Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Koko: px
Aloita esitys sivulta:

Download "Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011"

Transkriptio

1 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen

2 Funktion y = f (x) on intuitiivisesti ajatellen jatkuva (jollain reaalilukuvälillä) jos sen kuvaaja on katkeamaton käyrä. Tarkoituksena on esittää tämä asia puhtaan aksiomaattisesti. Asetamme ensin seuraavan

3 Funktion y = f (x) on intuitiivisesti ajatellen jatkuva (jollain reaalilukuvälillä) jos sen kuvaaja on katkeamaton käyrä. Tarkoituksena on esittää tämä asia puhtaan aksiomaattisesti. Asetamme ensin seuraavan Määritelmä (Funktion raja arvo) Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty jossain pisteen x 0 ympäristössä (mutta ei välttämättä pisteessä x 0 ). Funktion raja arvo pisteessä x 0 on L R, jota merkitään lim x x0 f (x) = L, jos ɛ > 0 δ > 0 siten, että f (x) L < ɛ, kun 0 < x x 0 < δ.

4 Funktion y = f (x) on intuitiivisesti ajatellen jatkuva (jollain reaalilukuvälillä) jos sen kuvaaja on katkeamaton käyrä. Tarkoituksena on esittää tämä asia puhtaan aksiomaattisesti. Asetamme ensin seuraavan Määritelmä (Funktion raja arvo) Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty jossain pisteen x 0 ympäristössä (mutta ei välttämättä pisteessä x 0 ). Funktion raja arvo pisteessä x 0 on L R, jota merkitään lim x x0 f (x) = L, jos ɛ > 0 δ > 0 siten, että f (x) L < ɛ, kun 0 < x x 0 < δ. Funktion raja-arvon löytäminen on helpompaa kuin asian todistaminen ɛδ tekniikalla. Esimerkki. [Yksityiskohdat liitutaululla] Todistetaan, että lim x 1 f (x) = 4 kun f (x) = x 2 + 2x + 1.

5 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K.

6 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K. Raja arvon määritelmän nojalla jokaista positiivista lukua ɛ kohti on olemassa positiiviset luvut δ 1 ja δ 2 siten, että f (x) L < ɛ ja f (x) K < ɛ kun 0 < x x 0 < min{δ 1, δ 2 }.

7 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K. Raja arvon määritelmän nojalla jokaista positiivista lukua ɛ kohti on olemassa positiiviset luvut δ 1 ja δ 2 siten, että f (x) L < ɛ ja f (x) K < ɛ kun 0 < x x 0 < min{δ 1, δ 2 }. Siten K L = K f (x) + f (x) L

8 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K. Raja arvon määritelmän nojalla jokaista positiivista lukua ɛ kohti on olemassa positiiviset luvut δ 1 ja δ 2 siten, että f (x) L < ɛ ja f (x) K < ɛ kun 0 < x x 0 < min{δ 1, δ 2 }. Siten K L = K f (x) + f (x) L K f (x) + f (x) L =

9 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K. Raja arvon määritelmän nojalla jokaista positiivista lukua ɛ kohti on olemassa positiiviset luvut δ 1 ja δ 2 siten, että f (x) L < ɛ ja f (x) K < ɛ kun 0 < x x 0 < min{δ 1, δ 2 }. Siten K L = K f (x) + f (x) L K f (x) + f (x) L = f (x) K + f (x) L < 2ɛ.

10 Teoreema (Raja arvon yksikäsitteisyys) Jos funktiolla f (x) on raja arvo pisteessä x 0, niin se on yksikäsitteinen. Todistus Tehdään vasta oletus: raja arvoja on kaksi kappaletta eli lim x x0 f (x) = L ja lim x x0 f (x) = K. Raja arvon määritelmän nojalla jokaista positiivista lukua ɛ kohti on olemassa positiiviset luvut δ 1 ja δ 2 siten, että f (x) L < ɛ ja f (x) K < ɛ kun 0 < x x 0 < min{δ 1, δ 2 }. Siten K L = K f (x) + f (x) L K f (x) + f (x) L = f (x) K + f (x) L < 2ɛ. Koska ɛ saa olla kuinka pieni positiivinen luku tahansa, merkitsee tämä, että pitää olla K = L. M.O.T.

11 Teoreema (Raja arvon laskusääntöjä) Jos lim x x0 f (x) = L ja lim x x0 g(x) = K, niin lim x x0 (f + g)(x) = L + K, lim x x0 (f g)(x) = L K, lim x x0 (fg)(x) = LK, lim x x0 f g (x) = L K kun K 0. Todistus Todistetaan malliksi kaava lim x x0 (f + g)(x) = L + K liitutaululla. Loput harjoitustehtävänä.

12 Teoreema (Raja arvon laskusääntöjä) Jos lim x x0 f (x) = L ja lim x x0 g(x) = K, niin lim x x0 (f + g)(x) = L + K, lim x x0 (f g)(x) = L K, lim x x0 (fg)(x) = LK, lim x x0 f g (x) = L K kun K 0. Todistus Todistetaan malliksi kaava lim x x0 (f + g)(x) = L + K liitutaululla. Loput harjoitustehtävänä. Voidaan helposti todistaa, että vakiofunktiolle f (x) = c on lim x x0 f (x) = c ja funktiolle f (x) = x on lim x x0 f (x) = x 0, ja edelleen tämän nojalla lim x x0 x n = x0 n. Lasketaan tämän perusteella liitutaululla lim x 2 9 x 2 x+1.

13 Funktiota f (x) = 2x sin x ei ole määritelty missään pisteen x = 0 ympäristössä [ a, a], a > 0, joten raja arvoa lim x o (f )(x) ei voi olla olemassa.

14 Funktiota f (x) = 2x sin x ei ole määritelty missään pisteen x = 0 ympäristössä [ a, a], a > 0, joten raja arvoa lim x o (f )(x) ei voi olla olemassa. Kuitenkin pätee, että kiinnittämällä positiivinen ɛ, kun 0 < x 0 < δ = ɛ 2, on f (x) = 2x sin x 0 < 2 ɛ 2 sin ɛ 2 < ɛ (mutta ei päde 0 < x 0 < δ.) Tämä johtaa seuraavaan

15 Funktiota f (x) = 2x sin x ei ole määritelty missään pisteen x = 0 ympäristössä [ a, a], a > 0, joten raja arvoa lim x o (f )(x) ei voi olla olemassa. Kuitenkin pätee, että kiinnittämällä positiivinen ɛ, kun 0 < x 0 < δ = ɛ 2, on f (x) = 2x sin x 0 < 2 ɛ 2 sin ɛ 2 < ɛ (mutta ei päde 0 < x 0 < δ.) Tämä johtaa seuraavaan Määritelmä (Funktion oikeanpuoleinen raja arvo) Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty avoimella välillä (x 0, a) (mutta ei välttämättä pisteessä x 0 ). Funktion oikeanpuoleinen raja arvo pisteessä x 0 on L R, jota merkitään lim x x + f (x) = L, jos 0 ɛ > 0 δ > 0 siten, että f (x) L < ɛ, kun x 0 < x < x 0 + δ. Samoin asetetaan vasemmanpuoleisen raja arvon määritelmä

16 Määritelmä (Funktion vasemmanpuoleinen raja arvo) Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty avoimella välillä (a, x 0 ) (mutta ei välttämättä pisteessä x 0 ). Funktion vasemmanpuoleinen raja arvo pisteessä x 0 on L R, jota merkitään lim x x f (x) = L, jos 0 ɛ > 0 δ > 0 siten, että f (x) L < ɛ, kun x 0 δ < x < x 0.

17 Määritelmä (Funktion vasemmanpuoleinen raja arvo) Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty avoimella välillä (a, x 0 ) (mutta ei välttämättä pisteessä x 0 ). Funktion vasemmanpuoleinen raja arvo pisteessä x 0 on L R, jota merkitään lim x x f (x) = L, jos 0 ɛ > 0 δ > 0 siten, että f (x) L < ɛ, kun x 0 δ < x < x 0. Oikean- ja vasemmanpuoleisille raja arvoille on voimassa samat laskusäännöt kuin raja arvoillekin. Esimerkiksi kun f (x) = x x, jota ei ole määritelty kun x = 0, on f (x) = 1 ja lim x x + f (x) = 1, sillä 0 lim x x 0 f (x) = { 1 kun x < 0 1 kun x > 0

18 Funktiolla voi olla jossain pisteessä vain oikean tai vasemmanpuoleinen raja arvo, mutta ei molempia (eikä siis myöskään raja arvoa), kuten seuraava liitutaululla laskettava esimerkki osoittaa. Tässä(kin) esimerkissä tulee esille funktion raja arvon määritelmän intuitiivinen idea: mitä lähempänä x on pistettä x 0, sitä lähempänä funktion arvo f (x) on arvoa L. Esimerkki. Määritellään f (x) = x+ x (1+x) x sin 1 x, kun x 0. Silloin lim x x 0 olemassa. f (x) = 0, mutta raja arvoa lim x x + 0 f (x) ei ole

19 Funktiolla voi olla jossain pisteessä vain oikean tai vasemmanpuoleinen raja arvo, mutta ei molempia (eikä siis myöskään raja arvoa), kuten seuraava liitutaululla laskettava esimerkki osoittaa. Tässä(kin) esimerkissä tulee esille funktion raja arvon määritelmän intuitiivinen idea: mitä lähempänä x on pistettä x 0, sitä lähempänä funktion arvo f (x) on arvoa L. Esimerkki. Määritellään f (x) = x+ x (1+x) x sin 1 x, kun x 0. Silloin lim x x 0 olemassa. f (x) = 0, mutta raja arvoa lim x x + 0 f (x) ei ole Seuraavan sivun Maplella tehty kuvaaja selventää funktion sin 1 x käyttäytymistä nollan läheisyydessä.

20

21 Vasemman- ja oikeanpuoleisia raja arvoja kutsutaan yhteisesti toispuoleisiksi rajarvoiksi ja merkitään joskus lim x x 0 f (x) = f (x 0 ) ja lim x x + 0 f (x) = f (x + 0 ).

22 Vasemman- ja oikeanpuoleisia raja arvoja kutsutaan yhteisesti toispuoleisiksi rajarvoiksi ja merkitään joskus lim x x 0 Voidaan todistaa seuraava tulos f (x) = f (x 0 ) ja lim x x + 0 f (x) = f (x + 0 ). Teoreema Funktiolla f (x) on raja arvo lim x x0 f (x) = L täsmälleen silloin, kun f (x 0 ) = f (x + 0 ) = L.

23 Vasemman- ja oikeanpuoleisia raja arvoja kutsutaan yhteisesti toispuoleisiksi rajarvoiksi ja merkitään joskus lim x x 0 Voidaan todistaa seuraava tulos f (x) = f (x 0 ) ja lim x x + 0 f (x) = f (x + 0 ). Teoreema Funktiolla f (x) on raja arvo lim x x0 f (x) = L täsmälleen silloin, kun f (x 0 ) = f (x + 0 ) = L. Laajennetaan raja arvon käsitettä tilanteisiin x ±. Tutustutaan kuitenkin ensin käsitteeseen ääretön.

24 Vasemman- ja oikeanpuoleisia raja arvoja kutsutaan yhteisesti toispuoleisiksi rajarvoiksi ja merkitään joskus lim x x 0 Voidaan todistaa seuraava tulos f (x) = f (x 0 ) ja lim x x + 0 f (x) = f (x + 0 ). Teoreema Funktiolla f (x) on raja arvo lim x x0 f (x) = L täsmälleen silloin, kun f (x 0 ) = f (x + 0 ) = L. Laajennetaan raja arvon käsitettä tilanteisiin x ±. Tutustutaan kuitenkin ensin käsitteeseen ääretön. Määritelmä (lim x f (x)) Funktio f (x), joka on määritelty kaikilla reaaliarvoilla > a, a R lähestyy rajatta arvoa L R jos aina, kun ɛ > 0, on sellainen arvo β, että f (x) L < ɛ kun x > β. Merkitään lim x f (x) = L.

25 Kontinuumihypoteesi Kontinuumihypoteesi on Georg Cantorin esittämä väite, joka koskee äärettömien joukkojen kokoja. Cantor esitteli mahtavuuden käsitteen vertaillakseen äärettömien joukkojen kokoja ja osoitti, että kokonaislukujen joukon mahtavuus on pienempi kuin reaalilukujen. Kontinuumihypoteesi on seuraava väite: Ei ole olemassa joukkoa, jonka mahtavuus on suurempi kuin kokonaislukujen joukon, mutta pienempi kuin reaalilukujen joukon. Matemaattisessa tekstissä kokonaislukujen mahtavuutta merkitään (luetaan alef-nolla) ja reaalilukujen mahtavuutta merkitään (reaalilukujen joukon mahtavuus on siis sama kuin kokonaislukujen joukon potenssijoukon). Nyt voimme esittää kontinuumihypoteesin seuraavassa muodossa: Ei ole olemassa joukkoa S, siten että. Tämä väite on yhtäpitävä väitteen kanssa. Todistumattomuus Georg Cantor uskoi kontinuumihypoteesin pitävän paikkaansa, minkä takia hän yritti todistaa sitä monen vuoden ajan mutta tuloksetta. David Hilbert otti otaksuman ensimmäiseksi listaansa avoimista ongelmista, jotka hän esitti kansainvälisissä matemaattisessa kongressissa Pariisissa vuonna Kurt Gödel osoitti vuonna 1940, että kontinuumihypoteesiä ei voida todistaa vääräksi Zermelon Frankelin aksiomaattisessa joukko-opissa vaikka mukaan liitettäisiin valinta-aksiooma. Paul Cohen osoitti vuonna 1963 että kontinuumihypoteesiä ei myöskään voida todistaa oikeaksi Zermelon Fraenkelin joukko-opissa. Siten kontinuumihypoteesi on riippumaton valinta-aksioomalla laajennetusta Zermelon Fraenkelin joukko-opista. Molemmat tulokset olettavat Zermelon Frankelin aksioomien olevan ristiriidattomia. Aksioomien ristiriidattomuuden uskotaan yleisesti pitävän paikkaansa. Hypoteesin riippumattomuuden perusteella monien muiden otaksumien on myös osoitettu olevan riippumattomia aksiomisysteemistä. Lähteet Gödel, Kurt: 'The Consistency of the Continuum-Hypothesis' Princeton University Press 1940 McGough, Nancy: Continuum Hypothesis

26 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L.

27 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L. Esimerkki. lim x f (x) = 1, kun f (x) = 1 1 x 2.

28 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L. Esimerkki. lim x f (x) = 1, kun f (x) = 1 1 x 2. Todistus. Valitaan ɛ > 0.

29 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L. Esimerkki. lim x f (x) = 1, kun f (x) = 1 1. Todistus. x 2 Valitaan ɛ > 0. Koska f (x) 1 = 1 < ɛ, kun x > 1 x 2 ɛ, on väite tosi.

30 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L. Esimerkki. lim x f (x) = 1, kun f (x) = 1 1. Todistus. x 2 Valitaan ɛ > 0. Koska f (x) 1 = 1 < ɛ, kun x > 1 x 2 ɛ, on väite tosi. Vastaavasti lim x g(x) = 2, kun g(x) = 2 x 1+x, mutta raja arvoa lim x sin(x) ei ole olemassa (äärettömänäkään).

31 Vastaavalla tavalla määritellään raja arvo lim x f (x) = L. Esimerkki. lim x f (x) = 1, kun f (x) = 1 1. Todistus. x 2 Valitaan ɛ > 0. Koska f (x) 1 = 1 < ɛ, kun x > 1 x 2 ɛ, on väite tosi. Vastaavasti lim x g(x) = 2, kun g(x) = 2 x 1+x, mutta raja arvoa lim x sin(x) ei ole olemassa (äärettömänäkään). Laajennetaan vielä raja arvon käsitettä. Määritelmä (lim x x f (x) = ± ) 0 Tarkastellaan funktiota y = f (x), joka oletetaan olevan määritelty avoimella välillä (a, x 0 ) (mutta ei välttämättä pisteessä x 0 ). Funktion vasemmanpuoleinen raja arvo pisteessä x 0 on, jota merkitään lim x x f (x) =, jos 0 M > 0 δ > 0 siten, että f (x) > M, kun x 0 δ < x < x 0.

32 Emme esitä tässä kaikkia mahdollisia raja arvojen määritelmiä, mutta katsotaan niitä liitutaululla laskettavien esimerkkien avulla.

33 Emme esitä tässä kaikkia mahdollisia raja arvojen määritelmiä, mutta katsotaan niitä liitutaululla laskettavien esimerkkien avulla. (a) lim 1 x 0 + x =, (b) lim x 0 1 =, x 2 (c) lim x sinh(x) =, (d) lim x e 2x e x =, 2x (e) lim 2 x+1 x 3x 2 2x 1 = 2 3.

34 Emme esitä tässä kaikkia mahdollisia raja arvojen määritelmiä, mutta katsotaan niitä liitutaululla laskettavien esimerkkien avulla. (a) lim 1 x 0 + x =, (b) lim x 0 1 =, x 2 (c) lim x sinh(x) =, (d) lim x e 2x e x =, 2x (e) lim 2 x+1 x 3x 2 2x 1 = 2 3. Määritelmä Jollain välillä I määritelty funktio f (x) on kasvava välillä I, jos ehdosta x 0 < x 1 seuraa ehto f (x 0 ) f (x 1 ). Jos erityisesti ehdosta x 0 < x 1 seuraa ehto f (x 0 ) < f (x 1 ), sanotaan funktiota f aidosti kasvavaksi. Vastaavalla tavalla määritellään vähenevä ja aidosti vähenevä funktio. Funktio, joka on koko välillä I vähenevä tai kasvava (mutta ei aidosti molempia), on monotoninen funktio.

35

36 Monotonisten funktioiden, raja arvojen ja infimumin ja supremumin välillä on seuraava yhteys, jonka todistus sivuutetaan: Teoreema Jos funktio f (x) on avoimella välillä (a, b) kasvava ja α = inf a<x<b f (x) ja β = sup a<x<b f (x), niin f (a + ) = α ja f (b ) = β. Jos lisäksi a < x 0 < b, niin toispuoleiset raja arvot f (x0 ) ja f (x 0 + ) ovat äärellisinä olemassa ja f (x 0 ) f (x 0) f (x + 0 ). Vastaavat tulokset pätevät avoimella välillä (a, b) väheneville funktiolle.

37 Monotonisten funktioiden, raja arvojen ja infimumin ja supremumin välillä on seuraava yhteys, jonka todistus sivuutetaan: Teoreema Jos funktio f (x) on avoimella välillä (a, b) kasvava ja α = inf a<x<b f (x) ja β = sup a<x<b f (x), niin f (a + ) = α ja f (b ) = β. Jos lisäksi a < x 0 < b, niin toispuoleiset raja arvot f (x0 ) ja f (x 0 + ) ovat äärellisinä olemassa ja f (x 0 ) f (x 0) f (x + 0 ). Vastaavat tulokset pätevät avoimella välillä (a, b) väheneville funktiolle. Funktion monotonisuuden voi todeta derivaatan avulla.

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n.

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n. Analyysi I ja II lisämateriaalia HAARUKOINTI Tässä käsitellään kootusti sellaisia differentiaali- ja integraalilaskennan kurssin kysymyksiä, joissa joudutaan syventymään lukusuoran hienovaraisimpiin ominaisuuksiin.

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Analyysi I. Visa Latvala. 26. lokakuuta 2004 Analyysi I Visa Latvala 26. lokakuuta 2004 34 Sisältö 3 Reaauuttujan funktiot 35 3.1 Peruskäsitteitä................................. 35 3.2 Raja-arvon määritelmä............................. 43 3.3 Raja-arvon

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma. Mika Kähkönen. L'Hospitalin sääntö

TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma. Mika Kähkönen. L'Hospitalin sääntö TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma Mika Kähkönen L'Hospitalin sääntö Matematiikan, tilastotieteen ja losoan laitos Matematiikka Lokakuu 007 Sisältö 1 Johdanto 3 1.1 Tutkielman sisältö........................

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Raja-arvon määritelmä ja sovelluksia

Raja-arvon määritelmä ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tapio Lind Raja-arvon määritelmä ja sovelluksia Matematiikan, tilastotieteen ja losoan laitos Matematiikka Maaliskuu 2009 Tampereen yliopisto Matematiikan, tilastotieteen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011 Toisen viikon luennot Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011 Perustuu paljolti lukion oppikirjoihin ja Trench in verkkokirjaan,

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25 Funktiot 12. syyskuuta 2005 sivu 1 / 25 Sisältö 1 Funktiot 2 1.1 Määritelmä ja peruskäsitteitä 2 1.2 Bijektiivisyys 3 1.3 Käänteisfunktio f 1 4 1.4 Funktioiden monotonisuus 5 1.5 Funktioiden laskutoimitukset

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Analyysi 1. Pertti Koivisto

Analyysi 1. Pertti Koivisto Analyysi Pertti Koivisto Syksy 204 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi. Monisteen tavoitteena on tukea luentojen seuraamista,

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos

Cantorin joukko. Heikki Valve. Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos Cantorin joukko Heikki Valve Helsinki, 25. marraskuuta 2012 Pro Gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen, Funktiotehtävät, 10. syyskuuta 005, sivu 1 / 4 Perustehtävät Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x. kun x on parillinen, f : N {0, 1, }, f(x) = 1 kun x on alkuluku,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot