Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Koko: px
Aloita esitys sivulta:

Download "Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5."

Transkriptio

1 Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla. 0 Epätosi Piste (, ) ei ole suoralla.. a) y 0 y y y 0 y y ( ) : Vastaus:, m. Lasetaan pisteen (-, ) etäisyys esipisteestä (0, 0). Jos piste on ympyrän ulopuolella (eli etäisyys > 9), tangentti voidaan piirtää. d ( 0) ( 0) 0,9... < 9 Piste on ympyrän sisällä, joten tangenttia ei voida piirtää.. Sijoitetaan ja y - suoran yhtälöön. a ( ) a a a a a 9. a) 0 : 90

2 . Lasetaan suoran ulmaerroin. 0 Valitaan ( 0, y 0 ) (0, ). Suoran yhtälö on y 0 y Lasetaan ulmaerroin. ( 9) 0 Valitaan ( 0, y 0 ) (-, -9). Suoran yhtälö on y ( 9) y 9 y 9. Suoran ulmaerroin on. Pisteen (a, ) avulla määritetty ulmaerroin on a a a Jotta aii olme pistettä olisivat samalla suoralla, on ulmaertoimien oltava samat. a a a a 0 : 0 a 0. Kulmaerroin on muotoa ( a ) 0 a a a Kosa ulmaerroin on -, saadaan yhtälö a ( a ) 0 a a a a a a : a Suoran yhtälö on y 0 y 0 y. a) Kosa ulmaerroin > 0, suora on nouseva. Kirjoitetaan suoran yhtälö rataistussa muodossa. y 0 y ( ) y Kosa ulmaerroin < 0, on suora laseva.. Kirjoitetaan yhtälö rataistussa muodossa. y 0 y : y a) -aselin leiauspisteessä y 0. 0 ( ) Leiauspiste on (, 0). 9

3 Suoran yhtälön rataistusta muodosta nähdään, että y-aselin leiauspiste on (0, ).. Suora l ulee pisteiden (-, ) ja (0, -) autta. Suoran ulmaerroin on. 0 Kirjoitetaan toinen suoran yhtälö rataistussa muodossa. y 0 y y 0 0 Suoran ulmaerroin on. Kosa - < - on suora l jyrempi.. a) y 0 0. Kirjoitetaan suorien yhtälöt ensin rataistussa muodossa. y y y : y y y : Kirjoitetaan suoran yhtälö rataistussa muodossa. 9 y 0 9 y y : ( 9) Lasetaan suorien leiauspisteen -oordinaatti. 9 : 9

4 Leiauspisteen y-oordinaatti on y Leiauspiste on,. y 0 0 y 0 0. Piirretään ensin suorat samaan oordinaatistoon. Lasetaan olmion äripisteet. Piste A :, - A Piste B ) :(, B Piste C : y, C 9

5 Kolmion anta on sivu AB. Kannan pituus on. Koreus h saadaan huipun y-oordinaatin avulla. h Kolmion ala A. Myyntitulot hinta määrä 9. Kulmaertoimien tulo on -. c c c y y : y : Piiraoita myydään appaletta, hintaan, joten myyntituloja uvaa suora y, ( 0) Koonaisustannuset iinteät ustannuset muuttuvat ustannuset Kiinteät ustannuset ovat 00,00. Kun piiraoita valmistetaan appaletta, valmistusustannuset ovat,00. Koonaisustannusia uvaa suora y 00, 00 Lasetaan ensin, milloin ustannuset ja myyntitulot ovat yhtä suuret., 00,00 0, 00,00,... :0, a) Suoran ulmaerroin y ( ) y y 9 0, 0 Suoran yhtälö on y 0 y 0 0 y 0 ( 0). Kun piiraoita myydään 90 appaletta, liietoiminta on annattavaa.. a) Kulmaertoimet ovat samat. c : c 0. Kaupunien A ja B autta ulevaa laivaväylää uvaavan suoran ulmaerroin , Suoran yhtälö on y 0, 0 y, 9

6 Majaan autta ulevan suoran normaalin ulmaerroin on, :,, Suoran normaalin yhtälö on y 0 ( 0) y 0 0 y 0 Suoran ja sen normaalin leiauspisteen -oordinaatti on:, 0 ) ) : 0,9... y-oordinaatti on 0 y,,... Leiauspisteen (,9 ;, ) ja majaan (0, 0) etäisyys toisistaan on d d ( 0,... ) ( 0,9... ) 9,0... d,0... (m) d (m). a) t 0,0 C pk W 0,0 0,0,0,, pk, W 0,0t,0, 0,0t 0,90 t,0... t, ( C) :( 0,). Kuuausipala riippuu lasinten määrästä, joten lasinten määrä (pl) y uuausipala ( ) Suora ulee pisteiden (0, 0) ja (90, 0) autta. Suoran ulmaerroin on Valitaan ( 0, y 0 ) (0, 0). Suoran yhtälö on y 0 0 y 0 00 y 0 a) Sijoitetaan 0 y y ,... ( ) Lasimia myytävä noin pl Vastaus: Etäisyys on noin m. 9

7 c) Jos lasimia ei myydä yhtään, pala on ( ). Meritään ävijöiden määrä (pl) y lipun hinta ( ) Suora ulee pisteiden (0, 0) ja (0 0, 0 ) (0, ) autta. Suoran ulmaerroin Valitaan ( 0, y 0 ) (0, 0). Suoran yhtälö on y 0 ( 0) 0 y y 0 0 Sijoitetaan yhtälöön 00. y 00 0 ( ) 0. Lasetaan paraabelin nollaohdat 0 ± ± ± tai. ± 0 ( ) ( ) ± ± tai Kun -, y ( ) ( ) Kun, y Vastaus: (-, ) ja (, -). Lasetaan ensin paraabelin nollaohdat. 0 0 Tulon nollasäännön muaan 0 tai 0 : Huippu on nollaohtien puolivälissä, joten 0 huipun -oordinaatti on. Vastaus: (, 0) ja,0 Huipun y-oordinaatti on y. Huippupiste on (, -). 9

8 . Lasetaan paraabelin nollaohdat. 0,0 0 0,0 :0,0,9... ±,9... ±, a) Kosa 0 niin f ( ) Roton leveys on nollaohtien välinen etäisyys. d,99... (,99...) 9,9... 9, (m). Lasetaan nollaohdat. 0, 0,0 0 ( 0, 0,0) 0 Tulon nollasäännön muaan 0 tai 0, 0,0 0 0, 0,0,... Huipun -oordinaatti: 0,... 0,... :( 0,) Kosa niin y ( ) 0. a) f ( ) 9 f. a) s(,0),90,0, (m),90t s( t ) 00 t 00,... t ± Kosa aia positiivinen :,90,... ±,... t, (s) Huipun y-oordinaatti: y 0,,... 0,0,... 0, Huipun oreus on 0, m, m 0 m 9

9 . a) f ( ) a) f ( 0) f g( ) a) f ( ) f ( ) 0 9

10 . g( ) Nollaohdissa g ( ) 0. 0 ± ±,... Piirretään funtion uvaaja. g ( ) % massasta muuttuu aldehydisi eli massasta jää jäljelle 9 %. a) Tunnin uluttua aloholia 0,9, g. Kahden tunnin uluttua aloholia 0,9, g. Aloholin määrä tunnin uluttua on f ( ) 0,9, (g). Kolmen tunnin uluttua massa on f () 0,9,,9...,9 (g). 0 f (0) 0,9,,9...,9 (g) c) Viiossa on tunteja h h. f () 0,9, 0,09... (g) 0,09 (g) 9, g 9, g. a) Massa vuoroauden uluttua on,0 g, g,0 0 Massa 0 tuntia sitten oli 0,0 g, , g 0,00... g g, mg, mg g. Vuoroaudet Tautiin sairastui vuoroauden uluttua tautiin sairastui f ( ) henilöä. Viion uluttua tautiin sairastui f () 0000 henilöä. 9. Videoameran hinta lasee % eli tulee 0,-ertaisesi vuosittain. vuoden uluttua hinta on 00 0, m. Vuonna 99 amera masoi (m): 00 0,, (m) Vuonna 00 ameran hinta olisi maroina 00 0,,... (m) 99

11 Kosa,9 m, niin m,9 Kameran hinta euroina: 00 0, 00 0,,9,9,... 0 ( ). a) lg 0 lg 0 lg lg 0 lg 0 lg,99...,0 :lg 0. a) ( ) c) ( ) : ( ) t 0,9 t lg 0,9. a) 0, lg 0, t lg 0,9 lg 0, t lg 0, lg 0,9 t, lg lg lg lg lg ( ) lg lg : :lg,0..., lg lg lg lg lg lg lg,... :lg 0,9 :lg :,9...,9 00

12 . a) Testiarvo Toteutuuo yhtälö? Johtopäätös < > > < 0, 0,... < > 0, 0, 0,0... > < 0, 0, 0,9... < > 0, 0, 0,... < > 0, 0, 0,... < > 0, 0,9 0 9,9... < > 0,9. Bateerien massaa tunnin uluttua uvaa funtio f ( ), (grammaa). a), f ( ),0, lg,,0 0,... lg 0,... lg, lg 0,... lg 0,... lg,,... : :lg, Massa oli,0 g noin, h sitten. 0,9 0 0, 9,9... < > 0,9 Kosa > 0,9 ja < 0,, niin ahden meritsevän numeron taruudella 0,0. 0 Logaritmin määritelmän muaan lg 0,9... 0,0, f ( ), lg,,... lg,... lg, lg,... lg,... lg,,... : :lg,. a) p () 0 0, p ( ),9 (mbar) 0 0, 0, lg 0,,9 0,00... lg 0, lg 0,00...,9... 0(mbar) lg 0,00... :0 lg 0,00... lg 0, :lg 0, Massa on g noin, h uluttua.. Talletus asinertaistui vuodessa.,00 :,00 lg,00 lg lg,00 lg lg lg,00,99... :lg,00,9... (m) Talletus asinertaistui vuoden 99 aluun mennessä. 0

13 Talletus nelinertaistui y vuodessa. y,00 :,00 lg,00 lg y lg,00 lg y y y lg lg,00 y,9... :lg,00 Talletus nelinertaistui vuoden 99 aluun mennessä. Vuoteen 00 mennessä talletus oli ollut tilillä vuotta. Talletusen suuruus oli frangeina: 0,00,... (frangia) 0 0. a),...,. a),9..., 9 c),..., 0 ± 0 ±,... ±, s 0,0000 s s 0,99... s 0,9 0, a) ,9...,0 t t σt t t, t ± I T σ, t ±,... t ±, I σt I : : σ I T ± σ Kosa T > 0, niin I T σ. Meritään muutoserrointa irjaimella. 9,0,00 :,0 9,... 9,...,00... : Kuuausittainen arvonnousu on, ,00...,%. 0

14 . a) A (,0),0,99...,, A( r ) r r 9,0 r 9,0 r,9... r, (fm),. Meritään muutoserrointa irjaimella. 0 :0 0,... 0,... 0,... Joa erta pallon oreus tulee 0, -ertaisesi eli on noin % edellisestä oreudesta. Vastaus: p. Meritään varpusmäärää alussa irjaimella a ja muutoserrointa irjaimella. 0 a 0,a : a 0 0 0, ± 0 0, ± 0,9... Kosa muutoserroin positiivinen, 0,9 Vuotinen vähennys on ollut 0,9... 0,0...,%.. Meritään oroerrointa irjaimella. 0 0 :0,0,0,09... Meritään ysyttyä vuosien määrää irjaimella n. n 0, :0,09... lg,09..., lg, n lg,09... lg, n n n lg, lg,09... n 9,... Vastaus: 0 vuoden uluttua : lg, Lämpötila nousi, % vuoden aiana. Jos lämpötila tarastelun alussa on t, niin 00 vuoden uluttua se on,0 t,0... t Lämpötila siis nousee, %.. a) Meritään muutoserrointa irjaimella. Jos energian määrä alussa on a, saadaan yhtälö a 0,9a : a 0 0,9 0,9 0,99... Kilometriä ohti energiaa häviää: 0, , ,% 0

15 Meritään ilometrien määrää irjaimella. a 0, ,a : a 0 0,99... lg 0, , lg 0, lg 0,99... lg 0, lg 0, lg 0,99...,... :lg 0,99... (m). Meritään natriumin määrää alussa irjaimella a ja muutoserrointa irjaimella. a 0,a : a 0 0, 0, 0,9... Meritään ysyttyä aiaa irjaimella t. t a 0,9... 0,0a : a 0 t 0,9... t lg 0,9... 0,0 lg 0,0 t lg 0,9... lg 0,0 t Harjoitusoe lg 0,0 lg 0,9... t,... :lg 0,9... (h). a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s (, y ) (0, ) (, y ) (, ) Suoran yhtälö: y Suora t (, y ) (0, -) (, y ) (, ) 0 Suoran yhtälö: y Suora u (, y ) (0, 0) (, y ) (, -) 0 0 Suoran yhtälö: y Lasetaan leiauspisteen -oordinaatti. Leiauspisteen y-oordinaatti y. Suorien leiauspiste on,. : c) Lasetaan ensin suorien s ja u leiauspiste. ( ) Piste A (-, ) Piste B, Janan AB pituus on d d,99..., 0

16 . a),,, lg,,, lg, lg, lg, lg, lg, 0, ,9 0,... ± ± 0, ,90 0,... : :, :lg,. a) Kuuausittain iinteinä uluina lasutetaan,,0,9. Kolmen uuauden aiana iinteitä uluja on siis,9,. Jos sähön ulutus uuauden aiana on Wh, niin tällöin lisäsi lasutetaan, snt,9 snt, snt 0,0 Kolmen uuauden aiana sähöstä masetaan siis 0,0,. f ( ) 0,0, f (0) 0,0 0,,, ( ). Sijoitetaan ja y - suoran yhtälöön. c c 0 c c 0 c c Suoran yhtälö on siis y 0 y y : ( ) Tarastellaan ulmaertoimien tuloa: Suorat ovat siis ohtisuorassa toisiaan vastaan.. a) Myryn määrä vähenee, % eli tulee 0,9-ertaisesi tunnissa. Ainetta on jäljellä h uluttua: 9 0,9 g, g, g Lasetaan milloin myryä on jäljellä 9 g: 9,g. 9 0,9 0,9 lg 0,9 9, 0, lg 0, lg 0,9 lg 0, lg 0, lg 0,9,0..., (h) :9 :lg 0,9 0

17 . Meritään päästöjen määrää irjaimella a ja ysyttyä vuosien määrää irjaimella. a 0, 0,a : a 0 0, lg 0, 0, lg 0, lg 0, lg 0, lg 0, lg 0,,0... Harjoitusoe., (vuotta) f ( ) 0 0 y-aselin leiausohta: f ( 0) 0 -aselin leiausohta: 0, : :lg 0,. a) ± Tapa. lg lg lg lg : ± lg lg Tapa. : lg. a) Kirjoitetaan suoran yhtälö rataistussa muodossa. y 0 y Suoran ulmaerroin on siis -. Suoran yhtälö: y ( ) y 0 y Suoran ulmaerroin 0 Suoran yhtälö: y 0 ( y ( ) y Vastaus: Aselien leiauspisteet ovat (0, -) ja (,; 0) 0

18 . Lasetaan leiauspisteiden -oordinaatti. 0 0 ± Kun, y. Kun -, y Tarastellaan pistettä (, ). Sijoitetaan ja y suoran y yhtälöön. 9 Epätosi Piste (, ) ei ole suoralla. Sijoitetaan - ja y suoran yhtälöön. ( ) Tosi Piste (-, ) on suoralla y.. Meritään oroerrointa irjaimella. 00,00 0,00 :00,00,0,09... Koroprosentti on,09-0,09,%. Meritään teeren sijaintia oordinaatistossa irjaimella C. Piste on suorien leiauspiste y 0 0 : Teeri sijaitsee pisteessä (0, 0). Tutijan A etäisyys teerestä on d A ( 0 0) ( 0 0) 000,... Tutijan B etäisyys teerestä on d A ( 0 ) ( 0 ) 0,... < d Vastaus: Tutija B on lähempänä. A. a) Meritään muutoserrointa irjaimella. 9 :9,... ±,... ±,0... Muutoserroin positiivinen, joten,0... Vuonna 00 oppilaita on:,0... 0, (oppilasta) Oppilaita vuonna 990 oli:,0...,... (oppilasta) 0

19 c) Meritään vuodesta 00 uluneiden vuosien määrää irjaimella n. n, :,0... lg,0... n n,... lg,... n lg,0... lg,... n 00,... lg,... lg,0... n,... 0,... :lg,0 Oppilasmäärä ylittää 000 oppilaan rajan vuonna 0.. Meritään valon määrää pinnalla irjaimella a ja muutoserrointa irjaimella. a 0,9a : a 0,9 0,9 0,99... Valon määrä tulee siis 0,99 -ertaisesi aina 0 cm matalla. Oloon ysytty syvyys 0, ,99... lg 0,99... a 0,a 0, lg 0, lg 0,99... lg 0, lg 0, lg 0, cm. : a 0 : lg 0,99...,9... Syvyys on, cm,9 cm, m Harjoitusoe. a) Suora s leiaa y-aselin ohdassa y 0. Suoran s yhtälö on y. Suoran t ulmaerroin on. 0 Suoran t yhtälö on y 0 y y Lasetaan leiauspisteen -oordinaatti. : y Leiauspiste on (, -). c) Suoran ulmaerroin on -. Suoran yhtälö: y 0 y y. a) Paraabelin nollaohdat: 0 ± ( ) ± ± tai 0

20 Huipun -oordinaatti on nollaohtien puolivälissä. Huipun y-oordinaatti: y ( ) Huippupiste on (-, ) Kylä C sijaitsee pisteessä (0, ). Kylä D sijaitsee pisteessä (0, -). Pisteet sijaitsevat y-aselilla, joten pisteiden autta ulevan suoran yhtälö on 0. Sijoitetaan 0 yhtälöön y,,. y, 0,, Teiden risteys on pisteessä (0;,) eli,m,m ironylästä pohjoiseen.. Suoran yhtälö rataistussa muodossa on: y 0 y y : Meritään normaalin ulmaerrointa irjaimella. Normaalin yhtälö on y y y. Kylä A sijaitsee pisteessä (,; 0). Kylä B sijaitsee pisteessä (-,; -). Pisteiden autta ulevan suoran ulmaerroin on 0,., (,) Suoran yhtälö y 0, (, ) y 0,, y,, Lasetaan ensin normaalin ja suoran leiauspiste. y 09

21 Leiauspiste on,. Leiauspisteen etäisyys pisteestä (, -) on d d. a),,..., lg 0 lg0 lg lg0 lg0 lg,9,... 0 ± 0,..., c) lg lg lg lg lg lg 0, :lg : 0,... :lg. Meritään muutoserrointa irjaimella :000,9...,9...,0... Vuotuinen asvuprosentti on,0... 0,0... 0%. Meritään pääomaa alussa irjaimella a ja ysyttyä vuosien määrää irjaimella., a a : a., lg, lg lg, lg lg lg,,... :lg, Vastaus: vuodessa Testiarvo Toteuttaao yhtälön Johtopäätös < > > <,,, > <,,,,9 > <,,,, < >,,,,9 < >,,,,000> <,,,,9... < >, Kosa, < <, on vastaus ahden desimaalin taruudella,. 0

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman HTKK, TTKK, LTKK, OY, ÅA/Insinööriosastot alintauulustelujen matematiian oe 900 Sarja A A Lase äyrien y, (Tara vastaus) y, ja rajaaman äärellisen alueen inta-ala A Miä on sen ymyräsetorin säde, jona ymärysmitta

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2 KAUNIAISTEN KAUPUNKI GRANKULLA STAD KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA Myyjä Kauniaisten aupuni, Kauniaistentie 0, 0700 Kauniainen.

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

KAUNIAISTEN KAUPUNKI MYY PIENTALOTONTIN OSOITTEESSA TORNIKUJA 3

KAUNIAISTEN KAUPUNKI MYY PIENTALOTONTIN OSOITTEESSA TORNIKUJA 3 KAUNASTEN KAUPUNK GRANKULLA STAD KAUNASTEN KAUPUNK MYY PENTALOTONTN OSOTTEESSA TORNKUJA 3 Myyjä: Kauniaisten aupuni, Kauniaistentie 0, 0200 Kauniainen. Myytävä tontti: Kauniaisten 2. aupunginosassa orttelissa

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa TAMPEREEN TEKNILLINEN YLIOPISTO Luonnontieteiden ja ympäristöteniian tiedeunta Tuomo Mäi-Marttunen Stoastiset ja tavalliset differentiaaliyhtälöt inertiapaiannusessa Diplomityö Aihe hyväsytty tiedeuntaneuvostossa

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Diplomi-insinöörien ja arkkitehtien dia-yhteisvalinta 2015 Arkkitehtivalinnan matematiikan koe, 18.5.2015 klo 13-16 Sarja A-FI

Diplomi-insinöörien ja arkkitehtien dia-yhteisvalinta 2015 Arkkitehtivalinnan matematiikan koe, 18.5.2015 klo 13-16 Sarja A-FI Diplomi-insinöörien ja aritehtien dia-yhteisvalinta 2015 Aritehtivalinnan matematiian oe, 18.5.2015 lo 1-16 Sarja A-FI Ohjeita. Laita mielellään useamman tehtävän rataisu samalle onseptiarille, mutta aloita

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face S-114.240 Hahmontunnistus ihmisläheisissä äyttöliittymissä Kasvojen tunnistus ja identiteetin taristus: ZN-Face Kalle Korhonen sorhon@cc.hut.fi 13.4.2000 Tiivistelmä: Raportissa tutustutaan aupalliseen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin.

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin. Peruskoulun matematiikkakilpailu 2015 2016 alkukilpailu 29.10.2015. Ratkaisut 1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia.

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

MAANKÄYTTÖSOPIMUS JA KIINTEISTÖNKAUPAN ESISOPIMUS

MAANKÄYTTÖSOPIMUS JA KIINTEISTÖNKAUPAN ESISOPIMUS MAANKÄYTTÖSOPIMUS JA KNTEISTÖNKAUPAN ESISOPIMUS SOPIJAOSAPUOLET Kauniaisten aupuni (Y-tunnus 0006-) Kauniaistentie 0, 0700 KAUNIAINEN ja Asunto Oy Forsellesintie 8 (Y-tunnus 080-) c/o Kaallion huolto Oy

Lisätiedot

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto Ekspontentiaalinen kasvu Eksponenttifunktio Logaritmifunktio Yleinen juurenotto Missä on eksponenttimuotoista kasvua tai vähentymistä? Väestönkasvu Bakteerien kasvu Koronkorko (useampivuotinen talletus)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

www.kastowin.com Sahaus. Varastointi. Ja enemmän.

www.kastowin.com Sahaus. Varastointi. Ja enemmän. Uusi KASTOwin Mestariteos sarjatuotantona www.astowin.com Sahaus. Varastointi. Ja enemmän. Enemmän uin ainutlaatuinen: Uusi KASTOwin. Kannattavan automaattisahausen asi täreintä teijää ovat: suuri leuuteho

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta.

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta. Seuraava esimerkki on yhtälöparin sovellus tyypillisimmillään Lukion ekaluokat suunnittelevat luokkaretkeä Sitä varten tarvitaan tietysti rahaa ja siksi oppilaat järjestävät koko perheen hipat Hippoihin

Lisätiedot

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut. MIGUITEETTIONGELM KNTOLLONVIHEMITTUKSESS JUKK TOLONEN Tenillinen oreaoulu Maanmittaustieteiden laitos otolone@cc.hut.fi . Johdanto Satelliittipaiannus perustuu vastaanottimen a satelliittien välisen etäisyyden

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

Ojalan osayleiskaava. Lähtökohtaraportti 31.1.2011. Tampereen Infratuotanto Liikelaitos/ Suunnittelupalvelut

Ojalan osayleiskaava. Lähtökohtaraportti 31.1.2011. Tampereen Infratuotanto Liikelaitos/ Suunnittelupalvelut Ojalan osayleisaava Lähtöohtaraportti..0 Tampereen Infratuotanto Liielaitos/ Suunnittelupalvelut Kannen uva: Lampi Vaarinsuon pohjoispuolella. Kari Korte 008. Raportin taitto: Satu Arvonen 0 Ojalan osayleisaava,

Lisätiedot