta, niin sitten siirrymme lyhyempiin jaksoihin. n on investoinnin pitoaika jaksoissa. Jäännösarvo JA joka saadaan jakson n lopussa. Jäännösarvo tyypillisesti syntyy siitä, kun projektin lopuksi käytetyt koneet myydään. Jäännösarvo voi olla myös negatiivinen. netto netto

11 netto 10 Kuvana H k 1 k 2 k 3 k k 5 k 6 4 k JA n n j netto netto NNA = H + n j=1 k j (1 + i) j + JA (1 + i) n Suomeksi: NNA = NettoNykyArvo Englanniksi : NPV = Net Pret Value

12 netto 11 Jos projektin NNA > 0e, niin sanomme, että projekti on kannattava käytetyllä laskentakorolla. Esimerkki 1. Tarkastellaan projektia, jonka perusinvestointi on H = e. Projekti tuottaa kaksi vuotta kestävän vakiokassavirran 1 000e/kk. Jäännösarvo on JA = 0e. Käytetään laskelmassa laskentakorkoa 10% (p.a.) netto netto NNA = H + n j=1 k j (1 + i) j ( /12 1) = e e (1.10 1/12 1) /12 = e e = e > 0e

13 netto 12 Excelin kaavat solu D2: = D1^(1/12) solu D3: netto netto = D2 1 solu D4: = B4 + NPV(D3 ; B5 : B28 )

14 netto 13 Esimerkki 1 jatkuu Laskentakorko 10% merkitsee nyt tuottovaatimusta. Kun tulkitsemme edellä saatua tulosta, vertaamme projektia nanssitalletukseen, joka antaa talletetulle pääomalle 10% koron (p.a.). Nykyarvolausekkeen netto netto NNA = H + n j=1 k j (1 + i) j = e e kassavirtaosa ekertoo miten suuren talletuk joudumme tekemään, jos haluamme nostaa nanssitalletuk korkoineen erinä (k 1, k 2, k 3,..., k 24 ).

15 netto 14 Esimerkki 1 jatkuu Voimme siis sanoa, että edellä kuvattu nanssitalletus tuottaa saman kassavirran kuin projekti. Ero on siinä, että projekti synnytti saman kassavirran pienemmällä alkupanoksella, joten se maksaa korkoa alkupanokselle paremmin kuin 10% korolla (p.a.). netto netto Jos NNA = 0, niin projektin kyky maksaa korkoa alkupanokselle on yhtäsuuri kuin laskentakorko.

16 netto 15 Esimerkki: Investointiprojektin perusinvestointi on 8 250eja kuukausittainen nettotulovirta alkaa heti investoinnin jälkeen ja kestää 5 vuotta. Miten suuri tulee kuukausittai nettotulovirran olla (xe/kk) jotta investoinnin netto olisi positiivinen, kun laskentakorko on 8% (todellinen vuosikorko). 60 x e NNA e j/12 0 j=1 a xe 8 250e xe e = c 8 250e a netto netto xe [1.081/12 1] /12 ( /12 1) 8 250e = e/kk

17 netto 16 Johtopäätös: Rahoitetaan perusinvestointi tasaerälainalla, jolle Lainan määrä on perusinvestointi K 0 = H Lainakorko on laskentakorko Laina-aika on projektin kesto netto netto NNA 0 nettokassavirta riittää lainan hoitamiseen.

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Osamaksukauppa, vakiotulovirran diskonttaus, L8 Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 20 Talousmatematiikan perusteet, ORMS030 4. harjoitus, viikko 6 6.2. 0.2.20) R ma 2 4 F249 R5 ti 4 6 F453 R2 ma 4 6 F453 R6 to 2 4 F40 R3 ti 08 0 F425 R to 08 0 F425 R4 ti 2 4 F453

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous)

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous) INVESTOINTIEN EDULLISUUSVERTAILU Tero Tyni Erityisasiantuntija (kuntatalous) 25.5.2007 Mitä tietoja laskentaan tarvitaan Investoinnista aiheutuneet investointikustannukset Investoinnin pitoaika Investoinnin

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) Investointien suunnittelu ja rahoitus Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) KURSSIN LUENNOT 11.09.2015 Johdanto (Kalevi Aaltonen) 18.09.2015

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Investoinnin takaisinmaksuaika

Investoinnin takaisinmaksuaika Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika

Lisätiedot

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma 151 RAHOITUSOSA 152 153 RAHOITUSOSA Talousarvion rahoitusosaan kootaan käyttötalous-, tuloslaskelma - ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien

Lisätiedot

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Rahavirtojen diskonttaamisen periaate

Rahavirtojen diskonttaamisen periaate Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta

Lisätiedot

Verkkokurssin tuotantoprosessi

Verkkokurssin tuotantoprosessi Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä. Tämä Tili-ja kulutusluotot -aineisto on tarkoitettu täydentämään Liiketalouden matematiikka 2 kirjan sisältöä. 1 Sisällysluettelo TILI- JA KULUTUSLUOTOT...3 Esim. 1... 4 Esim. 2... 6 Esim. 3... 7 Esim.

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7

Lisätiedot

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Investoinnin käsite Investointeina pidetään menoja, jotka ovat rahamäärältään suuria ja joissa tulon kertymisaika on pitkä (> 1 vuosi) Vaikutukset ulottuvat pitkälle

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat RAHOITUSOSA RAHOITUSOSA n rahoitusosaan kootaan käyttötalous-tuloslaskelma- ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien kassavirta). Lisäksi rahoitusosaan

Lisätiedot

TULOSLASKELMAN RAKENNE

TULOSLASKELMAN RAKENNE TULOSLASKELMAN RAKENNE Liiketoiminnan tuotot Toiminnan kulut Liikevoitto VÄHENNETÄÄN Liikevaihdon ansaintaan liittyvät kulut Rahoituserät Satunnaiset erät Tilinpäätösjärjestelyt Tilikauden voitto Verot

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Uudet ominaisuudet: Invest for Excel 3.6

Uudet ominaisuudet: Invest for Excel 3.6 Uudet ominaisuudet: Invest for Excel 3.6 Microsoft Excel versiot... 2 Käyttöoppaat... 2 Sähköinen allekirjoitus... 2 Mallikansiot... 2 Liikearvon poisto ja tuloverotus... 4 Sisäinen korkokanta ennen veroja...

Lisätiedot

7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa

7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa 1 7. KUSTANNUS-HYÖTYANALYYSI 7.1 Johdantoa Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi sosiaaliturva-,

Lisätiedot

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010 » Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen

Lisätiedot

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa

Lisätiedot

Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot)

Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot) Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot) 2,5 2,5 1,5 1,5 1,0 1,0 0,5 0,5 Tammi Helmi Maalis Huhti

Lisätiedot

YHTEISTOIMINTASELVITYS TERVA-JUNKO-KEILA

YHTEISTOIMINTASELVITYS TERVA-JUNKO-KEILA YHTEISTOIMINTASELVITYS TERVA-JUNKO-KEILA 1. YLEISTÄ Laskelmat on tehty kassavirtalaskelma perusteisesti. Tarkoituksena selvittää onko mahdollisella yhtiöllä edellytyksiä selvitä investoinneista ja nykyisistä

Lisätiedot

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta

Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Itse tutkimus Muotoilun mittaaminen liiketaloudellisesta näkökulmasta Myynnin tila Prof. Jaakko ASPARA Aalto-yliopiston Kauppakorkeakoulu TOP MANAGEMENT FORUM/080214/PP/AMS Miksi selvittää muotoiluinvestointien

Lisätiedot

MIKKO JÄÄSKELÄINEN Yrityksen arvo. Tuotantotalous 1 /

MIKKO JÄÄSKELÄINEN Yrityksen arvo. Tuotantotalous 1 / MIKKO JÄÄSKELÄINEN Yrityksen arvo Tuotantotalous 1 / 28.2.2017 Luennot AIEMMAT þ MITÄ ON TUOTANTOTALOUS? þ YRITTÄJYYS þ TUOTTEET JA TUOTANTO þ YRITTÄJÄPANEELI þ YRITYKSEN PROSESSIT þ MYYNTI JA MARKKINOINTI

Lisätiedot

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Matti Hyppönen Tuotantotalouden koulutusohjelman opinnäytetyö Konetekniikka Insinööri (AMK) KEMI 2012 TIIVISTELMÄ KEMI-TORNION

Lisätiedot

Invest for Excel 3.5 uudet ominaisuudet

Invest for Excel 3.5 uudet ominaisuudet Invest for Excel 3.5 uudet ominaisuudet Excel 2007 -valikkorivi...2 Venäjän kieli...3 Lisää rivejä tunnuslukutaulukkoon...3 Suhteellisen nykyarvon määritelmä muuttunut...3 Kannattavuuslaskelma, joka perustuu

Lisätiedot

Talousmatematiikka (4 op)

Talousmatematiikka (4 op) Talousmatematiikka (4 op) M. Nuortio, T. Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Talousmatematiikka 2012 Yhteystiedot: Matti Nuortio mnuortio@paju.oulu.fi Työhuone M225 Kurssin

Lisätiedot

INVESTOINNIN KANNATTAVUUS. Yritys X

INVESTOINNIN KANNATTAVUUS. Yritys X INVESTOINNIN KANNATTAVUUS Yritys X Jaana Haavisto Opinnäytetyö Helmikuu 2015 Liiketalous Taloushallinto TIIVISTELMÄ Tampereen ammattikorkeakoulu Liiketalouden koulutusohjelma Taloushallinnon suuntautumisvaihtoehto

Lisätiedot

VENLA. Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille

VENLA. Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille VENLA Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille 1 VENLA Nurmijärven Sähkön pienkuluttajapalvelu VENLA PALVELUSTA SAAT Kulutustiedot nykyisistä käyttöpaikoistasi Sähkö (Energia)

Lisätiedot

ARVOMETSÄ METSÄN ARVO 15.3.2016

ARVOMETSÄ METSÄN ARVO 15.3.2016 SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE EUROOPAN UNIONIN NEUVOSTO Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE Lähettäjä: Euroopan komissio Saapunut: 25. heinäkuuta 2011 Vastaanottaja: Neuvoston pääsihteeristö Kom:n

Lisätiedot

Solvenssi II:n markkinaehtoinen vastuuvelka

Solvenssi II:n markkinaehtoinen vastuuvelka Solvenssi II:n markkinaehtoinen vastuuvelka Mikä on riskitön korko ja pääoman tuottovaatimus Suomen Aktuaariyhdistys 13.10.2008 Pasi Laaksonen Yleistä Mikäli vastuuvelka on ei-suojattavissa (non-hedgeable)

Lisätiedot

(EUR) 800 000 800 000 -400 000-400 000 -800 000-800 000 -1 200 000-1 200 000. Pylväs = kuluva tilikausi; viiva = edellinen tilikausi TALGRAF

(EUR) 800 000 800 000 -400 000-400 000 -800 000-800 000 -1 200 000-1 200 000. Pylväs = kuluva tilikausi; viiva = edellinen tilikausi TALGRAF YHD - Tuloslaskelma, 4.2.2013 8000 8000 4000 4000 01121314151617181910 1010 1110 1210 KUM KUM KUM KUM KUM KUM KUM KUM Ennu Ennu Ennu Ennu -4000-4000 -8000-8000 -1 2000-1 2000 VARSINAISEN TOIMINNAN TUOTTO-/KULUJÄÄMÄ

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

Rahoitusinnovaatiot kuntien teknisellä sektorilla

Rahoitusinnovaatiot kuntien teknisellä sektorilla Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin

Lisätiedot

Taloudelliset laskelmat

Taloudelliset laskelmat Taloudelliset laskelmat Pielisen Tietoverkko Juuka 31.3.214 LUONNOS LASKENTAOLETUKSET 31.3.214 2 Laskentaoletukset Investoinnit Ominaisuus Kuvaus Rakentamisaikataulu Runkoverkon rakentaminen tapahtuu vuonna

Lisätiedot

Henri Mulari. Investointityökalu Finndomo Oy:lle

Henri Mulari. Investointityökalu Finndomo Oy:lle Henri Mulari Investointityökalu Finndomo Oy:lle Opinnäytetyö Kajaanin ammattikorkeakoulu Tradenomikoulutus Liiketalouden koulutusohjelma Syksy 2011 OPINNÄYTETYÖ TIIVISTELMÄ Koulutusala Yhteiskuntatieteiden,

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

Riski ja velkaantuminen

Riski ja velkaantuminen Riski ja velkaantuminen TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 28.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen

Lisätiedot

Arvonlaskennan toiminta sijoitusten osalta

Arvonlaskennan toiminta sijoitusten osalta Sivu 1/5 HEDGEHOG OY Arvonlaskennan toiminta sijoitusten osalta 6.10.2014 Tässä on kuvailtu Hedgehog Oy:n käyttämän arvonlaskentajärjestelmän toimintaa sijoitusten merkinnän, tuottosidonnaisten palkkioiden,

Lisätiedot

Suomen Kotikylmiö Oy (Konserni) Kassakriisin tunnistaminen

Suomen Kotikylmiö Oy (Konserni) Kassakriisin tunnistaminen 17.4.215 P - Analyzer pana Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 Kassakriisin tunnistaminen 29 21 211 212 213 1 2 3 4 5 Kumulatiivinen käyttökate 1 69 2 164 3 235 4 528

Lisätiedot

INVESTOINNIN LASKENTA

INVESTOINNIN LASKENTA YT22 INVESTOINNIN LASKENTA Yrityssalo Oy www.yrityssalo.fi Sivu 2 (8) INVESTOINNIN LASKENTA SISÄLTÖ SIVU 1. INVESTOINNIN SUUNNITTELU 3 1.1 Investointien rahoitus 3 1.2 Investointien luokittelu 4 2. INVESTOINTIKUSTANNUSTEN

Lisätiedot

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että

Lisätiedot

KEMIJÄRVEN KAUPUNKI Vesi- ja viemärilaitoksen arvonmääritys: Tekninen nykykäyttöarvo ja tuottoarvo

KEMIJÄRVEN KAUPUNKI Vesi- ja viemärilaitoksen arvonmääritys: Tekninen nykykäyttöarvo ja tuottoarvo TIIVISTELMÄ 101001271 18.11.2015 KEMIJÄRVEN KAUPUNKI : Tekninen nykykäyttöarvo ja tuottoarvo Vastuunrajoitus Työ on suoritettu Kemijärven kaupungilta saadun toimeksiannon perusteella pätevien ja kokeneiden

Lisätiedot

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.2015 1. Luotonantajan nimi ja yhteystiedot Luotonantaja: Yhteisötunnus: Osoite: Puhelin: Sähköpostiosoite: Faksinumero: Internetosoite: Lainasto

Lisätiedot

Todellinen prosentti

Todellinen prosentti Todellinen prosentti Kaksi ajankohtaista esimerkkiä talousmatematiikasta ja todellisuudesta Tommi Sottinen Vaasan yliopisto 9. lokakuuta 2010 MAOL ry:n syyspäivät 8.-10.10.2010, Vantaa 1 / 16 Tiivistelmä

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin. Reijo Käki www.reijokaki.com

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin. Reijo Käki www.reijokaki.com Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin Reijo Käki www.reijokaki.com 1. PÄIVÄ I Voitto ja arvopohjainen päätöksenteko? II Kassavirta ja katetuotto III Heikot lenkit IV Marginaalituottavuus

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivastaukset A5-kurssin laskareihin, kevät 009 Harjoitukset (viikko 5) Tehtävä Asia selittyy tulonsiirroilla. Tulonsiirrot B lasketaan mukaan kotitalouksien käytettävissä oleviin tuloihin Y d. Tässä

Lisätiedot

Pääsykoe 2002/Ratkaisut. Hallinto

Pääsykoe 2002/Ratkaisut. Hallinto Pääsykoe 2002/Ratkaisut Hallinto 1. Osio 1 / Tosi (sivu 34). Osio 2 / Epätosi; Näin ei todeta kirjassa. Osio 3 / Tosi (sivu 34). Osio 4 / Tosi (sivu 35). 2. Väite A / Tosi (sivu 51). Väite B / Tosi (sivu

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

8. Vertailuperiaatteita ja johdannaisia

8. Vertailuperiaatteita ja johdannaisia 8. Vertailuperiaatteita ja johdannaisia 1. Hyötyfunktio Nykyarvo ei mittaa riskiasennetta, joka vaikuttaa valintakäyttäytymiseen (minkä investointivaihtoehdon valitset?). Esim. Kumpi seuraavista vaihtoehdoista

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä Memo-työryhmä 23.9.2010 Lauri Valsta 4.11.2010 1 Metsänomistaja ja liiketaloudellinen kannattavuus Metsänomistajan välineet

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Metropolia Ammattikorkeakoulu INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Virpi Tevä-Helminen 28.8.2013 2 SISÄLTÖ: 1. JOHDANTO... 4 1.1 Investointilaskenta ja päätöksenteko kurssin esittely... 4

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Asian on valmistellut tekninen johtaja.

Asian on valmistellut tekninen johtaja. Tekninen ja ympäristölautakunta 117 08.12.2015 Tekninen ja ympäristölautakunta 128 21.12.2015 Vesihuoltolaitoksen taksa 2016 177/03.031/2015 Tekninen ja ympäristölautakunta 08.12.2015 117 Tekninen lautakunta

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1

LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1 10 December 3 LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1 Euroopan keskuspankki (EKP) julkaisee tänään ensimmäisen kerran uudet yhdenmukaistetut korkotilastot. Tilastotiedot

Lisätiedot

KONSERNIN KESKEISET TUNNUSLUVUT

KONSERNIN KESKEISET TUNNUSLUVUT KONSERNIN KESKEISET TUNNUSLUVUT 1 6/2015 1 6/2014 1 12/2014 Liikevaihto, 1000 EUR 17 218 10 676 20 427 Liikevoitto ( tappio), 1000 EUR 5 205 1 916 3 876 Liikevoitto, % liikevaihdosta 30,2 % 17,9 % 19,0

Lisätiedot

Pikavipit ja velkaantuminen

Pikavipit ja velkaantuminen Pikavipit ja velkaantuminen Mikä on pikavipin hinta? Vippi ja velka, onko syytä huoleen? Studia monetaria - yleisöluento 22.4.2008 Suomen Pankin Rahamuseo Sampo Alhonsuo Suomen Pankki Esityksen sisältö:

Lisätiedot

VENLA. Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille

VENLA. Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille VENLA Nurmijärven Sähkö Oy:n Sähköenergian raportointi pienkuluttajille 1 VENLA Nurmijärven Sähkön pienkuluttajapalvelu VENLA PALVELUSTA SAAT Kulutustiedot nykyisistä käyttöpaikoistasi Sähkö (Energia)

Lisätiedot