Investoinnin takaisinmaksuaika

Koko: px
Aloita esitys sivulta:

Download "Investoinnin takaisinmaksuaika"

Transkriptio

1 Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika < investoinnille sallittu maksimaalinen takaisinmaksuaika Mitä lyhyempi takaisinmaksuaika, sitä edullisempi investointi Takaisinmaksuaika n* saadaan lausekkeesta: n* t t t1 (1 i) S H 0 eli selvitetään, kuinka monen vuoden nettotuotot (nykyarvot) on laskettava yhteen perushankintamenon suuruisen rahamäärän kerryttämiseksi Metropolia Ammattikorkeakoulu 1

2 Investoinnin takaisinmaksuaika (koroton) Jos laskentakorkoa ei huomioida ja nettotuottojen oletetaan pysyvän samalla tasolla S, takaisinmaksuaika n* on yksinkertaisesti: n = H S Esimerkki 1: Investointi maksaa ja nettotuottoa arvioidaan kertyvän /vuosi säästyvien kustannusten kautta. Investointi kattaa tuotoilla hankintahintansa neljässä vuodessa = 4 v /v Metropolia Ammattikorkeakoulu 2

3 Esimerkki 2 Suunniteltu investointi maksaa ja siitä arvioidaan saatavan noin :n nettotuotot vuosittain seuraavien 10 vuoden ajan. Mikä on investoinnin takaisinmaksuaika a) jos korkoa ei huomioida? b) jos käytetään 6 %:n laskentakorkokantaa? a) Takaisinmaksuaika on /1 500 = 6 vuotta b) Diskonttaus- Netto- Nettotuoton Kumulatiiviset Vuosi tekijä tuotto nykyarvo nettotuotot 1 0, = , = , = , = , = , = , = , = eli takaisinmaksuaika on 7 ja 8 vuoden välissä (noin 7,7 vuotta) Investoinnin hinta sijoittuu tähän väliin

4 Tarkka takaisinmaksuaika Tarkka takaisinmaksuaika voidaan laskea kaavalla 1 H ln ln( i) i S ln(1 i) Esimerkin 1 investoinnin tarkka takaisinmaksuaika: ln ln(0,06) 0, ln(1 0,06) 7,66v tai interpoloimalla: 7 v + ( ) 1 v = 7,67 v ( )

5 Harjoitustehtävä 1 Metropoliassa harkitaan auditorion istuinverhoilun uusimista. Loppusuoralle verhoilumateriaalivertailussa ovat päässeet Basic Blue ja Luxus Light Blue. Basic Blue verhoilu maksaa , mutta koska kangas ei ole likaa hylkivä, siitä aiheutuu ylimääräisiä puhdistuskustannuksia vuodessa Luxus Light Blue verhoilu maksaa , mutta se ei vaadi erityispuhdistusta. Muissa kunnossapito- ym. kustannuksissa ei ole eroa näiden materiaalien välillä. Tehtävänäsi on selvittää, kuinka monta vuotta verhoilun on kestettävä, jotta Luxus Light Blue on edullisempi vaihtoehto. Laskentakorkona käytetään 5,5 %.

6 Harjoitustehtävä 2 Keskisuuressa painotalossa harkitaan siirtymistä paperilaskutuksesta sähköiseen laskutukseen. Tällä hetkellä laskutuksesta vastaa kaksi työntekijää. Sähköisen laskutuksen hoitamiseen riittäisi yksi työntekijä. Uusi järjestelmä säästäisi näin ollen palkkakustannuksia /kk sekä 46 %:n sivukulut. Uusi yrityksen tarpeisiin räätälöity laskutusjärjestelmä maksaisi ja pitoajaksi on arvioitu 8 vuotta. Tämän jälkeen järjestelmällä ei ole taloudellista arvoa. Lisäksi uutta järjestelmää varten tarvitaan :n laitehankinnat ja vuotuisiksi päivityskustannuksiksi on arvioitu Selvitä sähköisen laskutusjärjestelmän koroton ja korollinen (11 %) takaisinmaksuaika. Kannattaako uuden järjestelmän hankinta nettonykyarvomenetelmän mukaan?

7 Takaisinmaksuajan menetelmän ominaisuuksia Ei huomioi investoinnista takaisinmaksuajan jälkeen syntyviä kassavirtoja Ei kerro investoinnin kannattavuudesta/kannattamattomuudesta Mitä lähemmäksi tarkasteluhetkeä kassavirta ajoittuu, sitä varmempi sen toteutuminen on eli tavallaan menetelmä huomioi kassavirtoihin liittyvää epävarmuutta jättämällä takaisinmaksuajan jälkeiset epävarmimmat kassavirrat laskennan ulkopuolelle Ei sisällä selkeää rajaa takaisinmaksuajalle, jolla investointi kannattaa toteuttaa Käyttö yhdessä muiden laskentamenetelmien kanssa Yksinkertainen menetelmä, jolla voidaan jo investointisuunnitteluprosessin alkuvaiheessa karsia heikoimmat vaihtoehdot

8 Takaisinmaksuajan menetelmä ja Excel Investoinnin takaisinmaksuaika voidaan Excelissä laskea funktiolla NPER Rate = korkokanta (sadasosina) Pmt = kunkin kauden maksuerä (vakio) Pv = investoinnin hinta Fv = jäännösarvo Type = maksun ajoitus: 1 = kauden alussa, 0 tai tyhjä = kauden lopussa

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous)

INVESTOINTIEN EDULLISUUSVERTAILU. Tero Tyni Erityisasiantuntija (kuntatalous) INVESTOINTIEN EDULLISUUSVERTAILU Tero Tyni Erityisasiantuntija (kuntatalous) 25.5.2007 Mitä tietoja laskentaan tarvitaan Investoinnista aiheutuneet investointikustannukset Investoinnin pitoaika Investoinnin

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7

Lisätiedot

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Liike-elämän matematiikka Opettajan aineisto

Liike-elämän matematiikka Opettajan aineisto Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot

Lisätiedot

INVESTOINNIN LASKENTA

INVESTOINNIN LASKENTA YT22 INVESTOINNIN LASKENTA Yrityssalo Oy www.yrityssalo.fi Sivu 2 (8) INVESTOINNIN LASKENTA SISÄLTÖ SIVU 1. INVESTOINNIN SUUNNITTELU 3 1.1 Investointien rahoitus 3 1.2 Investointien luokittelu 4 2. INVESTOINTIKUSTANNUSTEN

Lisätiedot

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015 Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.215 Sisällys 1. Johdanto... 1 2. Tyyppirakennukset... 1 3. Laskenta... 2 4.1 Uusi pientalo... 3 4.2 Vanha pientalo... 4 4.3

Lisätiedot

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Metropolia Ammattikorkeakoulu INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Virpi Tevä-Helminen 28.8.2013 2 SISÄLTÖ: 1. JOHDANTO... 4 1.1 Investointilaskenta ja päätöksenteko kurssin esittely... 4

Lisätiedot

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010 » Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

Korkeahyötysuhteisten sähkömoottorien hankintasuositus

Korkeahyötysuhteisten sähkömoottorien hankintasuositus Korkeahyötysuhteisten sähkömoottorien hankintasuositus Ei julkaista painotuotteena Copyright Motiva Oy, Helsinki, huhtikuu 2004 Korkeahyötysuhteisten sähkömoottorien hankintasuositus Tarkoitettu liitettäväksi

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Valaistushankinnan vaihtoehtojen LCC-tarkastelu Case: Esimerkkilaskelma, Halli 1000 m 2

Valaistushankinnan vaihtoehtojen LCC-tarkastelu Case: Esimerkkilaskelma, Halli 1000 m 2 Maatilan energiahuolto -hanke 1 (18) /energiahuolto Valaistushankinnan vaihtoehtojen LCC-tarkastelu Case: Esimerkkilaskelma, Halli 1000 m 2 Case -kohteen kuvaus Tässä esimerkkilaskelmassa verrataan kahden

Lisätiedot

Metsänuudistaminen - edullisesti vai tehokkaasti?

Metsänuudistaminen - edullisesti vai tehokkaasti? Metsänuudistaminen - edullisesti vai tehokkaasti? Hannu Salminen & Anssi Ahtikoski Esityksen sisältö 1. Perusteet Metsänuudistaminen osana metsikön kasvatusketjua Kannattavuus 2. Laskentaharjoitus Kohteet

Lisätiedot

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) Investointien suunnittelu ja rahoitus Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) KURSSIN LUENNOT 11.09.2015 Johdanto (Kalevi Aaltonen) 18.09.2015

Lisätiedot

Invest for Excel 3.5 uudet ominaisuudet

Invest for Excel 3.5 uudet ominaisuudet Invest for Excel 3.5 uudet ominaisuudet Excel 2007 -valikkorivi...2 Venäjän kieli...3 Lisää rivejä tunnuslukutaulukkoon...3 Suhteellisen nykyarvon määritelmä muuttunut...3 Kannattavuuslaskelma, joka perustuu

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Investoinnin käsite Investointeina pidetään menoja, jotka ovat rahamäärältään suuria ja joissa tulon kertymisaika on pitkä (> 1 vuosi) Vaikutukset ulottuvat pitkälle

Lisätiedot

Henri Mulari. Investointityökalu Finndomo Oy:lle

Henri Mulari. Investointityökalu Finndomo Oy:lle Henri Mulari Investointityökalu Finndomo Oy:lle Opinnäytetyö Kajaanin ammattikorkeakoulu Tradenomikoulutus Liiketalouden koulutusohjelma Syksy 2011 OPINNÄYTETYÖ TIIVISTELMÄ Koulutusala Yhteiskuntatieteiden,

Lisätiedot

LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT

LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT 1. Yrityksen sidosryhmät 1. Mitä tarkoittaa yrityksen sidosryhmä? Luettele niin monta sidosryhmää kuin muistat. 2. Ketkä käyttävät ylintä päätösvaltaa osakeyhtiössä?

Lisätiedot

SISÄLTÖ. Vuokko Vanhala-Nurmi, 2009 Excel jatko

SISÄLTÖ. Vuokko Vanhala-Nurmi, 2009 Excel jatko Excel 2007 Sisällysluettelo SISÄLTÖ LASKENTA AIKA-ARVOILLA... 2 Ajan käsittely kaavoissa... 2 Päiväykset... 2 Vuosi, tunti, päivä... 3 LOOGISET FUNKTIOT... 4 IF-funktio (JOS)... 4 IF-funktion tekeminen

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Rahavirtojen diskonttaamisen periaate

Rahavirtojen diskonttaamisen periaate Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta

Lisätiedot

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Osamaksukauppa, vakiotulovirran diskonttaus, L8 Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

LAITEINVESTOINNIN KANNATTAVUUSLASKELMA

LAITEINVESTOINNIN KANNATTAVUUSLASKELMA Opinnäytetyö (AMK) Liiketalouden koulutusohjelma Taloushallinto 2011 Sanni Tuumanen LAITEINVESTOINNIN KANNATTAVUUSLASKELMA Case: pakkauskone OPINNÄYTETYÖ (AMK) TIIVISTELMÄ Turun ammattikorkeakoulu Liiketalouden

Lisätiedot

Tentissä saa olla mukana vain muistiinpanovälineet ja laskin. Laskut erilliselle konseptille, vastaus selkeästi näkyviin!!! Palauta tenttipaperi!!

Tentissä saa olla mukana vain muistiinpanovälineet ja laskin. Laskut erilliselle konseptille, vastaus selkeästi näkyviin!!! Palauta tenttipaperi!! 1 School of Business and Management Yliopisto-opettaja, Tiina Sinkkonen Opiskelijanumero ja nimi: CS31A0101 KUSTANNUSJOHTAMISEN PERUSKURSSI Tentti 01.02.2016 Tentissä saa olla mukana vain muistiinpanovälineet

Lisätiedot

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Matti Hyppönen Tuotantotalouden koulutusohjelman opinnäytetyö Konetekniikka Insinööri (AMK) KEMI 2012 TIIVISTELMÄ KEMI-TORNION

Lisätiedot

INVESTOINTILASKENTAMENETELMIEN KÄYTTÖ PK-YRITYKSISSÄ POHJOIS-POHJANMAALLA

INVESTOINTILASKENTAMENETELMIEN KÄYTTÖ PK-YRITYKSISSÄ POHJOIS-POHJANMAALLA INVESTOINTILASKENTAMENETELMIEN KÄYTTÖ PK-YRITYKSISSÄ POHJOIS-POHJANMAALLA Saija Ylikotila Opinnäytetyö Kaupan ja kulttuurin koulutusala Liiketalouden koulutusohjelma Tradenomi AMK 2015 Opinnäytetyön tiivistelmä

Lisätiedot

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit A50A000 Finanssi-investoinnit 6. harjoitukset.4.05 Futuuri, termiinit ja swapit Tehtävä 6. Mikä on kahden vuoden bonditermiinin käypä markkinahinta, kun kohdeetuutena on viitelaina, jonka nimellisarvo

Lisätiedot

Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ

Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ Anna-Mari Käkönen INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITUS KOHDEYRITYKSESSÄ Liiketalouden koulutusohjelma laaja suuntautumisvaihtoehto 2012 INVESTOINNIN KANNATTAVUUDEN ARVIOINTI JA RAHOITTAMINEN

Lisätiedot

INVESTOINNIN KANNATTAVUUS. Yritys X

INVESTOINNIN KANNATTAVUUS. Yritys X INVESTOINNIN KANNATTAVUUS Yritys X Jaana Haavisto Opinnäytetyö Helmikuu 2015 Liiketalous Taloushallinto TIIVISTELMÄ Tampereen ammattikorkeakoulu Liiketalouden koulutusohjelma Taloushallinnon suuntautumisvaihtoehto

Lisätiedot

Tiehallinto Parainen - Nauvo yhteysvälin kannattavuus eri vaihtoehdoilla. Raportti 10.12.2008

Tiehallinto Parainen - Nauvo yhteysvälin kannattavuus eri vaihtoehdoilla. Raportti 10.12.2008 Tiehallinto Parainen - Nauvo yhteysvälin kannattavuus eri vaihtoehdoilla Raportti 10.12.2008 Sisällysluettelo 1.Johdanto 2.Yhteenveto 3.Tunnelivaihtoehdon kuvaus 4.Siltavaihtoehdon kuvaus 5.Lauttavaihtoehdon

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

Yhtiön talous ja tariffiasetannan perusteet. Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015

Yhtiön talous ja tariffiasetannan perusteet. Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015 Yhtiön talous ja tariffiasetannan perusteet Jan Montell, Talous- ja rahoitusjohtaja Neuvottelukunta 21. lokakuuta 2015 Fingrid välittää. Varmasti. Asiakkaat jayhteiskunta Turvaamme yhteiskunnalle varman

Lisätiedot

Uudet ominaisuudet: Invest for Excel 3.6

Uudet ominaisuudet: Invest for Excel 3.6 Uudet ominaisuudet: Invest for Excel 3.6 Microsoft Excel versiot... 2 Käyttöoppaat... 2 Sähköinen allekirjoitus... 2 Mallikansiot... 2 Liikearvon poisto ja tuloverotus... 4 Sisäinen korkokanta ennen veroja...

Lisätiedot

Aalto KKK Avoin yliopisto Rahoituksen perusteet syksy 2016: Harjoitustehtävät Jan Antell 1

Aalto KKK Avoin yliopisto Rahoituksen perusteet syksy 2016: Harjoitustehtävät Jan Antell 1 Aalto KKK Avoin yliopisto Rahoituksen perusteet syksy 2016: Harjoitustehtävät Jan Antell 1 Aalto-yliopiston kauppakorkeakoulu Avoin yliopisto A28A00110 Rahoituksen perusteet Syksy 2016 HARJOITUSTEHTÄVÄT

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

ERI-IKÄISRAKENTEISEN METSÄN KASVATUKSEN TALOUS

ERI-IKÄISRAKENTEISEN METSÄN KASVATUKSEN TALOUS Suomen Metsätieteellinen Seura Eri-ikäisrakenteiset metsät metsätaloudessa -seminaari Säätytalo, 8.4.2010 ERI-IKÄISRAKENTEISEN METSÄN KASVATUKSEN TALOUS Kari Hyytiäinen Sisältö 1. Johdanto 2. Metsän nykyarvo

Lisätiedot

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta MML 3.5.2010 Eero Autere (MH) Raito Paananen Metsävaratietoasiantuntija (MMM, LKV) 5.5.2010 1 5.5.2010 2 Arvokäsitteitä Käyttöarvo

Lisätiedot

KoTePa-hankkeen laskenta - loppuraportti. 26.4.2011 Oy Audiapro Ab Atte Niittylä ja Tuomas Hanhela

KoTePa-hankkeen laskenta - loppuraportti. 26.4.2011 Oy Audiapro Ab Atte Niittylä ja Tuomas Hanhela KoTePa-hankkeen laskenta - loppuraportti 26.4.2011 Oy Audiapro Ab Atte Niittylä ja Tuomas Hanhela Hankkeen läpivienti Aloituspalaveri 8.3. Kouvolassa Sovittiin laskennan perusteet 1. Korjataan vanhat tilat,

Lisätiedot

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa

Lisätiedot

Sastamala-Kiikoinen vesihuollon yhdistymistarkastelu. Kiikoisten taksa ilman kunnan kompensaatiota

Sastamala-Kiikoinen vesihuollon yhdistymistarkastelu. Kiikoisten taksa ilman kunnan kompensaatiota Sastamala-Kiikoinen vesihuollon yhdistymistarkastelu Kiikoisten taksa ilman kunnan 60 000 kompensaatiota Kompensaatio 60 000 on tarkastelussa jaettu tasan vesi- ja viemäritaksoihin 30 000 ja laskettu käyttömaksuun

Lisätiedot

ARVOMETSÄ METSÄN ARVO 15.3.2016

ARVOMETSÄ METSÄN ARVO 15.3.2016 SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

KORJATTU TULOSLASKELMA Laskennan kohde: LIIKEVAIHTO +/- valmistevaraston muutos + liiketoiminnan muut tuotot - ainekäyttö (huomioi varastojen muutos

KORJATTU TULOSLASKELMA Laskennan kohde: LIIKEVAIHTO +/- valmistevaraston muutos + liiketoiminnan muut tuotot - ainekäyttö (huomioi varastojen muutos KORJATTU TULOSLASKELMA LIIKEVAIHTO _ +/- valmistevaraston muutos _ + liiketoiminnan muut tuotot _ - ainekäyttö _ (huomioi varastojen muutos ja oma käyttö) - ulkopuoliset palvelut _ - liiketoiminnan muut

Lisätiedot

ELINKAARIKUSTANNUSVERTAILU

ELINKAARIKUSTANNUSVERTAILU ESIMERKKI PÄIVÄKOTI ECost ELINKAARIKUSTANNUSVERTAILU Projektipalvelu Prodeco Oy Terminaalitie 6 90400 Oulu Puh. 010 422 1350 Fax. (08) 376 681 www.prodeco.fi RAPORTTI 1 (5) Tilaaja: xxxxxx Hanke: Esimerkki

Lisätiedot

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia

Lisätiedot

Markku Ryösä INVESTOINNIN KANNATTAVUUS KIINALAISEEN RAVINTOLAAN

Markku Ryösä INVESTOINNIN KANNATTAVUUS KIINALAISEEN RAVINTOLAAN Markku Ryösä INVESTOINNIN KANNATTAVUUS KIINALAISEEN RAVINTOLAAN Liiketalouden koulutusohjelma 2017 INVESTOINNIN KANNATTAVUUS KIINALAISEEN RAVINTOLAAN Ryösä, Markku Satakunnan ammattikorkeakoulu Liiketalouden

Lisätiedot

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä Memo-työryhmä 23.9.2010 Lauri Valsta 4.11.2010 1 Metsänomistaja ja liiketaloudellinen kannattavuus Metsänomistajan välineet

Lisätiedot

Pekka Hirvikoski OMISTUSRAKENTEEN YHTEYS INVESTOINTIEN KASSAVIRTAHERKKYYTEEN SUOMALAISELLA AINEISTOLLA

Pekka Hirvikoski OMISTUSRAKENTEEN YHTEYS INVESTOINTIEN KASSAVIRTAHERKKYYTEEN SUOMALAISELLA AINEISTOLLA Pekka Hirvikoski OMISTUSRAKENTEEN YHTEYS INVESTOINTIEN KASSAVIRTAHERKKYYTEEN SUOMALAISELLA AINEISTOLLA Lapin yliopisto, yhteiskuntatieteiden tiedekunta Työn nimi: Omistusrakenteen yhteys investointien

Lisätiedot

Metsätalouden kannattavuuden parantaminen

Metsätalouden kannattavuuden parantaminen Metsätalouden kannattavuuden parantaminen Jari Hynynen & Saija Huuskonen Luonnonvarakeskus Natural Resources Institute Finland Johdanto Talousnäkökulma metsänkasvatukseen ottaen huomioon se, että Metsien

Lisätiedot

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Suhteisjako 8 1.2 Valuutat 14 Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18 1.3 Verotus 21 Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 Varallisuusvero

Lisätiedot

KEMIRA-KONSERNI. Luvut ovat tilintarkastamattomia. TULOSLASKELMA Milj. e 4-6/ / / /

KEMIRA-KONSERNI. Luvut ovat tilintarkastamattomia. TULOSLASKELMA Milj. e 4-6/ / / / KEMIRA-KONSERNI Luvut ovat tilintarkastamattomia. TULOSLASKELMA Milj. e 4-6/2004 4-6/2003 1-6/2004 1-6/2003 2003 Liikevaihto 729,9 671,9 1 447,2 1 371,4 2 738,2 Liiketoiminnan muut tuotot 17,2 3,8 23,6

Lisätiedot

Porvoon sote-kiinteistöjen yhtiöittäminen

Porvoon sote-kiinteistöjen yhtiöittäminen Porvoon sote-kiinteistöjen yhtiöittäminen Keskinäisten kiinteistöyhtiöiden taloudellinen mallinnus 2.3.2016 Johdanto Rahoituksen neuvontapalvelut Inspira Oy ( Inspira ) on tehnyt Porvoon kaupungin toimeksiannosta

Lisätiedot

Kiinteistöjen lämmitystapamuutosselvitykset

Kiinteistöjen lämmitystapamuutosselvitykset Kiinteistöjen lämmitystapamuutosselvitykset -yhteenveto Etelä-Kymenlaakson Uusiutuvan energian kuntakatselmus - projekti 12/2014 Koonneet: Hannu Sarvelainen Erja Tuliniemi Johdanto Selvitystyöt lämmitystapamuutoksista

Lisätiedot

Sporttikeskus Tennari, Kamppailuhalli, Rantapuisto 45, 08100 Lohja. LÄSNÄ Pajuoja Matti puheenjohtaja Saloniemi Heikki jäsen Saapui :n 18 käs. aikana.

Sporttikeskus Tennari, Kamppailuhalli, Rantapuisto 45, 08100 Lohja. LÄSNÄ Pajuoja Matti puheenjohtaja Saloniemi Heikki jäsen Saapui :n 18 käs. aikana. PÖYTÄKIRJA 4/2014 1 Lohjan Liikuntahallit Oy:n hallitus 26.11.2014 AIKA 26.11.2014 klo 15:00-16:05 PAIKKA Sporttikeskus Tennari, Kamppailuhalli, Rantapuisto 45, 08100 Lohja OSALLISTUJAT LÄSNÄ Pajuoja Matti

Lisätiedot

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit

Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Elinkaarimallit ja -palvelut tulosseminaari Elinkaarimallien taloudelliset arviointiperusteet ja analyysit Hanna Kaleva KTI Kiinteistötieto Oy 26.9.2006 ELINKAARIMALLIT kehityshanke: KTI:n osaprojekti:

Lisätiedot

Vadelma tuottaa satoa kausihuoneessa paremmin kuin avomaalla ja investointi kannattaa.

Vadelma tuottaa satoa kausihuoneessa paremmin kuin avomaalla ja investointi kannattaa. (Artikkeli julkaistu aiemmin Puutarha- ja Kauppa-lehdessä, päivitetty 2011) Vadelman kausihuonetuotanto kannattaa Teksti: Kalle Hoppula, Markku Kajalo ja Kati Hoppula Kuvat: Kati Hoppula Vadelma tuottaa

Lisätiedot

Vahinkovakuutuksen vakavaraisuusvalvonnan kehittämishaasteet: Vastuuvelan Best Estimaten laskeminen. Aktuaariyhdistyksen kuukausikokous 26.4.

Vahinkovakuutuksen vakavaraisuusvalvonnan kehittämishaasteet: Vastuuvelan Best Estimaten laskeminen. Aktuaariyhdistyksen kuukausikokous 26.4. Vahinkovakuutuksen vakavaraisuusvalvonnan kehittämishaasteet: Vastuuvelan Best Estimaten laskeminen Aktuaariyhdistyksen kuukausikokous 26.4.2007 Pasi Laaksonen Vastuuvelka Solvenssi II: kehikossa Vastuuvelka

Lisätiedot

KORTTELI- TAI KORTTELIRYHMÄKOHTAINEN JÄTEHUOLTO 27. VALTAKUNNALLISET JÄTEHUOLTOPÄIVÄT 9.-10.10.2013, TAMPERE

KORTTELI- TAI KORTTELIRYHMÄKOHTAINEN JÄTEHUOLTO 27. VALTAKUNNALLISET JÄTEHUOLTOPÄIVÄT 9.-10.10.2013, TAMPERE KORTTELI- TAI KORTTELIRYHMÄKOHTAINEN JÄTEHUOLTO 27. VALTAKUNNALLISET JÄTEHUOLTOPÄIVÄT 9.-, TAMPERE 01 05 02 03 04 Esimerkkikohteet 01 Norja, Trondheim, putkikuljetus ja puristimet 02 Tanska, Frederiksberg,

Lisätiedot

Valaistus. Valaistus voi kuluttaa miltei 30% normaalin toimistorakennuksen sähköenergiankulutuksesta,

Valaistus. Valaistus voi kuluttaa miltei 30% normaalin toimistorakennuksen sähköenergiankulutuksesta, Valaistus Valaistus voi kuluttaa miltei 30% normaalin toimistorakennuksen sähköenergiankulutuksesta, koulurakennuksissa valaistus voi kattaa jopa 40%. Valaistusta tulisi käyttää ainoastaan tarpeeseen ja

Lisätiedot

INVESTOINNIT JA TOIMINNAN KANNATTAVUUS

INVESTOINNIT JA TOIMINNAN KANNATTAVUUS INVESTOINNIT JA TOIMINNAN KANNATTAVUUS Case: Majakkapaviljonki Oy LAHDEN AMMATTIKORKEAKOULU Liiketalouden ala Kansainvälinen kauppa Opinnäytetyö Syksy 2015 Laura Sofia Rantanen Lahden ammattikorkeakoulu

Lisätiedot

2009 2010 2011 2012 2013 YRITYKSEN OSAKEKANNAN ARVO 12 12 12 12 12

2009 2010 2011 2012 2013 YRITYKSEN OSAKEKANNAN ARVO 12 12 12 12 12 Luvut 1 000 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 5100151 2009 2010 2011 2012 2013 YRITYKSEN OSAKEKANNAN ARVO 12 12 12 12 12 Oletus: Tulevaisuuden nettotulokset = harmaassa taulukossa

Lisätiedot

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista %

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista % Veroilmoituksesta laskettavat tunnusluvut Heikki Ollikainen, ProAgria Oulu Nopea tuloksen analysointi on mahdollista tehdä laskelmalla veroilmoituksesta muutamia yksinkertaisia tunnuslukuja, joiden perusteella

Lisätiedot

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma 151 RAHOITUSOSA 152 153 RAHOITUSOSA Talousarvion rahoitusosaan kootaan käyttötalous-, tuloslaskelma - ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien

Lisätiedot

Miika Roth. Vesijohtopinnoitusyksikön perustamiskustannukset ja investointilaskelmat. Metropolia Ammattikorkeakoulu Talotekniikan koulutusohjelma

Miika Roth. Vesijohtopinnoitusyksikön perustamiskustannukset ja investointilaskelmat. Metropolia Ammattikorkeakoulu Talotekniikan koulutusohjelma Metropolia Ammattikorkeakoulu Talotekniikan koulutusohjelma Miika Roth Vesijohtopinnoitusyksikön perustamiskustannukset ja investointilaskelmat Insinöörityö 19.5.2010 Ohjaaja: asennuspäällikkö Antti Ollikainen

Lisätiedot

VUODEN 2015 TALOUSARVION JA VUOSIEN 2016 2017 TALOUSSUUNNITELMAN LAADINTAOHJEET

VUODEN 2015 TALOUSARVION JA VUOSIEN 2016 2017 TALOUSSUUNNITELMAN LAADINTAOHJEET VUODEN 2015 TALOUSARVION JA VUOSIEN 2016 2017 TALOUSSUUNNITELMAN LAADINTAOHJEET 1. Talousarvion ja -suunnitelman perusta Talousarvion ja -suunnitelman perustana on Haapaveden kaupungin strategia. Sen mukaisesti

Lisätiedot

Jukka Kontulainen ProAgria Satakunta ry

Jukka Kontulainen ProAgria Satakunta ry Jukka Kontulainen ProAgria Satakunta ry ProAgria Farma ja Satakunta yhdistyvät 1.1.2013 Viljatilojen määrä on kasvanut Valtaosa kuivataan öljyllä Pannut ovat pääsääntöisesti 250-330 kw Kuivauksen investoinnit

Lisätiedot

Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4

Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4 Kaupunginvaltuusto 25.5.20015 Liite 1 56 Puhdistamohankeen rahoituksen lähtökohta 2008 ja kehitys 1/4 - Puhdistamohankkeen rahoituksesta on sovittu seuraavaa 2009. Veden käyttömaksuja korotetaan etukäteen

Lisätiedot

HE 20/2013 Sähkömarkkinalain muutos: Jakeluverkonhaltijan ja vähittäismyyjän laskutus sekä laskutusta koskeva siirtymäsäännös (57, 69, 122 )

HE 20/2013 Sähkömarkkinalain muutos: Jakeluverkonhaltijan ja vähittäismyyjän laskutus sekä laskutusta koskeva siirtymäsäännös (57, 69, 122 ) HE 20/2013 Sähkömarkkinalain muutos: Jakeluverkonhaltijan ja vähittäismyyjän laskutus sekä laskutusta koskeva siirtymäsäännös (57, 69, 122 ) Energiateollisuus ry, lakimies eeva.kurkirinne@energia.fi GSM

Lisätiedot

Opiskelijanumero ja nimi:

Opiskelijanumero ja nimi: 1 LUT School of Business and Management Yliopisto-opettaja, Tiina Sinkkonen Opiskelijanumero ja nimi: CS31A0101 KUSTANNUSJOHTAMISEN PERUSKURSSI Tentti 22.10.2015 Tentissä saa olla mukana vain muistiinpanovälineet

Lisätiedot

Johdanto Kassavirta-analyysin perusteet

Johdanto Kassavirta-analyysin perusteet Mat-2.3114 Investointiteoria Johdanto Kassavirta-analyysin perusteet 24.2.2015 Luento 1: Sisältö Mitä on investointiteoria? Investoinnit ja pääomamarkkinat Kassavirtojen perusteet Tyypillisiä investointipäätöksiä

Lisätiedot

Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely)

Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Sara Melander 1.11.2016 Ohjaaja: DI Malin Östman Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS

Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS Sanna Inkiläinen SUURKANALAN AUTOMATISOINNIN KANNATTAVUUS Liiketalous ja matkailu 2013 VAASAN AMMATTIKORKEAKOULU Liiketalouden koulutusohjelma TIIVISTELMÄ Tekijä Sanna Inkiläinen Opinnäytetyön nimi Suurkanalan

Lisätiedot

Tilinpäätös Tammi joulukuu

Tilinpäätös Tammi joulukuu Tilinpäätös Tammi joulukuu 10.2.2010 Tammi joulukuu Toimistokalustekysyntä laski selvästi viime vuoteen verrattuna. Konsernin tammi-joulukuun liikevaihto oli 95,3 milj. euroa (141,2), jossa oli laskua

Lisätiedot

Käyttöoppaasi. TEXAS INSTRUMENTS BA II http://fi.yourpdfguides.com/dref/2995546

Käyttöoppaasi. TEXAS INSTRUMENTS BA II http://fi.yourpdfguides.com/dref/2995546 Voit lukea suosituksia käyttäjän oppaista, teknisistä ohjeista tai asennusohjeista tuotteelle. Löydät kysymyksiisi vastaukset käyttöoppaasta ( tiedot, ohjearvot, turvallisuusohjeet, koko, lisävarusteet

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan

Lisätiedot

Vakiomuotoiset eurooppalaiset kulutusluottotiedot

Vakiomuotoiset eurooppalaiset kulutusluottotiedot Vakiomuotoiset eurooppalaiset kulutusluottotiedot EU:ssa on laadittu vakiomuotoisten kulutusluottotietojen esittämiseen tarkoitettu lomake. Tiedot ilmaisevat oikein nykyisissä markkinaoloissa jättämämme

Lisätiedot

Pia Pitkäranta INVESTOINNIN KANNATTAVUUDEN ARVIOINTI KOHDEYRITYKSELLE

Pia Pitkäranta INVESTOINNIN KANNATTAVUUDEN ARVIOINTI KOHDEYRITYKSELLE Pia Pitkäranta INVESTOINNIN KANNATTAVUUDEN ARVIOINTI KOHDEYRITYKSELLE Liiketalouden koulutusohjelma 2016 INVESTOINNIN KANNATTAVUUDEN ARVIOINTI KOHDEYRITYKSELLE Pitkäranta, Pia Satakunnan ammattikorkeakoulu

Lisätiedot

Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki

Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki Edullisempiin energiansäästöihin korjaushankkeissa seminaari Helsinki 14.2.2017 Kuinka tunnistaa edullisin korjauslaajuus? Kustannusoptimaalisuuden arvioinnin menetelmät Juhani Heljo Tampereen teknillinen

Lisätiedot

Kausihuonelaskelma

Kausihuonelaskelma Kausihuonelaskelma 16.12.2014 Markku Kajalo, Oulun yliopisto/kajaanin yliopistokeskus, Sotkamo Taustatietoja kausihuoneinvestoinnin laskelmalle Esimerkkinä tuoreena myyty vadelma. Kausihuoneen tarvikekustannus

Lisätiedot

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat RAHOITUSOSA RAHOITUSOSA n rahoitusosaan kootaan käyttötalous-tuloslaskelma- ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien kassavirta). Lisäksi rahoitusosaan

Lisätiedot