5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
|
|
- Kari Ranta
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo, Painopiste, Pistetodennäköisyysfunktio, Puutodennäköisyys, Puuverkko, Rinnan kytkentä, Sarjaan kytkentä, Standardipoikkeama, Tiheysfunktio, Todennäköisyysjakauma, Toimintatodennäköisyys, Toimintaverkko, Tulosääntö, Tunnusluku, Varianssi, Yhteenlaskusääntö.. Uurnassa A on 5 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa kuulaa. Poimitaan kummastakin uurnasta satunnaisesti yksi kuula sekä asetetaan uurnasta A poimittu kuula uurnaan B ja uurnasta B poimittu kuula uurnaan A. Poimitaan tämän jälkeen uurnasta A satunnaisesti kuula. Mikä on todennäköisyys, että poimittu kuula on valkoinen? Ohje: Käytä ratkaisussa puuverkkoa. Tulosvaihtoehdoista voidaan rakentaa seuraava puuverkko: 5/ 6/ Vaihe 6/ 4/ 6/ 4/ Vaihe 5/ 6/ 4/ 7/ 6/ 5/ 5/ 6/ Vaihe Puun konstruktio perustuu siihen, että voidaan ajatella, että kuulat poimitaan kolmessa vaiheessa: Vaihe : Poimitaan kuula uurnasta A. Vaihe : Poimitaan kuula uurnasta B. Vaihe : Poimitaan kuula uurnasta A sen jälkeen, kun vaiheessa uurnasta A poimittu kuula on pantu uurnaan B ja vaiheessa uurnasta B poimittu kuula on pantu uurnaan A. Ilkka Mellin (4) /
2 Tarkastellaan puun konstruktiosta esimerkkinä reittiä, joka päättyy nuolella merkittyyn valkoiseen kuulaan: Vaihe : Uurnasta A poimitaan valkoinen kuula; todennäköisyys = 5/ Vaihe : Uurnasta B poimitaan musta kuula; todennäköisyys = 4/ Uurnasta A poimittu valkoinen kuula pannaan uurnaan B ja uurnasta B poimittu musta kuula pannaan uurnaan A. Tämän jälkeen uurnassa A on 4 valkoista ja 7 mustaa kuulaa ja uurnassa B on 7 valkoista kuulaa ja mustaa kuulaa. Vaihe : Uurnasta A poimitaan valkoinen kuula; todennäköisyys = 4/ Yo. puu koostuu reitistä ja niistä 4 päättyy valkoiseen kuulaan. Todennäköisyys nostaa valkoinen kuula vaiheessa voidaan laskea puutodennäköisyyksien tulo- ja yhteenlaskusääntöjen avulla: (i) (ii) Puutodennäköisyyksien tulosäännön mukaan jokaisen valkoiseen kuulaan päättyvän reitin todennäköisyys saadaan laskemalla ko. reitin särmien todennäköisyyksien tulo. Puutodennäköisyyksien tulosääntö on yleisen tulosäännön sovellus. Puutodennäköisyyksien yhteenlaskusäännön mukaan valkoisiin kuuliin päättyvistä reiteistä koostuvan tapahtuman todennäköisyys on ko. reittien todennäköisyyksien summa. Puutodennäköisyyksien yhteenlaskusääntö on toisensa poissulkevien tapahtumien yhteenlaskusäännön sovellus. Valkoiseen kuulaan vaiheessa johtavat reitit yo. puudiagrammissa: jossa VVV, VMV, MVV, MMV V = valkoinen kuula M = musta kuula Siten todennäköisyydeksi nostaa valkoinen kuula vaiheessa saadaan = = Tiedonsiirtojärjestelmä siirtää binäärilukuja ja, mutta järjestelmässä on vika, joka aiheuttaa sen, että luku vastaanotetaan virheellisesti lukuna todennäköisyydellä /. Luotettavuuden parantamiseksi luku koodataan lähetettäessä jonoksi ja luku jonoksi. Vastaanotettaessa tehdään koodinpurku, jossa jonot,, tai tulkitaan luvuksi. Mikä on todennäköisyys, että lähetetty luku vastaanotetaan lukuna? Ohje: Käytä ratkaisussa puuverkkoa. Tulosvaihtoehdoista voidaan rakentaa seuraavalla sivulla kuvattu puuverkko. Puun konstruktio perustuu siihen, että luvun koodissa jokainen menee oikeassa muodossa tiedonsiirtojärjestelmän läpi todennäköisyydellä.9. Ilkka Mellin (4) /
3 Todennäköisyys vastaanottaa lähetetty luku lukuna voidaan laskea puutodennäköisyyksien tulo- ja yhteenlaskusääntöjen avulla: (i) (ii) Puutodennäköisyyksien tulosäännön mukaan reitin todennäköisyys on reitin särmien todennäköisyyksien tulo. Puutodennäköisyyksien yhteenlaskusäännön mukaan useammasta reitistä koostuvan tapahtuman todennäköisyys on ko. reittien todennäköisyyksien summa Lähetetty jono tulkitaan oikein luvuksi, jos vastaanotettaessa saadaan joku jonoista,,, Siten todennäköisyys, että lähetetty luku vastaanotetaan lukuna on =.97.. Seuraava kuva esittää sähköistä verkkoa, jossa on 5 komponenttia, joista jokaisen toimintatodennäköisyys on p. Oletetaan, että komponenttien vikaantumiset ovat tapahtumina toisistaan riippumattomia. Mikä on todennäköisyys, että verkko toimii eli virta kulkee verkon läpi? 4 5 Kaavion toimintaverkko koostuu seuraavista sarjaan kytketyistä osista:. Komponenttien ja muodostama rinnankytkentä. Komponentti Ilkka Mellin (4) /
4 . Komponenttien 4 ja 5 muodostama rinnankytkentä Olemme olettaneet, että toimintaverkossa yhdenkään komponentin toiminta tai toimimattomuus ei riipu muiden komponenttien toiminnasta. Tällöin toimintaverkon toimintatodennäköisyys saadaan soveltamalla seuraavia sääntöjä: (i) (ii) Jos komponentit A ja B on kytketty rinnan, kytkennän toimintatodennäköisyys on yleisen yhteenlaskusäännön ja riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii tai B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii ja B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii)pr(b toimii) Jos komponentit A ja B on kytketty sarjaan, kytkennän toimintatodennäköisyys on riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii ja B toimii) = Pr(A toimii)pr(b toimii) Kumpikin tehtävän kaavion rinnankytkennöistä toimii todennäköisyydellä p + p p p = p p Koska tehtävän kaavion kuvaama toimintaverkko koostuu komponenttien ja muodostaman rinnankytkennän, komponentin ja komponenttien 4 ja 5 muodostaman rinnankytkennän kytkennästä sarjaan, verkon toimintatodennäköisyydeksi saadaan: ( p p ) p ( p p ) = 4p 4p 4 + p 5.4. Seuraava kuva esittää sähköistä verkkoa, jossa on 5 komponenttia. Komponenttien toimintatodennäköisyydet on merkitty kuvion viereen. Oletetaan, että komponenttien vikaantumiset ovat tapahtumina toisistaan riippumattomia. Mikä on todennäköisyys, että verkko toimii eli virta kulkee verkon läpi? 4 5 Pr() =.9 Pr() =. Pr() =.7 Pr(4) =.9 Pr(5) =. Ilkka Mellin (4) 4/
5 Kaavion toimintaverkko koostuu seuraavista sarjaan kytketyistä osista:. Komponenttien, ja muodostama rinnankytkentä, joka voidaan purkaa komponenttien ja muodostamaksi rinnankytkennäksi, joka on kytketty rinnan komponentin kanssa.. Komponenttien 4 ja 5 muodostama rinnankytkentä Olemme olettaneet, että toimintaverkossa yhdenkään komponentin toiminta tai toimimattomuus ei riipu muiden komponenttien toiminnasta. Tällöin toimintaverkon toimintatodennäköisyys saadaan soveltamalla seuraavia sääntöjä: (i) (ii) Jos komponentit A ja B on kytketty rinnan, kytkennän toimintatodennäköisyys on yleisen yhteenlaskusäännön ja riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii tai B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii ja B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii)pr(b toimii) Jos komponentit A ja B on kytketty sarjaan, kytkennän toimintatodennäköisyys on riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii ja B toimii) = Pr(A toimii)pr(b toimii) Komponenttien ja muodostama rinnankytkentä toimii todennäköisyydellä =.9 Komponenttien, ja muodostama rinnankytkentä toimii todennäköisyydellä =.994 Komponenttien 4 ja 5 muodostama rinnankytkentä toimii todennäköisyydellä =.9 Koska tehtävän kaavion kuvaama toimintaverkko koostuu komponenttien, ja muodostaman rinnankytkennän ja komponenttien 4 ja 5 muodostaman rinnankytkennän kytkennästä sarjaan, verkon toimintatodennäköisyydeksi saadaan: =.974 Ilkka Mellin (4) 5/
6 .5. Heitetään virheetöntä rahaa kertaa, jossa siis Pr(Kruuna) = Pr(Klaava) = /. Olkoon satunnaismuuttuja X = Kruunien lukumäärä :ssa heitossa. (a) (b) (c) Määrää todennäköisyydet tapahtumille X =,,, puuverkkoa käyttäen ja määrittele niiden avulla satunnaismuuttujan X pistetodennäköisyysfunktio. Hahmottele funktion kuvaaja myös paperille. Määrää satunnaismuuttujan X kertymäfunktio. Hahmottele funktion kuvaaja myös paperille. Mikä on tapahtuman X =.5 todennäköisyys? (d) Määrää tapahtuman X > todennäköisyys sekä satunnaismuuttujan pistetodennäköisyysettä kertymäfunktion avulla. (a) Merkitään H = Kruuna (engl. head) T = Klaava (engl. tail). Tulosvaihtoehdoista voidaan rakentaa seuraava puuverkko: / / H T / / / / H T H T / / / / / / / / H T H T H T H T Todennäköisyydet erilaisille kruunien ja klaavojen kombinaatioille voidaan laskea puutodennäköisyyksien tulo- ja yhteenlaskusääntöjen avulla: (i) (ii) Puutodennäköisyyksien tulosäännön mukaan reitin todennäköisyys on reitin särmien todennäköisyyksien tulo. Puutodennäköisyyksien yhteenlaskusäännön mukaan useammasta reitistä koostuvan tapahtuman todennäköisyys on ko. reittien todennäköisyyksien summa. Jokaisen alkupisteestä mihin tahansa loppupisteeseen johtavan reitin todennäköisyys on = Ilkka Mellin (4) 6/
7 Reittejä, joissa on H on kpl. Siten Pr(TTT) =. Reittejä, joissa on H on kpl. Siten Pr(HTT tai THT tai TTH) =. Reittejä, joissa on H on kpl. Siten Pr(HHT tai HTH tai THH) =. Reittejä, joissa on H on kpl. Siten Pr(HHH) =. Siten satunnaismuuttujan X pistetodennäköisyysfunktio f() = Pr(X = ) voidaan esittää seuraavana taulukkona: f() = Pr(X = ) / / / / Satunnaismuuttujan X pistetodennäköisyysfunktion kuvaaja: f() / / / (b) Diskreetin satunnaismuuttujan kertymäfunktio voidaan määritellä kaavalla F( ) = Pr( X = ) ii i Summassa lasketaan yhteen kaikki pistetodennäköisyydet Pr( X = i ) joille pätee i. Ilkka Mellin (4) 7/
8 Siten tehtävän tapauksessa satunnaismuuttujan X kertymäfunktio voidaan esittää seuraavana taulukkona: F() < < / < 4/ < 7/ Satunnaismuuttujan X kertymäfunktion kuvaaja: F() 7/ 4/ / (c) Koska X =.5 on tapahtumana mahdoton, Pr(X =.5) = (d) Pistetodennäköisyysfunktiosta: Pr(X > ) = Pr(X = ) + Pr(X = ) = / + / = 4/ = / Ilkka Mellin (4) /
9 Kertymäfunktiosta: Pr(X > ) = Pr(X ) = F() = 4/ = 4/ = /.6. Satunnaismuuttujan X tiheysfunktio on muotoa + b, kun f( ) =, muulloin (a) (b) (c) (d) Määrää vakion b arvo. Määrää tapahtuman X =.5 todennäköisyys. Määrää tapahtuman X.5 todennäköisyys. Määrää satunnaismuuttujan X kertymäfunktio. (a) Koska kaikille tiheysfunktioille f() pätee + f ( d ) = saadaan yhtälöstä + f d b d b b = ( ) = ( + ) = + = ratkaisuksi b = / + Kuva oikealla esittää satunnaismuuttujan X tiheysfunktion f() kuvaajaa. f().5. (b) Koska jatkuvilla jakaumilla jokaisen yksittäisen pisteen todennäköisyys on nolla, Pr(X =.5) =.5.5. Ilkka Mellin (4) 9/
10 (c) Jos satunnaismuuttujan X tiheysfunktio on f(), välin [a, b] todennäköisyys saadaan kaavalla b Pr( a X b) = f( ) d a Siten välin [,.5] todennäköisyydeksi saadaan tehtävän tapauksessa:.5 X d Pr(.5) = ( + ) = + =.5 (d) Jos satunnaismuuttujan X tiheysfunktio on f(), sen kertymäfunktio saadaan kaavalla F( ) = f( t) dt Siten tehtävän satunnaismuuttujan X kertymäfunktioksi saadaan välillä [, ]: ( ) = ( ) = ( + ) = + = ( ) + F f t dt t dt t t Tämän välin ulkopuolella: F() =, kun F() =, kun.7. Määrää tehtävän.6. todennäköisyysjakauman odotusarvo ja standardipoikkeama. Jos satunnaismuuttujan X tiheysfunktio on f(), satunnaismuuttujan X odotusarvo E(X) saadaan kaavalla: + E( X ) = f ( ) d Tehtävän.6. tiheysfunktio: Odotusarvo: + /, kun f( ) =, muulloin + E( X ) = f ( ) d = + d = + d = + 4 Odotusarvo kuvaa jakauman todennäköisyysmassan painopistettä. 7 = Ilkka Mellin (4) /
11 Standardipoikkeama on varianssin neliöjuuri. Määrätään siksi ensin satunnaismuuttujan X varianssi. Käytetään varianssin laskemiseen kaavaa jossa [ ] D( X ) = E( X ) E( X) E(X) = satunnaismuuttujan X odotusarvo E(X ) = satunnaismuuttujan X. momentti Määrätään satunnaismuuttujan X. momentti: E( X ) = f ( ) d = + d = + d = + = 4 6 Satunnaismuuttujan X odotusarvoksi saatiin edellä E(X) = 7/ Siten satunnaismuuttujan X varianssiksi saadaan: [ ] D( X ) = E( X ) E( X) 5 7 = = = Varianssi kuvaa jakauman todennäköisyysmassan hajaantuneisuutta jakauman todennäköisyysmassan painopisteen suhteen. Siten satunnaismuuttujan X standardipoikkeama on D( X ) = = Osallistut rahapeliin, jossa heitetään kolmea harhatonta rahaa (ks. tehtävä.5.). Peliin osallistumisesta pitää maksaa panos ja pelaaja saa voittona kruunien lukumäärän euroja. (a) (b) Mikä on korkein panos mikä sinun kannattaa maksaa osallistumisesta peliin? Ohje: Määrää ko. satunnaismuuttujan odotusarvo. Mikä on voittosumman standardipoikkeama? Ilkka Mellin (4) /
12 Tehtävän.5 pistetodennäköisyysfunktio: f() = Pr(X = ) / / / / (a) Jos satunnaismuuttujan X pistetodennäköisyysfunktio on f(), satunnaismuuttujan X odotusarvo E(X) saadaan kaavalla: E( X ) = Pr( X = ) Tehtävän tapauksessa i i i E( X) = Pr( X = ) = = = = =.5 Odotusarvo kuvaa jakauman todennäköisyysmassan painopistettä. Sinun kannattaa maksaa peliin osallistumisesta siis korkeintaan.5, koska se on odotettavissa oleva voitto. Huomaa, että tässä tapauksessa Pr(X = E(X)) =. (b) Standardipoikkeama on varianssin neliöjuuri. Määrätään siksi ensin satunnaismuuttujan X varianssi. Käytetään varianssin laskemiseen kaavaa jossa [ ] D( X ) = E( X ) E( X) E(X) = satunnaismuuttujan X odotusarvo E(X ) = satunnaismuuttujan X. momentti Ilkka Mellin (4) /
13 Määrätään satunnaismuuttujan X. momentti: E( X ) = Pr( X = ) = 4 = = = Satunnaismuuttujan X odotusarvoksi saatiin (a)-kohdassa Siten E(X) = / [ ] D( X ) = E( X ) E( X) = = =.75 4 Varianssi kuvaa jakauman todennäköisyysmassan hajaantuneisuutta jakauman todennäköisyysmassan painopisteen suhteen. Siten satunnaismuuttujan X standardipoikkeama on D( X ) = =.665 Ilkka Mellin (4) /
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa
Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:
Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen
Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,
Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit
Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet
Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:
Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,
Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot
TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria
Mat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Mat Sovellettu todennäköisyyslaskenta B
Mat-1.2620 Sovellettu todennäköisslaskenta B 1. välikoe 08.03.2011 / Kibble Kirjoita selvästi jokaiseen koepaperiin seuraavat tiedot: Mat-1.2620 SovTnB 1. vk 08.03.2011 opiskelijanumero + kirjain TEKSTATEN
TKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
(x, y) 2. heiton tulos y
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
1. laskuharjoituskierros, vko 4, ratkaisut
1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen
D ( ) Var( ) ( ) E( ) [E( )]
Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot
T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat
TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Moniulotteiset satunnaismuuttujat ja jakaumat
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen
Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden
Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat
Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I
β versio Todennäköisyyslaskenta Ilkka Mellin Teknillinen korkeakoulu, Matematiikan laboratorio TKK @ Ilkka Mellin (2006) I TKK @ Ilkka Mellin (2006) II Esipuhe Tämä moniste antaa perustiedot todennäköisyyslaskennasta.
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
2. laskuharjoituskierros, vko 5, ratkaisut
2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa
Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1
Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat
Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.
Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?
Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.
25.2.215 1. Autossa on 4 rengasta ja 1 vararengas (T i Exp(λ), [λ] = 1/km, i=1,...,5). Kulkeakseen auto tarvitsee 4 ehjää rengasta. Aluksi auto käyttää neljää alkuperäistä rengasta. Kun yksi näistä vikaantuu,
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
B. Siten A B, jos ja vain jos x A x
Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,