Mittaustarkkuus ja likiarvolaskennan säännöt

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Mittaustarkkuus ja likiarvolaskennan säännöt"

Transkriptio

1 Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina likiarvoja, joilla on tietty mittausmenetelmästä tai mittausvälineestä riippuva tarkkuus. Tästä syystä mittausvälineet valitaan kuhunkin mittaukseen mittaukselta vaadittavan tarkkuuden mukaan. Mittavälineiden tarkkuuden lisääntyessä niiden hinta yleensä kasvaa, mittaukseen kuluu enemmän aikaa ja välineiden käyttö vaatii harjoittelua. Siksi mittauksia ei yleensä suoriteta tarkemmin kuin lopputuloksen kannalta on mielekästä. Keittiövaa alla voidaan mitata noin 0 g:n tarkkuudella, mutta laboratoriotyöskentelyssä mitataan yleisesti milligramman tarkkuudella. Tavallisimpia mitattavia suureita lukion kemian oppilastöissä ovat massa, tilavuus, lämpötila ja aika. Vaakatyypin mukaan massa mitataan yleensä 0 mg:n, mg:n tai 0, mg:n tarkkuudella. Jos mitattava tilavuus on suurempi kuin 00 ml, tarkkaan tilavuuden mittaukseen käytettävien mittapullojen, täyspipettien ja byrettien tarkkuus on suuruusluokkaa 0, 0,4 ml. Pienten tilavuuksien ( 00 ml) mittaamiseen käytettävien mittapullojen, pipettien sekä mikro- ja mäntäpipettien tarkkuus on koon ja mallin mukaan 0, 0,00 ml. Yleistyksenä voidaan sanoa, että tilavuus voidaan mitata 3 4:n merkitsevän numeron tarkkuudella. Lämpötila mitataan tavallisesti o C: n tai 0, o C: n tarkkuudella lämpömittarin asteikon mukaisesti. Aika saadaan mitattua käsiajanotolla sekundaattoria käyttäen korkeintaan 0,2 s:n tarkkuudella. Tarkkoihin mittauksiin tarkoitetuissa välineissä on usein ilmoitettu niiden mittaustarkkuus. Esimerkiksi 20 ml:n mittapullossa on merkintä 20 o C, ± 0,04 ml. Miten mittaustarkkuus ilmoitetaan? Mittaustarkkuus ilmoitetaan tilanteesta riippuen yksikön avulla merkitsevien numeroiden lukumäärän avulla desimaalien lukumäärän avulla. Likiarvolaskennan säännöt Laskutoimitusten lähtöarvot ovat usein tietyllä tarkkuudella mitattuja mittaustuloksia. Lähtöarvojen laskutoimituksista saadaan lukuja, jotka sisältävät yleensä enemmän numeroita kuin lähtöarvot. Mittaustarkkuus ei voi kuitenkaan laskutoimituksissa muuttua, joten lopputulos on pyöristettävä epätarkimman lähtöarvon (mittauksen) määräämällä tavalla. 22

2 ) Kerto- ja jakolaskuissa pyöristyksen määrää merkitsevien numeroiden lukumäärä (lyhennettynä mn). Tällöin epätarkin lähtöarvo on se, jossa merkitseviä numeroita on vähiten. Mittaustulos Merkitsevien numeroiden lukumäärä (mn) 30, ml 3 mn, koska luvussa on kolme numeroa 3, 0 ja. 5,00 g 4 mn: desimaalipilkun jälkeiset kaksi nollaa ovat merkitseviä numeroita eli ne ilmoittavat, että mittaus on tehty vaa alla, jolla voidaan mitata 0,0 g:n eli 0 mg:n tarkkuudella. Jos punnitaan esimerkiksi suodatinpaperi vaa alla, jonka tarkkuus on mg, ja vaaka antaa lukeman,200 g, niin mittaustulokseen merkitään myös kaksi viimeistä nollaa, koska ne ilmoittavat punnituksen tarkkuudeksi 4 mn. 0,0254 g 3 mn: desimaalimerkinnän edessä olevia nollia ei lueta merkitseviksi numeroiksi, koska ne aiheutuvat yksikön valinnasta. Jos 0,0254 g muutetaan milligrammoiksi, tulee 25,4 mg, jossa on 3 mn. 340 ml Merkintä on epäselvä, jollei asiayhteydestä selviä, onko viimeinen nolla merkitsevä numero vai ei (eli onko tilavuus mitattu 0 ml:n vai ml:n tarkkuudella). Epäselvyydeltä vältytään, jos tilavuus esitetään kymmenpotenssimerkintänä, jonka alkuosa ilmoittaa tarkkuuden. Yksiselitteiset esittämistavat ovat 3, ml (jos 3 mn) tai 3,4 0 2 ml (jos 2 mn). 3, g Alkuosasta 3,7000 (0 2 on nimeltään potenssiosa) nähdään, että suure on ilmoitettu 5 mn:n tarkkuudella. Numeromerkintänä 3, g = 3, g = 370,00 g, jolloin desimaalipilkun jälkeiset kaksi nollaa ilmoittavat, että massa on mitattu 0 g:n tarkkuudella kg Selvemmät ilmaisut: 5,8 0 3 kg, jos 2 mn:n eli 00 kg:n tarkkuus 5, kg, jos 3 mn:n eli 0 kg:n tarkkuus 5, kg, jos 4 mn:n eli kg:n tarkkuus 2) Yhteen- ja vähennyslaskuissa pyöristyksen määrää desimaalien lukumäärä. Tällöin epätarkin lähtöarvo on se, jossa desimaaleja on vähiten. Yhteen- ja vähennyslaskuissa suureilla täytyy olla sama yksikkö. 23

3 Esimerkkejä,2 cm 3 +,2 cm 3 + 3,07 cm 3 = 5,427 cm 3 5,4 cm 3, koska epätarkimmassa lähtöarvossa,2 cm 3 on yksi desimaali (,2 cm 3 :ssa on kaksi ja 3,07 cm 3 :ssa kolme desimaalia). 2,67 kg g - 99,6 g = 2,67 kg + 0,396 kg - 0,996 kg = 2,8664 kg 2,87 kg, koska epätarkimmassa lähtöarvossa 2,67 kg on kaksi desimaalia. Tilavuus 270 ml on mitattu 500 ml:n mittalasilla (tarkkuus enintään 0 ml) ja tilavuus 65 ml 00 ml:n mittalasilla (tarkkuus enintään ml): 270 ml + 65 ml = 335 ml 340 ml = 3,4 0 2 ml, koska epätarkin mittaus on tehty 0 ml:n tarkkuudella. Kymmenpotenssimerkintä Jos luku tai suure on hyvin suuri tai pieni tai jos mittaustarkkuus halutaan ilmaista täsmällisesti, käytetään kymmenpotenssimerkintää, esimerkiksi N A = 6, /mol, u =, kg ja 8, g. Kymmenpotenssimerkinnässä luku esitetään tulon muodossa a 0 n, jossa alkuosa a on kokonais- tai desimaaliluku yleensä väliltä...0. Alkuosan avulla ilmoitetaan merkitsevien numeroiden lukumäärä. potenssiosa 0 n, jonka eksponentti n on positiivinen (jos suure 0) tai negatiivinen (jos suure ) kokonaisluku. Esimerkkejä Eräässä bakteeriviljelmässä tiedetään olevan noin bakteeria. Alkuosa on,5 (2 mn) ja potenssiosa on 0 8, joten kpl =, kpl. Punaisten verisolujen läpimitta on noin 0, m. Alkuosa on 7,5 ja potenssiosa on 0-6, joten 0, m = 7, m mg = 4, mg (jos 3 mn) tai 4, mg (jos 4 mn) Yksikönmuunnokset Etuliitteettömät yksiköt (esimerkiksi mooli, gramma, metri, kuutiometri ja joule) ovat usein epäkäytännöllisen suuria tai pieniä mittaustulosten ilmoittamiseen. Tällöin käytetään etuliitteitä, jotka ilmoittavat, kuinka monikertainen tai kuinka mones osa kerrannaisyksikkö on etuliitteettömään yksikköön verrattuna. Seuraavaan taulukkoon on kirjattu eniten käytettyjä etuliitteitä (taulukkokirja): 24

4 nimi tunnus kerroin nimi tunnus kerroin giga G 0 9 = sentti c 0-2 = 00 mega M 0 6 = milli m 0-3 = 000 kilo k 0 3 = 000 mikro μ 0-6 = deka da 0 = 0 nano n 0-9 = desi d 0 - = /0 = 0, piko p 0-2 = Yksikönmuunnoksia voidaan tehdä mm. seuraavilla tavoilla: ) Suurempi yksikkö muutetaan pienemmäksi joko kertomalla suhdeluvulla tai kirjoittamalla etuliitteen paikalle kerroin. 2) Pienempi yksikkö muutetaan suuremmaksi joko jakamalla suhdeluvulla tai kirjoittamalla etuliitteen paikalle kerroin. Suhdeluku ilmoittaa, kuinka monikertainen suurempi yksikkö on pienempään verrattuna. Esimerkkejä 0,6776 kg = 0, g = 677,6 g, koska kg = 000 g 0,0059 mol = 0, mmol = 5,9 mmol, koska mol = 000 mmol 5, g = 5, μ g = 54,4 μ g, koska g = μ g = 0 6 μ g 0,062 ml = 0, μ l = 62 μ l, koska ml = 000 μ l mg = g = 46,8 g, koska mg = g ng = g = 7,3 0-8 g, koska ng = 0-9 g. Tilavuuden yksiköissä mm 3, cm 3, dm 3 ja m 3 jälkimmäinen on aina 000-kertainen edelliseen verrattuna. Ruokaohjeissa ja kuluttajapakkauksissa käytettävät vetomitat cl ja dl jakavat välin millilitrasta litraan niin, että jälkimmäinen on aina 0-kertainen edelliseen verrattuna. SI-yksikkö Vetomitat cm 3 ml cl = 0 ml dl = 00 ml dm 3 l l = dm 3 = 000 ml 25

5 Esimerkkejä 2, m 3 = 2, cm 3 = 25,8 cm 3 = 25,8 ml, koska m 3 = cm 3 = 0 6 cm 3 48 μ l = 48/000 ml = 0,048 ml = 0, l 4,5 dl = 4,5 0 cl = 45 cl = 45 0 ml = 450 ml 8760kg 8760 kg/m 3 = 3 000dm = 8,760 ; kg/dm3 kg/dm 3 voidaan myös kirjoittaa muotoon kgdm -3, koska /dm 3 = dm -3 ( a = ). Vastaavasti n a-n moolimassan yksikkö g/mol voi esiintyä muodossa gmol -. Tehtäviä. Kuinka monen merkitsevän numeron tarkkuudella seuraavat mittaustulokset on ilmoitettu? a) 2,07 g b) 34, ml c) 0,0234 kg d) 3,500 dm 3 e) 0,00500 μ l f) 0,0008 kg/m 3 g) 74 mg h) 3, m 3 i) 2, m/s 2. Kuinka monen desimaalin tarkkuudella seuraavat mittaustulokset on ilmoitettu? a) 23,56 g b) 500 ml c) 250,006 dm 3 d) 6,2 ng. 3. Ilmoita yksikön avulla, millä tarkkuudella seuraavat mittaustulokset on ilmoitettu: a) 45.2 s b) 23,58 g c) 50,0 ml d) 59,3422 g e) 8,6 0 3 kg f) (250,00 ± 0,02) dm 3 4. Muuta kymmenpotenssimerkinnäksi: a) ihmisen perimän (DNA:n) emäsparien lukumäärä b) kulta-atomin säde 0, m c) ihmisen arvioitu seleenin tarve vuorokaudessa 0, g d) Suomen väkiluku noin 5 miljoonaa. 5. Muuta seuraavat massat laskinta käyttäen grammoiksi. Ilmoita vastaus kymmenpotenssimerkintänä a) 3,456 kg b) 6,2 mg c) 6444 µg d) 26,7 tn 6. Muuta seuraavat tilavuudet laskinta käyttäen dm 3 :eiksi. Ilmoita vastaus desimaalilukuna a) 56,7 ml b) 225 μ l c) 2,4 dl d) 0,055 m 3 e) 293,5 mm 3 7. Laske laskimella ja pyöristä lopputulos oikeaan tarkkuuteen: 34,567kg 23 kpl 54mol a) b) 6, ,42m 2,46m mol 8,3 0 m 2 3 c) 0,245 dm ,6 cm 3 + 0,039 dm 3 d) 23 kpl 6,022 0 (2,6543g,673g) mol g 55,85 mol 26

6 Ratkaisut. a) 5 b) 3 c) 3 d) 5 e) 3 f) g) 3 h) 3 i) 9 2. a) 2 b) 0 c) 3 d) 3. a) sadasosasekunnin (0,0 s:n) tarkkuudella b) sadasosagramman (0,0 g:n) tai 0 mg:n tarkkuudella c) kymmenesosamillilitran (0, ml:n) tarkkuudella d) kymmenestuhannesosagramman (0,000 g:n) tai kymmenesosamilligramman (0, mg:n) tarkkuudella e) kymmenesosatonnin (0, tn:n) eli 00 kg:n tarkkuudella f) kahden sadasosakuutiodesimetrin (0,02 dm 3 :n) eli 20 cm 3 :n (20 ml:n) tarkkuudella. 4. a) 3,2 0 9 b), m c) g d) ) a) 3, g b) 6,2 0-3 g c) 6, g d) 2, g 6) a) 0,0567 dm 3 b) 0,24 dm 3 c) 55 dm 3 d) 0, dm 3 7) a) 0,59998 kg/m 3 0,600 kg/m 3 b) 3, kpl/m 3 4,0 0 2 kpl/m 3 c) 0,3096 dm 3 0,30 dm 3 tai 30 cm 3 d), kpl, kpl 27

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Lääkelaskuharjoituksia aiheittain

Lääkelaskuharjoituksia aiheittain Lääkelaskuharjoituksia aiheittain Peruslaskutoimitukset ja yksikkömuunnokset 1. Muunna yksiköt a) 50 mg = g b) 0,25 mg = µg c) 800 ml = l d) 5 µg = mg e) 0,25 l = ml f) 0,45 % = mg/ml 2. Muunna roomalaiset

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. 1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

1. Fysiikka ja mittaaminen

1. Fysiikka ja mittaaminen 1. Fysiikka ja mittaaminen 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

5 LIUOKSEN PITOISUUS Lisätehtävät

5 LIUOKSEN PITOISUUS Lisätehtävät LIUOKSEN PITOISUUS Lisätehtävät Esimerkki 1. a) 100 ml:ssa suolaista merivettä on keskimäärin 2,7 g NaCl:a. Mikä on meriveden NaCl-pitoisuus ilmoitettuna molaarisuutena? b) Suolaisen meriveden MgCl 2 -pitoisuus

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä Calculus Lukion 7 MAA Numeerisia ja algebrallisia menetelmiä Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Numeerisia ja algebrallisia menetelmiä

Lisätiedot

TITRAUKSET, KALIBROINNIT, SÄHKÖNJOHTAVUUS, HAPPOJEN JA EMÄSTEN TARKASTELU

TITRAUKSET, KALIBROINNIT, SÄHKÖNJOHTAVUUS, HAPPOJEN JA EMÄSTEN TARKASTELU Oulun Seudun Ammattiopisto Raportti Page 1 of 6 Turkka Sunnari & Janika Pietilä 23.1.2016 TITRAUKSET, KALIBROINNIT, SÄHKÖNJOHTAVUUS, HAPPOJEN JA EMÄSTEN TARKASTELU PERIAATE/MENETELMÄ Työssä valmistetaan

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

1 Mittoja ja pinta-aloja

1 Mittoja ja pinta-aloja 1 Mittoja ja pinta-aloja 1 Murtoluvuista desimaalilukuihin... 6 2 Desimaalilukujen laskutoimituksia... 10 3 Kymmenen potenssi ja suuret luvut... 14 4 Kymmenen potenssi ja pienet luvut... 18 5 Desimaaliluvun

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

Neeviikuu 4B: Opettajan oppaan liitteet

Neeviikuu 4B: Opettajan oppaan liitteet Neeviikuu 4B: Opettajan oppaan liitteet Kopiontipohjat. Oppikirjan liitteet 2 a. Murtokakut 2 3 2. Kymmenjärjestelmävälineet 4 a. Satataulu 4 b. Satataulu ja kymmensauvat 5 c. Kymmenjärjestelmäalusta 6

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Kemiaa tekemällä välineitä ja työmenetelmiä

Kemiaa tekemällä välineitä ja työmenetelmiä Opiskelijalle 1/4 Kemiaa tekemällä välineitä ja työmenetelmiä Ennen työn aloittamista huomioi seuraavaa Tarkista, että sinulla on kaikki tarvittavat aineet ja välineet. Kirjaa tulokset oikealla tarkkuudella

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

Matematiikan didaktiikka, osa II Estimointi

Matematiikan didaktiikka, osa II Estimointi Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Lääkelaskuharjoituksia aiheittain

Lääkelaskuharjoituksia aiheittain Lääkelaskuharjoituksia aiheittain Peruslaskutoimitukset ja yksikkömuunnokset 1. Muunna yksiköt a) 500 mg = g b) 0,75 mg = µg c) 200 ml = l d) 50 µg = mg e) 0,5 l = ml f) 0,9 % = mg/ml 2. Muunna roomalaiset

Lisätiedot

Seoksen pitoisuuslaskuja

Seoksen pitoisuuslaskuja Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun

Lisätiedot

KE1 Ihmisen ja elinympäristön kemia

KE1 Ihmisen ja elinympäristön kemia KE1 Ihmisen ja elinympäristön kemia Arvostelu: koe 60 %, tuntitestit (n. 3 kpl) 20 %, kokeelliset työt ja palautettavat tehtävät 20 %. Kurssikokeesta saatava kuitenkin vähintään 5. Uusintakokeessa testit,

Lisätiedot

KOKEITA KURSSI Kirjoita potenssimerkintдnд a) b) ( 4) ( 4) ( 4) c)

KOKEITA KURSSI Kirjoita potenssimerkintдnд a) b) ( 4) ( 4) ( 4) c) KOKEITA KURSSI MATEMATIIKAN KOE KURSSI (A). Kirjoita potenssimerkintдnд a) 9 9 9 9 9 b) ( ) ( ) ( ) c) 7 7 7... 7 d) luvun 8 neliц e) luvun kuution vastaluku. 77 kpl. Laske lausekkeen a b arvo, kun a)

Lisätiedot

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi 1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

Lääkelaskuharjoituksia aiheittain

Lääkelaskuharjoituksia aiheittain Lääkelaskuharjoituksia aiheittain Peruslaskutoimitukset ja yksikkömuunnokset 1. Muunna yksiköt a) 400 mg = g b) 0,25 mg = µg c) 500 ml = l d) 25 µg = mg e) 2,5 l = ml f) 2,5 % = mg/ml 2. Muunna roomalaiset

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

KUITUPUUN PINO- MITTAUS

KUITUPUUN PINO- MITTAUS KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units OPAS Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units Sisällys Esipuhe....3 1 Kansainvälinen mittayksikköjärjestelmä SI...4 2 Suure ja yksikkö....5 3 ISQ-suurejärjestelmä

Lisätiedot

Harjoitustehtävien ratkaisut

Harjoitustehtävien ratkaisut Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

LÄÄKETEHTAAN UUMENISSA

LÄÄKETEHTAAN UUMENISSA LÄÄKETEHTAAN UUMENISSA KOHDERYHMÄ: Soveltuu lukion KE1- ja KE3-kurssille. KESTO: n. 1h MOTIVAATIO: Työskentelet lääketehtaan laadunvalvontalaboratoriossa. Tuotantolinjalta on juuri valmistunut erä aspiriinivalmistetta.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

HUOLTOMATEMATIIKKA 1 TEHTÄVÄT

HUOLTOMATEMATIIKKA 1 TEHTÄVÄT 1 HUOLTOMATEMATIIKKA 1 TEHTÄVÄT 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Oppikirjan tehtävien ratkaisut

Oppikirjan tehtävien ratkaisut Oppikirjan tehtävien ratkaisut Liukoisuustulon käyttö 10. a) Selitä, mitä eroa on käsitteillä liukoisuus ja liukoisuustulo. b) Lyijy(II)bromidin PbBr liukoisuus on 1,0 10 mol/dm. Laske lyijy(ii)bromidin

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

MAA- JA METSÄTALOUSMINISTERIÖN ASETUS KUORMAINVAA AN KÄYTÖSTÄ PUUTAVARAN MITTAUKSESSA JA ERIEN ERILLÄÄN PIDOSSA

MAA- JA METSÄTALOUSMINISTERIÖN ASETUS KUORMAINVAA AN KÄYTÖSTÄ PUUTAVARAN MITTAUKSESSA JA ERIEN ERILLÄÄN PIDOSSA MAA- JA METSÄTALOUSMINISTERIÖ ASETUS Nro 18/08 Päivämäärä 2.12.2008 Dnro 2593/01/2008 Voimassaoloaika 1.1.2009 toistaiseksi Kumoaa Maa- ja metsätalousministeriön määräys nro 47/99, Kuormainvaakamittaus

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Spektrofotometria ja spektroskopia

Spektrofotometria ja spektroskopia 11 KÄYTÄNNÖN ESIMERKKEJÄ INSTRUMENTTIANALYTIIKASTA Lisätehtävät Spektrofotometria ja spektroskopia Esimerkki 1. Mikä on transmittanssi T ja transmittanssiprosentti %T, kun absorbanssi A on 0, 1 ja 2. josta

Lisätiedot

Neeviikuu 6B: Opettajan oppaan liitteet

Neeviikuu 6B: Opettajan oppaan liitteet Neeviikuu 6B: Opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kertotaulukortti 2 2. Jaollisuusliuska 1 100 3 3. Senttimetripaperi 4 4. Kymmenjärjestelmätaulukko 5 5. Hämähäkinverkko peilaamiseen 6 6. 360-ruudukko

Lisätiedot

Mitä jos matikantunnilla olisi hauskaa! YYKAAK OO-TUO TEPERHE OA4 Yli esteiden ISBN

Mitä jos matikantunnilla olisi hauskaa! YYKAAK OO-TUO TEPERHE OA4 Yli esteiden ISBN ! OOB A Yli esteiden Nimi Kappale 1 1. Oppilas käy peruskoulua yhdeksän vuotta. Ludvig aloitti ensimmäisellä luokalla 01. 0 Minä vuonna hän lopettaa peruskoulun? Hanna lopetti peruskoulun 01. Minä vuonna

Lisätiedot

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS 18 0. LOPPUTULOKSEN ESITTÄMISTARKKUUS Fysikaalisen mittauksen ja virheenarvioinnin seurauksena määritettävän suureen arvolle saadaan likiarvo ja virhe (epätarkkuus). Lopputulokseen ei ole tarpeen sisällyttää

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

R1 Harjoitustehtävien ratkaisut

R1 Harjoitustehtävien ratkaisut MAB R Harjoitustehtävien ratkaisut R Harjoitustehtävien ratkaisut. Jos lämpötila nousee asteesta asteella, mikä on uusi lämpötila? +. Lämpötila nousee viiteen asteeseen. Lukusuoralla: 0 + Nuolen pituus.

Lisätiedot

LibreOfficen kaavaeditori

LibreOfficen kaavaeditori LibreOfficen kaavaeditori Esim. Koruketjun tiheyden määrittämiseksi ketjun massaksi mitattiin vaa'alla 74 g. Ketjun tilavuudeksi saatiin 24 ml upottamalla ketju mittalasissa olevaan veteen. Laske ketjun

Lisätiedot

dekantterilaseja eri kokoja, esim. 100 ml, 300 ml tiivis, kannellinen lasipurkki

dekantterilaseja eri kokoja, esim. 100 ml, 300 ml tiivis, kannellinen lasipurkki Vastuuhenkilö Tiina Ritvanen Sivu/sivut 1 / 5 1 Soveltamisala Tämä menetelmä on tarkoitettu lihan ph:n mittaamiseen lihantarkastuksen yhteydessä. Menetelmää ei ole validoitu käyttöön Evirassa. 2 Periaate

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Vastaukset. 2. Ottamalla kaapista 4 kenkää ja 3 sukkaa.

Vastaukset. 2. Ottamalla kaapista 4 kenkää ja 3 sukkaa. Vastaukset. -. Ottamalla kaapista kenkää ja sukkaa.. Asetetaan vaakaan kummallekin puolelle aluksi sormusta ja punnitaan. Kolmas kolmen ryhmä on vaa'an ulkopuolella. Rihkamasormus kuuluu punnittavista

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Matematiikkaa peruskoulun tekstiilityön tunnilla

Matematiikkaa peruskoulun tekstiilityön tunnilla Niinimäki Katja 129711 Matematiikkaa peruskoulun tekstiilityön tunnilla 1 Yleistä Essee matematiikan sivuainelaudaturiin 1 ov Joensuun yliopisto Tekstiilityön opettajan koulutus Kesäkuu 2000 Nykypäivän

Lisätiedot

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden

Lisätiedot

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta MITTAVAUNU MATERIAALIA 1( 35) 1 TYÖNTÖMITTA 1.1 Yleistä työntömitasta Työntömitta ( tönäri, mauseri ) kuuluu tekniikan alan perustyökaluihin, joten sen oikeaoppinen käyttö on jokaisen ammattilaisen osattava.

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

Rasvattoman maidon laktoosipitoisuuden määritys entsymaattisesti

Rasvattoman maidon laktoosipitoisuuden määritys entsymaattisesti Rasvattoman maidon laktoosipitoisuuden määritys entsymaattisesti 1. Työn periaate Esikäsitellyn näyteliuoksen sisältämä laktoosi hajotetaan (hydrolysoidaan) entsymaattisesti D-glukoosiksi ja D-galaktoosiksi

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

Neeviikuu 5B: Opettajan oppaan liitteet

Neeviikuu 5B: Opettajan oppaan liitteet Neeviikuu 5B: Opettajan oppaan liitteet KOPIOINTIPOHJAT. Kymmenjärjestelmäalusta 2 2. Kymmenjärjestelmäalusta desimaaliyksiköistä 3 3. Kertotaulukortti. Murtokakut 5 7 5. Suuri taulukkokortti. Jaollisuusliuska

Lisätiedot

Väittämä Oikein Väärin. 1 Pelkistin ottaa vastaan elektroneja. x. 2 Tyydyttynyt yhdiste sisältää kaksoissidoksen. x

Väittämä Oikein Väärin. 1 Pelkistin ottaa vastaan elektroneja. x. 2 Tyydyttynyt yhdiste sisältää kaksoissidoksen. x KUPI YLIPIST FARMASEUTTISE TIEDEKUA KEMIA VALITAKE 27.05.2008 Tehtävä 1: Tehtävässä on esitetty 20 väittämää. Vastaa väittämiin merkitsemällä sarakkeisiin rasti sen mukaan, onko väittämä mielestäsi oikein

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

HUOLTOMATEMATIIKKA 2, MATERIAALI

HUOLTOMATEMATIIKKA 2, MATERIAALI 1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen

Lisätiedot

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26. Alustava aikataulu: ma 9.1 ke 11.1 ma 16.1 ke 18.1 ma 23.1 ke 25.1 ma 30.1 ke 1.2 ma 6.2 ke 8.2

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Avaruuslävistäjää etsimässä

Avaruuslävistäjää etsimässä Avaruuslävistäjää etsimässä Avainsanat: avaruusgeometria, mittaaminen Luokkataso: 6.-9. lk, lukio Välineet: lankaa, särmiön muotoisia kartonkisia pakkauksia(esim. maitotölkki tms.), sakset, piirtokolmio,

Lisätiedot

KORJAUSMATIIKKA 3, MATERIAALI

KORJAUSMATIIKKA 3, MATERIAALI 1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

KÄYTTÖOHJEET Serie RV

KÄYTTÖOHJEET Serie RV KÄYTTÖOHJEET Serie RV Laskentavaakajärjeste1mä 3.2 Virhe laskentapunnituksessa Laskentapunnituksen virhe johtuu pääasiassa kolmesta tekijästä:. detaljien painojen poikkeamista vaaka näyttää väärin inhimillisestä

Lisätiedot