Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C
|
|
- Johannes Jurkka
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki Simo Simolin Mikko Puustinen
2 1. Tutkimusongelma ja tutkimuksen tavoite Painetta voidaan mitata lukuisilla eri tavoilla. Karkeasti sanoen paineen mittaus voi perustua joko muodonmuutokseen tai sähköiseen ilmiöön. Muodonmuutokseen perustuvia mittareita ovat muun muassa rasiailmapuntari ja Bourdon-manometri. Rasiailmapuntarissa paine mitataan rasian kannen muodonmuutoksen avulla. Bourdon-manometrissa taas mitataan jonkin säiliön painetta. Säiliön kaasu tai neste pääsee mittarissa olevaan kaarevaan metalliputkeen. Kun paine kasvaa säiliössä, kaareva metalliputki oikenee, ja tämä muodonmuutos voidaan ilmaista paineen muutoksena. Sähköisissä mittareissa paineen muutos voidaan mitata esimerkiksi pietsosähköisen ilmiön tai kapasitanssin muutoksen avulla. Pietsosähköiseen ilmiöön perustuvassa mittauksessa anturissa olevien kiteiden välinen jännite muuttuu kun paine puristaa kiteitä kokoon. Kapasitiivinen paineenmittaus voidaan taas tehdä, kun paine työntää kondensaattorin piilevyjä poispäin toisistaan, jolloin kondensaattorin kapasitanssi muuttuu. Tämä muutos voidaan muuttaa vastaamaan paineen muutosta. Kiinteän aineen mekaniikka kurssilla meille esitettiin venymäliuskan toimintaperiaate. Kurssilla opimme myös, että venymäliuskojen avulla voidaan mitata mitä erinäisempiä suureita itse venymästä, voimaan, kiihtyvyyteen ja paineeseen. Näistä lukuisista mittausvaihtoehdoista meitä kiinnosti erityisesti viimeisenä mainittu paineen mittaus. Kiinteän aineen mekaniikka -kurssilla käsiteltiin paineen mittausta ohutseinäisissä paineastioissa. Tämän tutkimuksen tarkoituksena on selvittää miten venymäliuskojen avulla voidaan mitata paineastian ulkopuolista painetta ohutseinäisten sylinterien sisäisen paineen avulla kiinteän aineen mekaniikan teorian pohjalta sekä selvittää mitä rajoituksia ja mahdollisuuksia tällaiseen paineenmittaukseen sisältyy Teoreettinen lähtökohta tutkimukselle Tässä osiossa kuvataan lyhyesti teoreettinen tausta tutkimukselle. Paine ohutseinäisissä sylinterimäisissä paineastioissa voidaan laskea, kun tiedetään paineastian geometria sekä paineen (paine-erojen) aiheuttamat venymät sylinterin pinnalla. Paineastian paineesta puhuttaessa tarkoitetaan yleensä paineastian ylipainetta. Päätetään, että tässä yhteydessä puhutaankin ylipaineesta, joka on siis säiliön sisäinen paine miinus paineastian ulkoinen paine. Ylipaine voi olla myös negatiivinen, jos sisäinen paine on pienempi kuin ulkoinen paine. Näin voi tapahtua myös painemittarissamme, koska muovisäiliön sisällä vallitsee normaali ilmanpaine ja ulkopuolen painetta taas voidaan nostaa esimerkiksi upottamalla säiliö veteen. Seuraavaksi näytetään, miten ylipaineen voidaan laskea ohutseinäisessä sylinterimäisessä paineastiassa niin kuin se opetettiin kiinteän aineen mekaniikka kurssilla. 1 Tutkimalla sylinterimäisen astian puolikasta voidaan ylipaineen aiheuttaman resultanttivoiman ja sylinterissä vallitsevien jännitysten yhtäsuuruudesta johtaa lauseke 1 σ φ = D 2 t 2 t jossa σϕ on sylinterin kehäjännitys, D on ulkohalkaisija, t on sylinterin seinä paksuus, b on sisäsäde ja p on ylipaine. Saatu lauseke voidaan sieventää muotoon 1 σ φ = D 2 t p kun sylinterin seinän paksuus t on paljon pienempi kuin ulkohalkaisija D. Sylinterin normaalijännitys σx saadaan taas lausekkeesta 1 p
3 σ x = D 2 t p, joka sievenee ohutseinäisen sylinterin tapauksessa muotoon 1 4 t σ x = D 4 t p Paineastian kuoressa vaikuttaa hyvällä tarkkuudella tasojännitystila. Lisäksi sylinterin pituuden suuntainen koordinaatti x ja kehäkoordinaatti ϕ ovat kohtisuorassa toisiaan vastaan. Tämän johdosta paineastian rasitustilaa voidaan kuvata Hooken lain kolmiulotteisella muodolla: 1 γ e xφ ε x e = 1 E (σ x ν σ φ ), ε φ e = 1 E (σ φ ν σ x ), = τ xφ G = 2(1 + ν) E τ xφ jossa εx, εϕ ovat venymät pituus ja kehäsuuntaan, τxϕ on leikkausjännitys paineastian kuoressa ja G on leikkausmoduuli. Koska ylipaine ei aiheuta leikkausjännitystä, myöskään liukumaa γxϕ ei esiinny Tutkimusmenetelmät Tässä tutkimuksessa käytämme ohutseinäisenä paineastiana muovista sylinterin muotoista säiliötä. Säiliö on monelle tuttu, koska sen on otettu pääsiäismunan sisältä (Kuva 1). Käytössämme on kahta eri kokoa säiliöstä, halkaisija 70 mm ja 50 mm. Oletamme, että säiliö sopii mittaukseemme hyvin, koska se on ohutseinäinen ja se koostuu kahdesta puolikkaasta, jotka voidaan irrottaa toisistaan ja kiinnittää takaisin helposti. Tästä on hyötyä venymäliuskojen kiinnityksessä säilön sisälle. Tutkimukseen tarvitsemme kahden venymäliuskan ja painesäiliön lisäksi virtalähteen, venymäsignaalin vahvistamiseksi vahvistimen, usb-tiedonkeruulaitteen ja tietokoneen. Kuva 1: Mittauksissa käyttämämme säiliöt Venymäliuskat kiinnitetään paineastian sisäpuolelle sylinterin pituussuuntaisen akselin ja kehän suuntaisen akselin suuntaisesti. Näin voidaan mitata venymät vastaaviin suuntiin. Venymäliuskoista vedetään johdot sylinterin läpi siihen poratuista pienistä reistä. Reiät tiivistetään tiivistemassalla, jotta paineet sylinterin sisällä ja ulkopuolella eivät pääse tasaantumaan. Sylinterin
4 ulkopuolella johdot viedään ensin vahvistimeen ja sitten usb-tiedonkeruulaitteseen. Vahvistimessa venymäliuskoilta tuleva pieni jännite vahvistetaan suuremmaksi. Usb-tiedonkeruulaitteessa jännitesignaali suodatetaan tehdään AD-muunnos. Yksinkertaistettu kuva koejärjestelystä on esitetty kuvassa 2. Kuva 2: Koejärjestely Tutkimuksessamme mittaamme painetta käyttämällä hyödyksi vedellä täytettyä viemäriputkea. Viemäriputken pituus on 2 metriä ja halkaisija 110mm. Painesäiliön korkeutta viemäriputkessa voidaan säätää narusta vetämällä. Naru on kiinni sylinterin toisessa päässä ja se kiertää viemäriputken pohjassa olevan koukun kautta ja nousee sitten pinnalle. Naruun on merkitty asteikko, josta tiedämme, kuinka syvällä säiliö on. Venymäliuskoilta tulevat johdot ovat löysästi kiinni narussa siten, että niihin ei kohdistu vetoa narua vedettäessä. Jotta rakentamallamme paineanturilla voitaisiin mitata painetta, on anturi ensin kalibroitava. Alkutilanteessa voidaan olettaa, että sylinterin sisällä ja sen ulkopuolella on sama paine eli ilmanpaine. Tällöin mittarin tulisi näyttää siis vallitsevaa ilmapainetta, koska paine-ero sisä- ja ulkopuolen välillä on nolla ja sylinterin ulkopuolinen paine on ilmapaine. Kalibroinnin aikainen ilmanpaine voidaan tarkistaa ilmapuntarilla. Kun sylinterin ulkopuolinen paine vaihtuu (kasvaa tai laskee) syntyy sylinterin ulko- ja sisäpinnan välille paine-ero, joka pyrkii tasaantumaan. Tällöin sylinteriin kohdistuu voima ja jännitys, joka nähdään venymäliuskojen mittaamana venymänä. Venymäliuskoilta ulostuleva jännite muutetaan tietokoneella venymäliuskojen teorian avulla venymäksi. Venymä taas muutetaan ohutseinäisten sylinterien paineteorian avulla paineeksi, joka siis on yhtä suuri kuin paine sylinterin sisällä miinus paine sylinterin ulkopuolella. Toinen
5 kalibrointipiste voidaan valita vapaasti, jos sylinteri laitetaan esimerkiksi paineistettuun tilaan, jonka paine tunnetaan. 4. Mittaussuunnitelma Aluksi mittaamme venymäliuskojen lukeman ilmanpaineessa. Tämän jälkeen vedämme säiliötä tasaisesti viemäriputkessa syvemmälle vedenpinnan alle ja pysähdymme 2 cm välein lukemaan venymäliuskojen antamaa lukemaa. Jatkamme näin viemäriputken pohjalle saakka. Tämän jälkeen meillä on tallennettuna tarvittava data paineenmuutoskuvaajan muodostamiseksi veden syvyyden funktiona. 5. Aikataulu Tutkimuksemme valmistelut ja mittaukset tulisi pystyä suorittamaan yhden päivän aikana. Tämän lisäksi tuloksien analysointiin on käytettävissä muutama päivä. Tarkempi aikataulu hahmottuu projektin edetessä. 6. Dokumentointi Tutkimuksessamme tiedon keruu tulee tapahtumaan Labview- ohjelmaa käyttäen, jonka avulla saamme kerättyä venymäliuskoilla tuotetun datan analysointia varten. Labview-ohjelman avulla pystymme luomaan saamastamme datasta myös havainnollistavia kuvaajia, sekä datan siirtäminen muihin ohjelmiin, kuten Matlab tai Excel onnistuu. Matlabilla pystymme kirjoittamaan koodin, jolla voimme muuttaa venymäliukoista saamamme jännitteen muutoksen paineen muutokseksi. 7. Turvallisuustarkastelu Tutkimukseemme ei liity merkittäviä turvallisuusriskejä. Turvallisuusriskejä voisi aiheuttaa korkeat paineet, mutta meidän mittalaitteellamme ei pystytä korkeita paineita (paine-eroja) mittaamaan, koska painesäiliö oletettavasti hajoaa ennen kuin suuria paine-eroja syntyy. Myöskin mittauksessa käytettävät jännitteet ja virrat ovat pieniä, jolloin niistä ei pitäisi aiheutua riskiä. Tutkimuksen suorittamisessa on kuitenkin noudatettava yleisiä ohjeita toimittaessa sähkölaitteiden kanssa. Erityisesti jos mitataan veden painetta, on oltava huolellinen virtalähteen ja johtimien kanssa, jotta jännitteelliset osat eivät pääse kosketuksiin veden kanssa. Laitteiden vahingoittumisen estämiseksi, tutkimukset on tehtävä huolella ja pitämättä kiirettä, jolloin vahinkoja helposti tapahtuu. 8. Virhetarkastelu Virheitä mittauksissamme aiheuttavat seuraavat asiat: - painesäiliön epälineaarinen muodonmuutoskäyttäytyminen (säiliö ei ole täydellisesti mallin mukainen) - materiaalivakioiden epätarkkuus. Tästä aiheutuvaa virhettä voidaan pienentää onnistuneella kalibroinnilla - painesäiliön vuotaminen. Tätä voidaan ennalta ehkäistä säiliön huolellisella tiivistämisellä - teorian epätarkkuus kohteessamme. Säiliömme ei ole täysin ideaalinen teorian kannalta - sähköiset häiriöt. Kosteus voi olla mm. ongelma
6 9. Lähdeluettelo 1. Santaoja, K. (2015). Lujuusoppi I. Espoo: Sasata.
NESTEEN TIHEYDEN MITTAUS
NESTEEN TIHEYDEN MITTAUS AALTO-YLIOPISTO INSINÖÖRITIETEIDEN KORKEAKOULU KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Emma Unonius, Justus Manner, Tuomas Hykkönen 15.10.2015 Sisällysluettelo Teoria...
Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt. Henri Järlström ja Olli Sarainmaa
Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Henri Järlström 355690 ja Olli Sarainmaa 220013 Sisällysluettelo 1 Johdanto...2 2 Teoria...2 3 Tutkimusmenetelmät...3 3.1
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.
Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia
Ryhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004
Ryhmä T Koesuunnitelma Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Henri Makkonen 430450, Iivari Sassi 311582, Alexander Hopsu 429005 12.10.2015 Sisällys Tutkimusongelma ja tutkimuksen tavoite...
Muodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön
Laskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
Tuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
FYSP101/K1 KINEMATIIKAN KUVAAJAT
FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
Perusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen Ryhmä 3 Henri Palosuo Kaarle Patomäki Heidi Strengell Sheng Tian 1. Johdanto Materiaalin
PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen
Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA
Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan
KJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,
on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
Luvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
PANK-2206. Menetelmä soveltuu ainoastaan kairasydännäytteille, joiden halkaisija on 32-62 mm.
PANK-2206 KIVIAINES, PISTEKUORMITUSINDEKSI sivu 1/6 PANK Kiviainekset, lujuus- ja muoto-ominaisuudet PISTEKUORMITUSINDEKSI PANK-2206 PÄÄLLYSTEALAN NEUVOTTELUKUNTA 1. MENETELMÄN TARKOITUS Hyväksytty: Korvaa
Laboratorioraportti 3
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Laboratorioraportti 3 Laboratorioharjoitus 1B: Ruuvijohde Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Mittaustilanne Harjoituksessa
Luvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
Kojemeteorologia (53695) Laskuharjoitus 1
Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi
KJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT KOESUUNNITELMA. Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus
KJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus (ilman kuvia) RYHMÄ N KALLE KEKÄLÄINEN 355836 LAURI LINNONMAA 350103 TUOMO VILSKA
Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
Lyhyt käyttöohje SiMAP-mittaus 28.8.2012
1 (7) SiMAP -mittaus Contents 1. SiMAP-MITTAUSJÄRJESTELMÄ...1 2. KÄYTTÖÖNOTTO...2 2.1 Tee tämä ensin!...2 2.2 Sim-kortin asettaminen paikoilleen...2 3. MITTAUS...3 3.1 Salkku mittauskohteessa...3 3.2 Anturit...3
PERUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan
Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.
TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.
Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
Lineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
Moottorin kierrosnopeus Tämän harjoituksen jälkeen:
Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,
Käyttöohje. Tiiveystesteri
Tiiveystesteri 1. Tiiveystesteri ja lisätarvikkeet 2. Laitteiston liittäminen yli- ja alapaineen mittausta varten 3. Asetukset 4. Mittaus 5. Tekniset tiedot Ilmanvaihdon yleismittari Swema 3000MD yhdessä
A. SMD-kytkennän kokoaminen ja mittaaminen
A. SMD-kytkennän kokoaminen ja mittaaminen Avaa tarvikepussi ja tarkista komponenttien lukumäärä sekä nimellisarvot pakkauksessa olevan osaluettelon avulla. Ilmoita mahdollisista puutteista tai virheistä
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
Kiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn
FYSKKA (FY02l: 2. KURSS: Lämpö vasraa KUUTEEN (6) TEHnÄVÄÄN il KOE 21.02.2013 1. a) Suuren matkustajalentokoneen lentokorkeus maahan nähden on 10,5 km, vauhti980 km/h ja massa 310 000 kg. Laske lentokoneen
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010
1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä
Paineanturi nesteitä ja kaasuja varten
904 Paineanturi nesteitä ja kaasuja varten QBE620-P Paineanturi ylipaineen mittaukseen LVIS-sovelluksissa, joissa käytetään väliaineena nesteitä tai kaasuja Pietsoresistiivinen mittausjärjestelmä Lähtöviesti
Opetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Reijo Manninen, fysiikan lehtori. Tampereen Ammattikorkeakoulu. Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17-18.3.2010
Fysiikan laboratoriokurssit sujuvammiksi Reijo Manninen, fysiikan lehtori Sami Suhonen, fysiikan yliopettaja Tampereen Ammattikorkeakoulu Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17-18.3.2010 Laboratoriotyöskentelyn
Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja
TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti
Mitä on huomioitava kaasupäästöjen virtausmittauksissa
Mitä on huomioitava kaasupäästöjen virtausmittauksissa Luotettavuutta päästökauppaan liittyviin mittauksiin 21.8.2006 Paula Juuti 2 Kaupattavien päästöjen määrittäminen Toistaiseksi CO2-päästömäärät perustuvat
Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad
Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman
7. PAINEILMAJÄRJESTELMÄN TUTKIMINEN pneulab7.doc/pdf
1 7. PAINEILMAJÄRJESTELMÄN TUTKIMINEN pneulab7.doc/pdf Annettu tehtävä Työn suoritus Tutkitaan OAMK Tekniikan yksikön käytössä oleva paineilmajärjestelmä. Järjestelmään kuuluvat mm. kompressoriyksikkö,
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti
Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3
OAMK TEKNIIKAN YKSIKKÖ MITTAUSTEKNIIKAN LABORATORIO
OAMK TEKNIIKAN YKSIKKÖ MITTAUSTEKNIIKAN LABORATORIO Työ 5 ph-lähettimen konfigurointi ja kalibrointi 2012 Tero Hietanen ja Heikki Kurki 1 JOHDANTO Työssä tutustutaan nykyaikaiseen teollisuuden yleisesti
Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE
Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY
Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka
Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla
METALLILETKUJEN ASENNUSOHJEITA
METALLILETKUJEN ASENNUSOHJEITA METALLILETKUJEN ASENNUSOHJEITA Asennustapa A Asennustapa B Ø 12-100 Ø 125-300 2 Lasketaan kaavalla FS=2,3 r a=1,356 r Taivutussäde "r", kun asennus kuvan A mukaan Asennus
AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö
ISKUTILAVUUDEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet 4. Olosuhteet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin iskutilavuuden mittaaminen ja laskeminen. Kyseinen on mahdollista
TSI DP-CALC 5815 KÄYTTÖOHJE
TSI DP-CALC 5815 KÄYTTÖOHJE DP-CALC 5815 käyttöohje 2 SISÄLLYSLUETTELO 1 Mittarin perusvarusteet.. 3 2 Käyttöönotto. 3 Virransyöttö.. 3 Paristojen ja akkujen asennus... 3 3 Mittarin käyttö... 3 Näppäintoiminnot...
KJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla
LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT KOKEEN JÄLKEEN JA ANNA PISTEESI RUUTUUN!
Matematiikan TESTI 4, Maa7 Trigonometriset funktiot ATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TAKISTA TEHTÄVÄT
Koesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
Demo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?
Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.
On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).
TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima
Mittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
HARJOITUSTYÖ: LabVIEW, Kiihtyvyysanturi
Tämä käyttöohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: LabVIEW, Kiihtyvyysanturi Tarvittavat laitteet: PC Labview
Eristysvastuksen mittaus
Eristysvastuksen mittaus Miksi eristyvastusmittauksia tehdään? Eristysvastuksen kunnon tarkastamista suositellaan vahvasti sähköiskujen ennaltaehkäisemiseksi. Mittausten suorittaminen lisää käyttöturvallisuutta
PANK PANK- 4306 ASFALTTIMASSAN JÄÄTYMIS- SULAMIS-KESTÄVYYS. Asfalttimassat ja päällysteet 1. MENETELMÄN TARKOITUS JA SOVELTAMISALUE
Asfalttimassat ja päällysteet PANK- 4306 PANK ASFALTTIMASSAN JÄÄTYMIS- SULAMIS-KESTÄVYYS. PÄÄLLYSTEALAN NEUVOTTELUKUNTA Hyväksytty: Korvaa menetelmän: 7.12.2011 1. MENETELMÄN TARKOITUS JA SOVELTAMISALUE
Kertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
RAIDETESTERIN KÄYTTÖOHJE
RAIDETESTERIN KÄYTTÖOHJE Yleiskuvaus Mittalaite tutkiin virtapiirin johtavuutta ja ilmaisee virtapiirissä olevan puhtaasti resistiivisen vastuksen. Mittalaitteen toiminnallisuus on parhaimmillaan, kun
Ilmanvirtauksen mittarit
Swema 3000 yleismittari/monitoimimittari sisäilmastomittauksiin Ilmastoinnin yleismittari, Vahva metallirunkoinen Swema 3000 on suunniteltu ilmastoinnin, sisäilmaston ja olosuhdemittausten tarpeisiin erityisesti
RATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
KÄYTTÖOPAS DIGIOHM 40
KÄYTTÖOPAS DIGIOHM 40 1. JOHDANTO 1.1. Turvallisuus Lue tämä käyttöopas huolellisesti läpi ja noudata sen sisältämiä ohjeita. Muuten mittarin käyttö voi olla vaarallista käyttäjälle ja mittari voi vahingoittua.
5 Rationaalifunktion kulku
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
PAINEMITTAUKSET. 0,0005 Pa... 500 MPa. Mittaustekniikan lisensiaattikurssi 3.4.2008. Mittatekniikan keskus Sari Semenoja, p. 010 6054 432, @mikes.
PAINEMITTAUKSET 0,0005 Pa... 500 MPa Mittaustekniikan lisensiaattikurssi 3.4.2008 Mittatekniikan keskus Sari Semenoja, p. 010 6054 432, @mikes.fi Mittatekniikan keskus MIKES Paineen kansallinen mittanormaalilaboratorio
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA
KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
Trestima Oy Puuston mittauksia
Koostanut Essi Rasimus ja Elina Viro Opettajalle Trestima Oy Puuston mittauksia Kohderyhmä: 9-luokka Esitiedot: ympyrä, ympyrän piiri, halkaisija ja pinta-ala, lieriön tilavuus, yhdenmuotoisuus, yksikkömuunnokset
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Trestima Oy Puuston mittauksia
Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen
3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.