Nykyarvo ja investoinnit, L9

Koko: px
Aloita esitys sivulta:

Download "Nykyarvo ja investoinnit, L9"

Transkriptio

1 Nykyarvo ja investoinnit, L9 netto netto netto netto

2 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n n j netto netto Tulovirran saadaan diskonttaamalla jokainen tuloerä nykyhetkeen ja laskemalla näin saadut yksittäiset t yhteen n k j NA = (1 + i) j j=1

3 2 Tulovirran riippuu käytetystä laskentakorosta. Esimerkki 1. Tarkastellaan kahta kassavirtaa, A ja B, joiden nettokassaerät ovat kuukausittain seuraavan taulukon mukaiset: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 10% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.11/ / /12 NA B = 1000e 1000e 1050e + + = e 1.11/ / /12

4 3 Esimerkki 1 jatkuu Jos laskentakorko nostetaan 15%:iin (tod. vuosikorko), niin t muuttuvat: jakso A 1000e 1000e 1000e B 1000e 1000e e netto netto 15% todellisella vuosikorolla tulovirtojen t ovat NA A = 1000e 1000e 1000e + + = e 1.151/ / /12 NA B = 1000e 1000e 1050e + + = e 1.151/ / /12

5 4 Esimerkki 1 jatkuu Laskentakorko vaikuttaa on! Mitä isompi laskentakorko, sitä pienempi. Laskentakorolla on myös merkitystä eri kassavirtojen vertailussa. Kun i tod = 0.10, niin B-kassavirta on arvokkaampi. Ero selittyy tietenkin sillä, että B:n kassakertymä on isompi. netto netto Kun i tod = 0.15, niin A-kassavirta on arvokkaampi. Ero selittyy sillä, että B:n kolmas erä, joka saadaan 8:nnen jakson lopussa, pienenee diskonttauksessa enemmän kuin A:n kolmas erä, joka saadaan kolmannen jakson lopussa.

6 5 Laskentakorko Mikä määrää laskentakoron? Laskentakorko valitaan siten, että Laskentakorko kuvastaa pääoman kustannuksia. (1) Vieras pääoma: Millä korolla on mahdollista saada lainaa? (2) Oma pääoma: Miten suuret korkotulot menetämme, jos käytämme omaa rahaa? netto netto Laskentakorko kuvastaa toiminnalle asetettua tuottovaatimusta. Laskentakorko voi sisältää riskipremion.

7 6 Esimerkki 1 Tarkastellaan vakiotulovirtaa, jossa kassaan tulee n = 36 kuukauden ajan k = 800e joka jakson lopussa. Kuukausijaksoon liittyvä laskentakorkokanta on i = on: NA = = = n j=1 k (1 + i) j k (1 + i) + k (1 + i) + k 2 (1 + i) + + k 3 (1 + i) ( ( ) n n ) k (1 + i) i ( i = k ((1 + i)n 1) i (1 + i) n ) = k i ( 1 1 (1 + i) n ) netto netto

8 7 Sijoitetaan arvot lausekkeeseen (n = 36, k = 800e, ja i = 0.005) NA = k ((1 + i)n 1) i (1 + i) ( n (1.005) 36 ) 1 = 800e = e (1.005) 36 netto netto Kun a verrataan kirjanpidolliseen kertymään e = e, niin huomataan pienemmäksi. Tämä ei ole tietenkään yllätys.

9 8 Esimerkki 2 Lasketaan edellinen esimerkki vielä uudelleen niin, että lähdemme liikkeelle todellisesta vuosikorosta. Olkoon n = 36 (kuukautta), k = 800e (per kuukausi) ja i tod = (todellinen vuosikorko on 6.0%). on NA = k ((1 + i)n 1) i (1 + i) n ( (1 + itod ) n/12 ) 1 = k [ (1 + itod ) 1/12 ] 1 (1 + i tod ) n/12 ( (1.06) 36/12 ) 1 = 800e = [1.06 1/ e 1] (1.06) 36/12 netto netto

10 netto 9 Tyypilli projektin nettokassavirta sisältää kolme osaa: Perusinvestointi H hetkellä t = 0. Tyypillinen perusinvestointi syntyy siitä, että yrittäjä hankkii projektissa tarvittavat koneet, laitteet ja luvat. Myös rekrytointi voi aiheuttaa perusinvestointiin kuuluvia kustannuksia. Nettokassavirta k t jaksojen t = 1, 2,..., n lopussa. Kassavirtaerä k t realisoituu siis jakson t lopussa. Jos tämä tuntuu väärältä tulkinnalta, niin sitten siirrymme lyhyempiin jaksoihin. n on investoinnin pitoaika jaksoissa. Jäännösarvo JA joka saadaan jakson n lopussa. Jäännösarvo tyypillisesti syntyy siitä, kun projektin lopuksi käytetyt koneet myydään. Jäännösarvo voi olla myös negatiivinen. netto netto

11 netto 10 Kuvana H k 1 k 2 k 3 k k 5 k 6 4 k JA n n j netto netto NNA = H + n j=1 k j (1 + i) j + JA (1 + i) n Suomeksi: NNA = NettoNykyArvo Englanniksi : NPV = Net Pret Value

12 netto 11 Jos projektin NNA > 0e, niin sanomme, että projekti on kannattava käytetyllä laskentakorolla. Esimerkki 1. Tarkastellaan projektia, jonka perusinvestointi on H = e. Projekti tuottaa kaksi vuotta kestävän vakiokassavirran 1 000e/kk. Jäännösarvo on JA = 0e. Käytetään laskelmassa laskentakorkoa 10% (p.a.) netto netto NNA = H + n j=1 k j (1 + i) j ( /12 1) = e e (1.10 1/12 1) /12 = e e = e > 0e

13 netto 12 Excelin kaavat solu D2: = D1^(1/12) solu D3: netto netto = D2 1 solu D4: = B4 + NPV(D3 ; B5 : B28 )

14 netto 13 Esimerkki 1 jatkuu Laskentakorko 10% merkitsee nyt tuottovaatimusta. Kun tulkitsemme edellä saatua tulosta, vertaamme projektia nanssitalletukseen, joka antaa talletetulle pääomalle 10% koron (p.a.). Nykyarvolausekkeen netto netto NNA = H + n j=1 k j (1 + i) j = e e kassavirtaosa ekertoo miten suuren talletuk joudumme tekemään, jos haluamme nostaa nanssitalletuk korkoineen erinä (k 1, k 2, k 3,..., k 24 ).

15 netto 14 Esimerkki 1 jatkuu Voimme siis sanoa, että edellä kuvattu nanssitalletus tuottaa saman kassavirran kuin projekti. Ero on siinä, että projekti synnytti saman kassavirran pienemmällä alkupanoksella, joten se maksaa korkoa alkupanokselle paremmin kuin 10% korolla (p.a.). netto netto Jos NNA = 0, niin projektin kyky maksaa korkoa alkupanokselle on yhtäsuuri kuin laskentakorko.

16 netto 15 Esimerkki: Investointiprojektin perusinvestointi on 8 250eja kuukausittainen nettotulovirta alkaa heti investoinnin jälkeen ja kestää 5 vuotta. Miten suuri tulee kuukausittai nettotulovirran olla (xe/kk) jotta investoinnin netto olisi positiivinen, kun laskentakorko on 8% (todellinen vuosikorko). 60 x e NNA e j/12 0 j=1 a xe 8 250e xe e = c 8 250e a netto netto xe [1.081/12 1] /12 ( /12 1) 8 250e = e/kk

17 netto 16 Johtopäätös: Rahoitetaan perusinvestointi tasaerälainalla, jolle Lainan määrä on perusinvestointi K 0 = H Lainakorko on laskentakorko Laina-aika on projektin kesto netto netto NNA 0 nettokassavirta riittää lainan hoitamiseen.

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma 151 RAHOITUSOSA 152 153 RAHOITUSOSA Talousarvion rahoitusosaan kootaan käyttötalous-, tuloslaskelma - ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) Investointien suunnittelu ja rahoitus Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) KURSSIN LUENNOT 11.09.2015 Johdanto (Kalevi Aaltonen) 18.09.2015

Lisätiedot

Rahavirtojen diskonttaamisen periaate

Rahavirtojen diskonttaamisen periaate Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa

7. KUSTANNUS-HYÖTYANALYYSI. 7.1 Johdantoa 1 7. KUSTANNUS-HYÖTYANALYYSI 7.1 Johdantoa Kustannus-hyötyanalyysiä, KHA, sovelletaan yleensä - minkä tahansa investointihankkeen esimerkiksi moottoritien tai sataman - reformin, esimerkiksi sosiaaliturva-,

Lisätiedot

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE EUROOPAN UNIONIN NEUVOSTO Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE Lähettäjä: Euroopan komissio Saapunut: 25. heinäkuuta 2011 Vastaanottaja: Neuvoston pääsihteeristö Kom:n

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Riski ja velkaantuminen

Riski ja velkaantuminen Riski ja velkaantuminen TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 28.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

ARVOMETSÄ METSÄN ARVO 15.3.2016

ARVOMETSÄ METSÄN ARVO 15.3.2016 SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO

Lisätiedot

Kentän perusparannus - rahoitusjärjestelyt. j Esittely yhtiökokoukselle

Kentän perusparannus - rahoitusjärjestelyt. j Esittely yhtiökokoukselle Kentän perusparannus - rahoitusjärjestelyt j Esittely yhtiökokoukselle 30.11.2011 Peruskorjausohjelma lyhyt esittely Yhtiöllä on suunnitelmat joiden mukaan perusparannus- ohjelma käynnistetään syksyllä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto Vellamonkodit Oy:n järjestely Liiketoimintajaosto 31.5.2016 Vellamonkodit Oy:n tase Omistus kaupunki 13,98% (päiväkoti) ja Kotilinnasäätiö 86,02% (asuinrakennus) Taseen loppusumma 5,9 milj. euroa, josta

Lisätiedot

INVESTOINNIN KANNATTAVUUS. Yritys X

INVESTOINNIN KANNATTAVUUS. Yritys X INVESTOINNIN KANNATTAVUUS Yritys X Jaana Haavisto Opinnäytetyö Helmikuu 2015 Liiketalous Taloushallinto TIIVISTELMÄ Tampereen ammattikorkeakoulu Liiketalouden koulutusohjelma Taloushallinnon suuntautumisvaihtoehto

Lisätiedot

Ratkaisuja: auringosta ja rahasta. Jouni Juntunen Tutkijatohtori

Ratkaisuja: auringosta ja rahasta. Jouni Juntunen Tutkijatohtori Ratkaisuja: auringosta ja rahasta Jouni Juntunen Tutkijatohtori 1. Aurinkoteknologiasta 1. Teknologia Perusratkaisut Aurinkosähkö Aurinkolämpö 3 1. Teknologia Esteettisempi ratkaisu 16.2.2016 4 2. Rahasta

Lisätiedot

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1.11.2015 1. Luotonantajan nimi ja yhteystiedot Luotonantaja: Yhteisötunnus: Osoite: Puhelin: Sähköpostiosoite: Faksinumero: Internetosoite: Lainasto

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

HKL-Metroliikenne OSAVUOSIKATSAUS

HKL-Metroliikenne OSAVUOSIKATSAUS HKL-Metroliikenne OSAVUOSIKATSAUS 1.1. 31.3.2013 HKLjk 2.5.2013 Osavuosikatsaus 1 (10) Yhteisön nimi: HKL-Metroliikenne Ajalta: Toimintaympäristö ja toiminta Toimintaympäristössä ei ole havaittu erityisiä

Lisätiedot

Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4

Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4 Kaupunginvaltuusto 25.5.20015 Liite 1 56 Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4 - Puhdistamohankkeen rahoituksesta on sovittu seuraavaa 2009. Veden käyttömaksuja korotetaan etukäteen

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Sijoitusasuntolaskuri

Sijoitusasuntolaskuri Sijoitusasuntolaskuri SISÄLLYS 1.0 Kohdetiedot 1.1 Arkistointitiedot 1.2 Perustiedot 1.3 Tulot 1.4 Menot 1.5 Tulojen ja Menojen muutokset 1.6 Remontit 1.7 Rahoitus 1.8 Verotus 2.0 Taloudellinen Arviointi

Lisätiedot

Henri Mulari. Investointityökalu Finndomo Oy:lle

Henri Mulari. Investointityökalu Finndomo Oy:lle Henri Mulari Investointityökalu Finndomo Oy:lle Opinnäytetyö Kajaanin ammattikorkeakoulu Tradenomikoulutus Liiketalouden koulutusohjelma Syksy 2011 OPINNÄYTETYÖ TIIVISTELMÄ Koulutusala Yhteiskuntatieteiden,

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Toivakan vesihuollon yhtiöittäminen taloudellinen mallinnus

Toivakan vesihuollon yhtiöittäminen taloudellinen mallinnus Toivakan vesihuollon yhtiöittäminen taloudellinen mallinnus 2.10.2015 2.10.2015 Page 1 Oman vesihuollon yhtiöittäminen 2.10.2015 Page 2 Taustatiedot Vesihuollon tuloslaskelma TP 2014 ja TA 2015, tase TP

Lisätiedot

KIRJANPITO 22C Luento 12: Tilinpäätösanalyysi, kassavirtalaskelma

KIRJANPITO 22C Luento 12: Tilinpäätösanalyysi, kassavirtalaskelma KIRJANPITO 22C00100 Luento 12: Tilinpäätösanalyysi, kassavirtalaskelma TILIKAUDEN TILINPÄÄTÖS Tilinpäätös laaditaan suoriteperusteella: Yleiset tilinpäätös periaatteet (KPL 3:3 ): Tilikaudelle kuuluvat

Lisätiedot

Metsänkasvatuksen kannattavuus

Metsänkasvatuksen kannattavuus Metsänkasvatuksen kannattavuus Harvennusten vaikutus tukkituotokseen ja raakapuun arvoon Metsänkasvatuksen kannattavuus (2/14) Lähtökohta: Tavoitteena harvennusvaihtoehtojen vertailu metsänomistajan kannalta

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

HKL-Metroliikenne OSAVUOSIKATSAUS

HKL-Metroliikenne OSAVUOSIKATSAUS HKL-Metroliikenne OSAVUOSIKATSAUS 1.1. 30.6.2011 HKLjk 18.8.2011 Osavuosikatsaus 1 (11) Yhteisön nimi: HKL-Metroliikenne Ajalta: 1.1. 30.6.2011 Toimintaympäristö ja toiminta Metron automatisoinnista ja

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Oletus. Kuluva vuosi - LIIKEVAIHTO Edellinen vuosi - LIIKEVAIHTO

Oletus. Kuluva vuosi - LIIKEVAIHTO Edellinen vuosi - LIIKEVAIHTO Oletus 1, 8, 6, 4, 2,, Tammi Helmi Maalis Huhti Touko Kesä Heinä Elo Syys Kuluva vuosi - LIIKEVAIHTO Edellinen vuosi - LIIKEVAIHTO 913 KUM TOT. 912 KUM TOT. Ero ed. vuoteen 1212 KUM TOT. Ennuste ed. vuoden

Lisätiedot

KONSERNIN KESKEISET TUNNUSLUVUT

KONSERNIN KESKEISET TUNNUSLUVUT KONSERNIN KESKEISET TUNNUSLUVUT 1 6/2016 1 6/2015 1 12/2015 Liikevaihto, 1000 EUR 10 370 17 218 27 442 Liikevoitto ( tappio), 1000 EUR 647 5 205 6 471 Liikevoitto, % liikevaihdosta 6,2 % 30,2 % 23,6 %

Lisätiedot

Urheiluseura ry - kaava 3 - Asteri kirjanpidon tulostusmalli

Urheiluseura ry - kaava 3 - Asteri kirjanpidon tulostusmalli TULOSLASKELMA VARSINAINEN TOIMINTA Koulutuksen tuotot Valmennuksen tuotot Kilpailutuotot Nuorison tuotot Tiedotuksen tulot Julkaisujen tuotot Kansainväliset tuotot Hallinnon tuotot Muut vars. toim. tuotot

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS

Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS Liiketalous ja matkailu 2013 VAASAN AMMATTIKORKEAKOULU Liiketalouden koulutusohjelma TIIVISTELMÄ Tekijä Sanna Inkiläinen Opinnäytetyön nimi Suurkanalan

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

TerveysKampus-hankkeen taloudelliset vaikutukset

TerveysKampus-hankkeen taloudelliset vaikutukset TerveysKampus-hankkeen taloudelliset vaikutukset 1.9.2015 Talousjohtaja Tommi Talasterä tommi.talastera@ylasavonsote.fi 040 712 6970 Sisältö Yhteenveto ja johtopäätökset Taloudellisten vaikutusten selvityksen

Lisätiedot

Hyödykesidonnainen kertaluotto 1 000,00 EUR

Hyödykesidonnainen kertaluotto 1 000,00 EUR VAKIOMUOTOISET EUROOPPALAISET KULUTTAJALUOTTOTIEDOT 1. Luotonantajan / luotonvälittäjän henkilöllisyys ja yhteystiedot Luotonantaja Puhelinnumero Sähköpostiosoite Internet-osoite Luotonvälittäjä Puhelinnumero

Lisätiedot

Opiskelijanumero ja nimi:

Opiskelijanumero ja nimi: 1 LUT School of Business and Management Yliopisto-opettaja, Tiina Sinkkonen Opiskelijanumero ja nimi: CS31A0101 KUSTANNUSJOHTAMISEN PERUSKURSSI Tentti 22.10.2015 Tentissä saa olla mukana vain muistiinpanovälineet

Lisätiedot

Määräykset ja ohjeet 7/2012

Määräykset ja ohjeet 7/2012 Määräykset ja ohjeet 7/2012 Kiinnitysluottopankkitoimintaa koskeva Dnro 8/01.00/2011 Antopäivä 26.7.2012 Voimaantulopäivä 31.12.2012 FINANSSIVALVONTA puh. 010 831 51 faksi 010 831 5328 etunimi.sukunimi@finanssivalvonta.fi

Lisätiedot

Satakunnan ammattikorkeakoulu. Mirva Laihonen INVESTOINNIN KANNATTAVUUDEN ARVIONTI CASE- YRITYKSESSÄ

Satakunnan ammattikorkeakoulu. Mirva Laihonen INVESTOINNIN KANNATTAVUUDEN ARVIONTI CASE- YRITYKSESSÄ Satakunnan ammattikorkeakoulu Mirva Laihonen INVESTOINNIN KANNATTAVUUDEN ARVIONTI CASE- YRITYKSESSÄ Liiketalous Rauma Liiketalouden koulutusohjelma Taloushallinto 2008 INVESTOINNIN KANNATTAVUUDEN ARVIOINTI

Lisätiedot

HKL-Metroliikenne OSAVUOSIKATSAUS

HKL-Metroliikenne OSAVUOSIKATSAUS HKL-Metroliikenne OSAVUOSIKATSAUS 1.1. 31.3.2015 HKLjk 5.5.2015 Osavuosikatsaus 1 (10) Yhteisön nimi: HKL-Metroliikenne Ajalta: Toimintaympäristö ja toiminta Toimintaympäristössä ei ole havaittu erityisiä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Millainen on Osuuspankin asuntopalvelu?

Millainen on Osuuspankin asuntopalvelu? Millainen on Osuuspankin asuntopalvelu? 1 Mistä asuntopalvelumme koostuu? Olitpa sitten hankkimassa ensimmäistä omaa kotia tai vaihtamassa nykyistä, saat meiltä juuri sinulle sopivan asuntolainan. Hoidamme

Lisätiedot

SAMPO ASUNTOLUOTTOPANKKI OYJ 1

SAMPO ASUNTOLUOTTOPANKKI OYJ 1 SAMPO ASUNTOLUOTTOPANKKI OYJ 1 TILINPÄÄTÖSTIEDOTE VUODELTA 2009 Tilikauden voitto oli 19,0 miljoonaa euroa. Tilikaudella yhtiö osti Sampo Pankilta 0,5 miljardin euron antolainakannan Tilikauden aikana

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Nordnetin luottowebinaari

Nordnetin luottowebinaari Nordnetin luottowebinaari Tervetuloa webinaariin! Webinaarissa opit käyttämään luottoa kaupankäynnissä. Lisää ostovoimaa luotolla, käytä salkkuasi luoton vakuutena ja paranna tuottomahdollisuuksia. Webinaarissa

Lisätiedot

Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ

Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ Liiketalouden koulutusohjelma laaja suuntautumisvaihtoehto 2012 INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITTAMINEN

Lisätiedot

Investointilaskelma. TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 7.1.2016. Aalto-yliopisto Tuotantotalouden laitos

Investointilaskelma. TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 7.1.2016. Aalto-yliopisto Tuotantotalouden laitos Investointilaskelma TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 7.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Urheiluseura - kaava 3 - Asteri mallitilikartta (u313)

Urheiluseura - kaava 3 - Asteri mallitilikartta (u313) Urheiluseura - kaava 3 - Asteri mallitilikartta (u313) TASE Vastaavaa PYSYVÄT VASTAAVAT Aineettomat hyödykkeet 1000 Aineettomat hyödykkeet Aineelliset hyödykkeet 1100 Maa- ja vesialueet 1110 Rakennukset

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

RAHOITUS JA RISKINHALLINTA

RAHOITUS JA RISKINHALLINTA RAHOITUS JA RISKINHALLINTA Opintojaksosuunnitelma deadlines 2.9. 9.9. 30.9. 12.11. 2.12. Kohdeyritysvaraus Rahan sitoutuminen yritystoiminnassa käyttöomaisuuteen ja käyttöpääomaan pohdinta Case Rahoitustilanne

Lisätiedot

VESIHUOLTOTOIMINNNAN TALOUSMALLINNUS

VESIHUOLTOTOIMINNNAN TALOUSMALLINNUS VESIHUOLTOTOIMINNNAN TALOUSMALLINNUS Liite 2 4.5.212 1 SISÄLTÖ 1. Talousmallinnuksen tavoite 2. Laskentaoletukset ja periaatteet Toiminnan volyymin kehitys Menojen kehitys Tulojen kehitys Investoinnit

Lisätiedot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 TULOSLASKELMA Liikevaihto 2 23 3 2 257 7 2 449 4 2 4 3 2 284 5 Myyntikate 1 111 4 1 179 7 1 242 3 1 224 9 1 194 5 Käyttökate 15 4 42

Lisätiedot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 TULOSLASKELMA Liikevaihto 451 6 576 4 544 8 51 5 495 2 Myyntikate 253 3 299 2 279 281 4 275 3 Käyttökate 29 5 42 7 21 9 33 3 25 1 Liikevoitto

Lisätiedot

Liikevaihto. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot

Liikevaihto. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 TULOSLASKELMA Liikevaihto 6 777 8 43 8 23 8 25 8 11 Myyntikate 3 89 4 262 4 256 4 51 4 262 Käyttökate 1 69 1 95 1 71 1 293 742 Liikevoitto

Lisätiedot

Osavuosikatsaus

Osavuosikatsaus FINGRID OYJ 1(5) Osavuosikatsaus 1.1.-30.9.1998 Kuluva vuosi on yhtiön ensimmäinen täysi toimintavuosi. Yhtiö hankki Suomen Voimatase Oy:n koko osakekannan 1.9.1998, minkä seurauksena yhtiöistä muodostui

Lisätiedot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot

Liikevaihto. Myyntikate. Käyttökate. Liikevoitto. Liiketoiminnan muut tuotot Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 TULOSLASKELMA Liikevaihto 484 796 672 165 641 558 679 396 684 42 Myyntikate 79 961 88 519 89 397 15 399 12 66 Käyttökate 16 543 17

Lisätiedot

LAPPEENRANNAN SEUDUN YMPÄRISTÖTOIMI TILINPÄÄTÖS 2015

LAPPEENRANNAN SEUDUN YMPÄRISTÖTOIMI TILINPÄÄTÖS 2015 TILINPÄÄTÖS 2015 TULOSLASKELMA 2015 2014 Liikevaihto 3 576 109 3 741 821 Valmistus omaan käyttöön 140 276 961 779 Materiaalit ja palvelut Aineet, tarvikkeet ja tavarat -115 284-96 375 Palvelujen ostot

Lisätiedot

Tuotantotalouden analyysimallit. TU-A1100 Tuotantotalous 1

Tuotantotalouden analyysimallit. TU-A1100 Tuotantotalous 1 Tuotantotalouden analyysimallit TU-A1100 Tuotantotalous 1 Esimerkkejä viitekehyksistä S O W T Uudet tulokkaat Yritys A Yritys B Yritys E Yritys C Yritys F Yritys I Yritys H Yritys D Yritys G Yritys J Alhainen

Lisätiedot

LAPPEENRANNAN SEUDUN YMPÄRISTÖTOIMI TILINPÄÄTÖS 2013

LAPPEENRANNAN SEUDUN YMPÄRISTÖTOIMI TILINPÄÄTÖS 2013 TILINPÄÄTÖS 2013 TULOSLASKELMA 2013 2012 Liikevaihto 3 960 771 3 660 966 Valmistus omaan käyttöön 1 111 378 147 160 Materiaalit ja palvelut Aineet, tarvikkeet ja tavarat -104 230-104 683 Palvelujen ostot

Lisätiedot

2. Kuvan esim. prosessin ISBL-laitteiden hinnat ( ) paikalle tuotuina FA-2 DA-1 GA-3

2. Kuvan esim. prosessin ISBL-laitteiden hinnat ( ) paikalle tuotuina FA-2 DA-1 GA-3 CHEM-C2110 Materiaalitekniikan teolliset prosessit (5 op) 3. Laskuharjoitus (Prosessin investointi ja kannattavuus) Sarwar Golam, TkT. Yliopistonlehtori, A! Tehdassuunnittelu 1. Lämmönsiirrin (ala 40 m

Lisätiedot

Kuntien ja kuntayhtymien lainakanta sekä rahavarat , mrd. 18

Kuntien ja kuntayhtymien lainakanta sekä rahavarat , mrd. 18 Kuntien ja kuntayhtymien lainakanta sekä rahavarat 1991-215, mrd. 18 18 16 14 Lainakanta Rahavarat 16 14 12 12 1 1 8 8 6 6 4 4 2 2 91 92 93 94 95 96 97 98 99 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15* 8.6.216/hp

Lisätiedot

Lastenhoidon tuen internetlaskurin ohjeet:

Lastenhoidon tuen internetlaskurin ohjeet: Lastenhoidon tuen internetlaskurin ohjeet: Yleisohje Laskennalla voit laskea arvion kotihoidon tuen ja yksityisen hoidon tuen määristä. Jos asut Ahvenanmaalla, tarkista lastenhoidon tuen määrä omasta asuinkunnastasi,

Lisätiedot

Määräykset ja ohjeet X/2011

Määräykset ja ohjeet X/2011 Määräykset ja ohjeet X/2011 Kiinnitysluottopankkitoimintaa koskeva raportointi Dnro 8/01.00/2011 Antopäivä 31.1.2012 Voimaantulopäivä 1.6.2012 FINANSSIVALVONTA puh. 010 831 51 faksi 010 831 5328 etunimi.sukunimi@finanssivalvonta.fi

Lisätiedot

Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen. Toivo Koski

Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen.  Toivo Koski 1 Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen SISÄLLYS Mitä tuloslaskelma, tase ja kassavirtalaskelma kertovat Menojen kirjaaminen tuloslaskelmaan kuluksi ja menojen kirjaaminen

Lisätiedot

Oikaisuja Suomen säädöskokoelmaan. Suomen säädöskokoelmaan n:o 1752/2015 (Valtioneuvoston asetus kirjanpitoasetuksen muuttamisesta)

Oikaisuja Suomen säädöskokoelmaan. Suomen säädöskokoelmaan n:o 1752/2015 (Valtioneuvoston asetus kirjanpitoasetuksen muuttamisesta) Suomen säädöskokoelmaan n:o 1752/2015 (Valtioneuvoston asetus kirjanpitoasetuksen muuttamisesta) Sivulla 1, johtolauseessa on: kumotaan kirjanpitoasetuksen (1339/1997) 1 luvun 1 :n 3 ja 4 momentti, 2 :n

Lisätiedot

Mallipohjaisen päätöksenteon seminaari, osa I: talousmallit

Mallipohjaisen päätöksenteon seminaari, osa I: talousmallit Mallipohjaisen päätöksenteon seminaari, osa I: talousmallit Kunnan talouden mallipohjainen suunnittelu Kuntien tilinpäätöskortti Valtiovarainministeriö/Kunta- ja aluehallinto-osasto,5.12.213 KUNTIEN TILINPÄÄTÖKSET

Lisätiedot

HKL-Raitioliikenne OSAVUOSIKATSAUS

HKL-Raitioliikenne OSAVUOSIKATSAUS HKL-Raitioliikenne OSAVUOSIKATSAUS 1.1. 30.6.2012 HKLjk 23.8.2012 Osavuosikatsaus 1 (11) Yhteisön nimi: HKL-Raitioliikenne Ajalta: Toimintaympäristö ja toiminta Liikenteen toteutuminen: tammi-kesäkuussa

Lisätiedot

Kertaus. TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento Aalto-yliopisto Tuotantotalouden laitos

Kertaus. TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento Aalto-yliopisto Tuotantotalouden laitos Kertaus TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 17.3.2016 Rakenne ja ajoitus Luennot kalvot MyCoursessa Luentomoniste Harjoitustehtävät (10 p) Testit (10 p) MyCourses Laskutuvat III periodi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

OPINTOTUEN HISTORIA, NYKYPÄIVÄ JA TULEVAISUUS. Pääsuunnittelija Ilpo Lahtinen Kansaneläkelaitos

OPINTOTUEN HISTORIA, NYKYPÄIVÄ JA TULEVAISUUS. Pääsuunnittelija Ilpo Lahtinen Kansaneläkelaitos OPINTOTUEN HISTORIA, NYKYPÄIVÄ JA TULEVAISUUS Pääsuunnittelija Ilpo Lahtinen Kansaneläkelaitos Esityksen sisältö Suomen opintotukijärjestelmän synty ja kehitys Olennaiset muutokset 1900-luvulta ja 2000-luvun

Lisätiedot

FINAVIA KONSERNI TASEKIRJA VÄLITILINPÄÄTÖS

FINAVIA KONSERNI TASEKIRJA VÄLITILINPÄÄTÖS FINAVIA KONSERNI TASEKIRJA VÄLITILINPÄÄTÖS 30.9.2010 Tulos ja tase, FAS (Toteuma) Finavia konserni TULOSLASKELMA, FAS EUR 1.1.-30.9.2010 1.1.-30.9.2009 LIIKEVAIHTO 231 834 836,24 241 094 465,00 Valmiiden

Lisätiedot

KONSERNIN KESKEISET TUNNUSLUVUT

KONSERNIN KESKEISET TUNNUSLUVUT KONSERNIN KESKEISET TUNNUSLUVUT 7 12/2015 7 12/2014 1 12/2015 1 12/2014 Liikevaihto, 1000 EUR 10 223 9 751 27 442 20 427 Liikevoitto ( tappio), 1000 EUR 1 266 1 959 6 471 3 876 Liikevoitto, % liikevaihdosta

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 28.1.2009 1 / 28 Esimerkki: murtoluvun sieventäminen Kirjoitetaan ohjelma, joka sieventää käyttäjän antaman murtoluvun.

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

HINKU-monistamo. Kannattavat ja helpot päästövähennystoimet esille ja monistukseen. HINKU-verkoston tapaaminen Helsinki

HINKU-monistamo. Kannattavat ja helpot päästövähennystoimet esille ja monistukseen. HINKU-verkoston tapaaminen Helsinki HINKU-monistamo Kannattavat ja helpot päästövähennystoimet esille ja monistukseen HINKU-verkoston tapaaminen Helsinki 17.9.2015 Olli-Pekka Pietiläinen ja Jarmo Linjama Suomen ympäristökeskus 1) Taloudellisesti

Lisätiedot

Turun, Raision ja Naantalin kaupungit sekä Maskun kunta

Turun, Raision ja Naantalin kaupungit sekä Maskun kunta Turun, Raision ja Naantalin kaupungit sekä Maskun kunta 16X270006 TURUN SEUDUN VESIYHTIÖSELVITYS - Vesihuoltolaitosten tekniset nykykäyttöarvot ja tuottoarvot - Maksutarkastelu Ohjausryhmän kokous 4.5.2015

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot

1. Luotonantajan nimi ja yhteystiedot. 2. Kuvaus luoton pääominaisuuksista. Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot Vakiomuotoiset eurooppalaiset kuluttajaluottotiedot 1. Luotonantajan nimi ja yhteystiedot Luotonantaja: Yhteisötunnus: Osoite: Puhelin: Sähköpostiosoite: Faksinumero: Internetosoite: Lainasto Oy 2382033-5

Lisätiedot

Investointien rahoituksen perusteita

Investointien rahoituksen perusteita Investointien rahoituksen perusteita Ismo Vuorinen yliopettaja (laskentatoimi ja rahoitus) Investointien suunnittelu ja rahoitus -opintojakso Hämeenlinna, kevät 2010! "" # $ % $$& 20042010 Ismo Vuorinen

Lisätiedot

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit A50A000 Finanssi-investoinnit 6. harjoitukset.4.05 Futuuri, termiinit ja swapit Tehtävä 6. Mikä on kahden vuoden bonditermiinin käypä markkinahinta, kun kohdeetuutena on viitelaina, jonka nimellisarvo

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Projektityö M12. Johdanto

Projektityö M12. Johdanto Projektityö M12 Johdanto Projektityö sisältää kuutta tehtävää, kuitenkin ne kaikki koskevat saman yhtälön ratkaisua. Yhtälö on sin x 2 =e 2x (1.1) Sen ratkaisu voidaan käsitellä tutkimalla funktio y=e

Lisätiedot

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen

Lisätiedot

ELITE VARAINHOITO OYJ LIITE TILINPÄÄTÖSTIEDOTTEESEEN 2015

ELITE VARAINHOITO OYJ LIITE TILINPÄÄTÖSTIEDOTTEESEEN 2015 KONSERNIN KESKEISET TUNNUSLUVUT, 1000 EUR 7-12/2015 7-12/2014 1-12/2015 1-12/2014 Liikevaihto, tuhatta euroa 6 554 5 963 15 036 9 918 Liikevoitto, tuhatta euroa 69 614 1 172 485 Liikevoitto, % liikevaihdosta

Lisätiedot