Y56 laskuharjoitukset 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Y56 laskuharjoitukset 6"

Transkriptio

1 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin. Nido paperit yhteen. Opiskelijan nimi Opiskelijan numero Harjoitus. Monopsoni Tavoitteen on ymmärtää panosmarkkinoiden luonnetta, kun markkinoilla on vain yksi ostaja. Monopsoni tuottaa hyödykettä y kilpailullisille markkinoille käyttäen työvoimaa tuotantofunktion y f(l) (0-0.05L)L mukaisesti. Hyödykkeen y hinta on p 3 ja työvoiman tarjontakäyrän määrittää yhtälö w L. Ratkaise monopsonin tarjoama palkka ja työvoiman kysyntä ja vertaa sitä täydellisen kilpailun mukaiseen ratkaisuun (w*,l*). Laske monopsonin tehokkuustappio. Havainnollista ratkaisusi kuvaajalla. Monopsonin tavoitefunktio FOC ja sen ratkaisu SOC

2 Y56 Kevät 00 Monopsonin tarjoama palkka ja työvoiman kysyntä ovat (w m,l m ) = (, ) Kuvaaja Täydellisen kilpailun mukainen ratkaisu on (w*,l*) = (,.) Monopsonin tehokkuustappio on DWL=.

3 Y56 Kevät 00 3 Harjoitus. Oligopoli Tavoitteena on osata muodostaa Cournot-duopolin ongelma ja ratkaista se. Alalla toimii kaksi yritystä: yritys ja yritys, jotka tuottavat homogeenista hyödykettä. Hyödykkeen markkinakysyntä on muotoa p 00 q, jossa q on kokonaistuotanto ja p on hinta. Huom. q q q. Olkoon kustannusfunktiot muotoa c ( q ja q) c ( q. q ) Määritä kummanakin yrityksen tuotantomäärä tasapainossa ja tasapainohinta, kun yritysten toimintaa mallitetaan Cournot kilpailuna. Laske lisäksi yritysten voitot. Havainnollista ratkaisusi kuvaajalla. Laskut (tavoitefunktiot, FOCs ja niiden ratkaisu, SOCs):

4 Y56 Kevät 00 4 Kuvaaja Yritys tuottaa q = ja sen voitto on.. Yritys tuottaa q = ja sen voitto on. Tasapainohinta on p = Harjoitus 3. Kartelli Tavoitteena on osata asettaa ongelma, jossa yritykset solmivat kartellisopimuksen ja noudattavat sitä ja verrata sitä tilanteeseen, jossa toisella yrityksellä on kannustin huijata. Alalla toimii kaksi yritystä: yritys ja yritys, jotka tuottavat homogeenista hyödykettä. Hyödykkeen markkinakysyntä on muotoa p 00 q, jossa q on kokonaistuotanto ja p on hinta. Huom. q q q. Olkoon kustannusfunktiot muotoa c ( q ja q) c ( q. q) a) Laske kartellitasapainon määrä ja hinta sekä kartellivoitto. b) Laske sitten, kuinka tulokset muuttuvat, mikäli yritys noudattaa kartellisopimusta ja yritys ei. c) Laske lopuksi, millä korkokannalla r kartellisopimus on stabiili, olettaen, että kartelli- Cournot peli pelataan loputtomia kertoja. Oleta, että kukin yritys saa puolet kartellivoitosta.

5 Y56 Kevät 00 5 a) Kartellitasapaino: tavoitefunktio, FOCs ja ratkaisu Kartellitasapainossa määrä on q = Yritys tuottaa q = ja sen voitto on.. Yritys tuottaa q = ja sen voitto on. Tasapainohinta on p = b) Yritys noudattaa kartellisopimusta ja yritys ei. Laskut:

6 Y56 Kevät 00 6 Yritys tuottaa q = ja sen voitto on.. Yritys tuottaa q = ja sen voitto on. Tasapainohinta on p = c) Laske mille korkokannalle r kartellisopimus on stabiili. Ennen sitä täydennä taulukko: yritys voitto tuotanto yritys voitto tuotanto Cournot Kartelli "Huijaus" tasapainohinta Laskut: Kartelli on stabiili, jos r =

7 Y56 Kevät 00 7 Harjoitus 4. Peliteoria Tavoitteena on oppia muodostamaan pelimatriisi ja pelipuu annetuista tiedoista ja ratkaista pelin tasapaino/tasapainot. Sukupuolten taistelu Pariskunta yrittää sopia yhteisestä illanvietosta. Nainen haluaa mennä oopperaan, mies vapaapainiotteluun (wrestling). Valinta täytyy tehdä näiden kahden vaihtoehdon välillä. He kuitenkin haluavat viettää illan nimenomaan yhdessä, joten jos heidän valintansa eivät osu yhteen, he jäävät mieluummin kotiin kuin menevät yksin. Koti-illasta molempien hyöty on 0. Jos he päätyvät yhdessä oopperaan Naisen hyöty on ja Miehen. Jos he päätyvät yhdessä wrestlingiin Miehen hyöty on ja Naisen. Niissä tapauksissa, että heidän valintansa ovat ristikkäiset ja he jäävät kotiin, kummankin hyöty on 0. a) Muodosta pelistä ns. normaalimuoto eli siis pelimatriisi (määrittele pelaajat, pelaajien vaihtoehtoiset toiminnot ja pelin tuotot). b) Mikä tai mitkä ovat pelin tasapainot (puhtaissa strategioissa), jos peliä pelataan kertaluontoisesti siten, että pelaajat tekevät valintansa samanaikaisesti ( = staattinen peli)? c) Onko pelissä dominoivien strategioiden tasapainoa/tasapainoja? Perustele. d) Oleta nyt, että peli on dynaaminen siten, että Mies saa päättää ensin. Esitä peli nyt pelipuumuodossa.

8 Y56 Kevät 00 8 e) Mikä on dynaamisen pelin ratkaisu? (Vinkki: backwards induction). f) Miten oletat tilanteen muuttuvan, jos Nainen onkin valintavuorossa ensimmäisenä? Harjoitus 5. Ulkoisvaikutukset Tavoitteena on osata kertoa, mikä on negatiivinen ulkoisvaikutus, miten se syntyy taloudellisessa mielessä ja miten se voitaisiin ratkaista. Lue Aplia Econ Blogista ulkoisvaikutusta käsittelevä teksti ( Vastaa seuraaviin kysymyksiin. Älä ylitä annettua tilaa. a) Mistä ulkoisvaikutuksesta tekstissä on kyse?

9 Y56 Kevät 00 9 b) Miksi kyseinen ulkoisvaikutus syntyy? (Taloudellisessa mielessä!) c) Mitä on ehdotettu keinoksi, jotta kyseinen ulkoisvaikutus saadaan ns. sisäistetyksi? d) Miksi ehdotettu keino ei kuitenkaan ole kirjoittajan mielestä tehokas?

Y56 laskuharjoitukset 6 - mallivastaukset

Y56 laskuharjoitukset 6 - mallivastaukset Y56 Kvät 00 Harjoitus. Monopsoni Y56 laskuharjoitukst 6 - mallivastaukst Tavoittna on ymmärtää panosmarkkinoidn luonntta, kun markkinoilla on vain yksi ostaja. Monopsoni tuottaa hyödykttä y kilpailullisill

Lisätiedot

Y56 laskuharjoitukset 5

Y56 laskuharjoitukset 5 Y56 Keät 2010 1 Y56 laskuharjoitukset 5 Palautus joko luennolle/mappiin to 8.4. tai Katjan lokerolle (Koetilantie 5, 3. krs) to 8.4. klo 16 mennessä (purku luennolla ti 13.4.) Huom. Tehtäät eiät ole aikeusjärjestyksessä,

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

MIKROTEORIA, HARJOITUS 8

MIKROTEORIA, HARJOITUS 8 MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Laskuharjoitus 2. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 2. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 2 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4

Lisätiedot

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4 Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kahdeksan tehtävää, yksi per luento (5 Saaran, 3 Benin). Katso

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4

Lisätiedot

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä.

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä. Y56 Kevät 2010 1 Luku 29 Peliteoria Tässä luvussa tarkastellaan peliteorian perusteita. Tavoitteena on, että opit muodostamaan itsenäisesti kutakin peliä kuvaavat osat, ratkaisemaan erilaisten pelien tasapainon

Lisätiedot

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. 5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

4. www-harjoitusten mallivastaukset 2017

4. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Assignment: 2016 www1 1. Mitkä seuraavista asioista kuuluvat mikrotaloustieteen ja mitkä makrotaloustieteen piiriin?

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Palautus ke 10.2. klo 16 mennessä Piian lokeroon Koetilantie 5, 3. krs tai B-talon vahtimestarien kopin luona olevaan kurssikansioon. En

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka Kiinnitä huomiota essee-muotoisen vastauksen loogiseen jäsentelyyn. Hyödynnä vain rajattua vastausaluetta. Rajatun alueen yli meneviä vastauksia ei tarkasteta. 1. Inflaation kustannukset. Käsittele vastauksessasi

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto

Lisätiedot

Uusien keksintöjen hyödyntäminen

Uusien keksintöjen hyödyntäminen Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi

Lisätiedot

Informaatio ja Strateginen käyttäytyminen

Informaatio ja Strateginen käyttäytyminen Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset 1 Tehtävä 1 Lähde M&T (2006, 84, luku 4 tehtävä 1, muokattu ja laajennettu) Selitä seuraavat väittämät hyödyntämällä kysyntä- ja tarjontakäyrän

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010

Y55 Kansantaloustieteen perusteet sl 2010 Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina

Lisätiedot

Harjoitusten 2 ratkaisut

Harjoitusten 2 ratkaisut Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Asymmetrinen informaatio

Asymmetrinen informaatio Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus 1 2 3 4 5 YHT 1. Selitä lyhyesti, mitä seuraavat käsitteet kohdissa a) e) tarkoittavat ja vastaa kohtaan f) a) Työllisyysaste (2 p) b) Oligopoli (2 p) c) Inferiorinen hyödyke (2 p) d) Kuluttajahintaindeksi

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Evolutiivinen stabiilisuus populaation

Evolutiivinen stabiilisuus populaation Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö

Lisätiedot

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin.

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. Mikrotalousteorian uusintatentti 19.1.1995 Vastaa neljään seuraavista viidestä kysymyksestä. 1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. a)määritä

Lisätiedot

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13)

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) 8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko. SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

Peliohje 20.4.2011 1(6)

Peliohje 20.4.2011 1(6) 1. Rakentaja Cup, reikäpeli 2 1.1. Yleistä reikäpelistä 2 1.2. Arvonta ja pelaajien sijoittaminen ottelukaavioon 2 1.3. Tasoitukset ja tiit 3 1.4. Pelikentät ja kustannukset 3 1.5. Tuomaritoiminta 4 1.6.

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

ESIMERKKEJÄ JA HARJOITUKSIA

ESIMERKKEJÄ JA HARJOITUKSIA ESIMERKKEJÄ JA HARJOITUKSIA OSA I: MATEMAATTISTEN MERKINTÖJEN JA KIRJAINSYMBOLIEN KÄYTTÖÄ (ja tutustumista tilinpitoon ja keynesiläiseen malliin) Harjoitellaan seuraavassa kirjainsymbolien käyttöä ja yhtälöiden

Lisätiedot

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa? TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

5 Markkinat, tehokkuus ja hyvinvointi

5 Markkinat, tehokkuus ja hyvinvointi 5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Taloustieteen mat.menetelmät 2017 materiaali 1

Taloustieteen mat.menetelmät 2017 materiaali 1 Taloustieteen mat.menetelmät 2017 materiaali 1 1 Taloustiede tutkii niukkojen resurssien kohdentamista kilpaileviin tarkoituksiin mikä on hyvä tapa kohdentaa? miten arvioida tuloksia? mitä niukkuus tarkoittaa?

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

Luku 34 Ulkoisvaikutukset

Luku 34 Ulkoisvaikutukset Luku 34 Ulkoisvaikutukset Markkinoiden kilpailutasapaino ei ole Pareto-tehokas, jos taloudessa esiintyy ulkoisvaikutuksia. Kertaus: Pareto-tehokas tasapaino on tasapaino, jossa yhden toimijan asemaa markkinoilla

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede YLE5 / YET-09 Luonnonvarataloustieteen jatkokurssi. Uusiutuvat luonnonvarat: alastuksen taloustiede Marko Lindroos & Maija Holma Uusiutuvat luonnonvarat alastuksen taloustiede: Luentoteemat.1 Johdanto.

Lisätiedot

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi

Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinat eivät välttämättä synny itsestään ja monesti on useita tapoja järjestää markkinat. Markkinoiden keskeinen tehtävä on mahdollistaa vaihdanta.

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman

Lisätiedot

Uusien keksintöjen kannustimet

Uusien keksintöjen kannustimet Uusien keksintöjen kannustimet Ville Koskenvuo 9.4.2003 Optimointiopin seminaari Kevät 2003 / 1 Päivän agenda 1. luento: Uusien keksintöjen kannustimet ja patenttikisat (Koskenvuo) 2. luento: Uusien keksintöjen

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot