Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto Annukka Engström

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström"

Transkriptio

1 Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto Annua Engströ

2 Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella näyvät Tulosia voidaan hyödyntää aiseavaiutusten arvioinnissa ja esierisi havainneuvien laadinnassa Analyysin avulla voidaan yös taristaa, illä alueilla syntyy vaiutusia asutusen tai loaasutusen annalta erittäviin näyiin tai erityisiin aisea- ja ulttuuriypäristöohteisiin Analyysi on teoreettinen alli näyvyydestä Malli on yhtä tara uin allinnusessa äytetty aineisto Tätä työtä varten tehty analyysi huoioi aaston pinnanuodot ja puuston oreuden aiheuttaan ahdollisen vaiutusen LÄHTÖTIEDOT JA AINEISTOT Analyysit on tehty äyttäen aanittauslaitosen oreusallia, jona ruutuoo on x ja oreustiedon taruus 1,4 etriä Koreusallissa on siis esitetty alue välein sijaitsevina pisteinä, joilla on tietty oreustieto Tästä oreusallista on luotu rasteriversio, jossa pisteistä on uodostettu yhtenäinen pinta interpoloialla Tään jäleen rasterioreusallia on täydennetty puustotiedoilla, jota saatiin Corine 2006-vetoriaineistosta Corine Land Cover (CLC) uvaa Suoen aanäyttöä ja aanpeitettä vuonna 2006 Aineisto sisältää rasteri- ja vetoriuotoiset paiatietoannat Aineisto on tuotettu osana eurooppalaista hanetta, jossa oo Euroopan alueelta on tehty yhteensopiva aanäyttö- ja aanpeitepaiatietoanta Eri aiden vetoriaineistojen jaelua hoitaa Euroopan Ypäristöesusen (EEA) tietopalvelu Corine-rasteriaineistot on luotu yhdistäällä satelliittiuvatulintatulosia, oleassa olevia paiatietoaineistoja seä aastossa itattua tietoa, ruutuoo on 25 x 25 Vetoriuotoinen paiatietoanta on tuotettu yleistäällä rasteriaineisto siten, että pienin aastossa erottuva alue on vähintään 25 ha ja apeiillaan 0 etriä Maanäyttöä ja aanpeitettä uvataan olitasoisella hierarisella luoittelulla Pääluoia on 5: raennetut alueet, aatalousalueet, etsät seä avoiet anaat ja allioaat, osteiot ja avoiet suot ja järvet Tässä työssä on äytetty olannen eli tarian luoittelutason luoia KÄYTETTY OHJELMISTO JA ANALYYSIMALLI Näeäalueanalyysi laadittiin ESRIn ArcMap-ohjeliston Viewshed-työalulla Viewshed-analyysi arvioi näyvyyden ullein digitaalisen oreusallin solulle solun oreusarvon perusteella Tässä työssä analyysille on annettu tarasteluoreudesi 1,65etriä, joa on suurin piirtein esipituisen ihisen silänoreus Analyysi siis arvioi näyvyyttä 1, 65 etrin oreudella oreusallissa esitetystä oreusarvosta Viewshed-analyysia varten luotiin ensin rasteriuotoinen oreusalli (MML oreusalli ) Tähän alliin lisättiin puuston oreus Corine-aineiston avulla Metsät uuluvat Corinessa pääluoaan 3 Tään pääluoan olostason alaluoille ääriteltiin esiääräinen oreus Asiantuntijan anssa (Metla, Pohjois-Suoen alueysiö) äytyjen esusteltujen perusteella päädyttiin antaaan oreusarvot vain havuetsille, seaetsille ja lehtietsille Muiden luoien (esi niityt, varviot ja nuet) arvioitiin olevan niin atalaasvuisia, että niillä ei ole erittävää näyäestevaiutusta esipituisen ihisen siläntasolle Kosa taraa tietoa etsien oreusista ei ole saatavilla arvioitiin havu- ja seaetsien esiääräisesi oreudesi Sodanylän alueella 17 etriä ja lehtietsien oreudesi etriä Näiden WSP Finland Oy 2 Heiiläntie 7 FI-002 Helsini

3 tietojen perusteella luotiin uusi oreusalli, jossa Corinessa osoitettujen luoiteltujen etsäalueiden ohdille annettiin uusi oreusarvo (perusoreus +puuston oreus) Tään puuston oreuden huoioivan oreusallin pohjalta tehtiin varsinaiset viewshed-analyysit Vaia allissa saantyyppisille etsäalueille annettiin aiille saa esioreus, todellisuudessa etsän oreus vaihtelee paljolti alueittain, joten allin lasea näyvyysanalyysi ja aaston todellinen tilanne eivät välttäättä aina ohtaa Myös ahdolliset uudet hauualueet uuttavat näyätilannetta Malli olettaa etsän peittävän näyvyyden täysin, vaia todellisuudessa niin ei välttäättä ole, uten esierisi harvaasvuisten etsäaistaleiden alueilla tai etsän reuna-alueilla Nyt tehty analyysi ei ota huoioon yösään uita aisean pienpiirteisiä eleenttejä uten esierisi raennusia On yös huoattava, että analyysi ei huoioi näyvyysvaiutusen heieneistä etäisyyden asvaessa tai taustan vaiutusta näyvyyteen Kosa viewshed-analyysi arvioi näyvyyden ullein digitaalisen oreusallin solulle solun oreusarvon perusteella, puuston oreuden sisältäässä oreusallissa analyysi lasee siis näyvyyttä puuston latvaoreuden perusteella Tää aiheuttaa analyysin tuloseen virheen etsien attaille alueille Kosa analyysin antaa tulos etsäalueiden osalta ei ole todenuainen, etsäalueiden analyysituloset on poistettu lopullisesta näyäanalyysista Analyysissa siis huoioidaan etsäalueiden tuottaa teoreettinen näyäestevaiutus, utta etsäalueiden sisällä näyvyyttä ei voida arvioida Kuva 1 Leiaus esierioreusallista Haraalla näyvä osuus on perusoreusalli Koreusalli johon on lisätty puuston oreus sisältää seä haraan että vihreän osuuden Analyysi arvioi näyvyyttä 1,65 etrin tarasteluoreudelle oreusallin pinnasta - etsäalueilla analyysi siis arvioi näyvyyttä 1,65 etriä latvaoreutta oreaalle NÄKYMÄALUEKARTAT Näeäalueanalyysi laadittiin tuulivoiapuiston ahdelle vaihtoehdolle: vaihtoehto 1 ( voialaa) ja vaihtoehto 2 (8 voialaa) Analyysi tehtiin seä voialan asiioreudelle eli lapaoreudelle (2) että voialan tornin oreudelle eli napaoreudelle (140) Voialan lentoestevalot sijaitsevat tornin huipulla, joten napaoreuden perusteella tehty näyäalueanalyysi ertoo yös lentoestevalojen potentiaaliset näyvyysalueet Tuulivoialan lavat ovat jatuvassa pyöriisliieessä voialan ollessa äynnissä Lapaoreuden uaan allinnetuille näyäalueartoille tuulivoialoiden lapojen näyvyys on allinnettu niiden oreialle pisteelle eli hetelle, jolloin join lavoista suuntautuu ohtisuoraan ylöspäin Osalla lapaoreuden perusteella tehdyn analyysin tulosalueista näyy vain viluva lapa tai osa siitä itse tornia ei välttäättä näy aiille alueille Alueille, joille näyy voialan tornin orein ohta (eli napa) lavat näyvät oonaisuudessaan Oheisessa aaviossa on esitetty näyän uodostuisen periaatteita WSP Finland Oy 3 Heiiläntie 7 FI-002 Helsini

4 Kuva WSP Finland Oy / Maisea-aritehti Marjo Sauonen WSP Finland Oy 4 Heiiläntie 7 FI-002 Helsini

5 Näeäanalyysin tulosena tuotettiin arttauvat, joilla on esitetty alueet, joilta tuulipuisto tai sen voialoita olisi silän oreudelta (165) nähtävissä Metsäalueiden osalta näyvyyttä ei esitetä artoilla Tulosena saatu näyäalue jaoteltiin areapiin luoiin sen uaan, ontao tuulivoialaa alueelle näyy NÄKYMÄALUEET SUHTEESSA ASUTUKSEEN Oheisissa artoissa on tarasteltu näyäalueita suhteessa asuin- ja loaraennusiin 20 iloetrin säteellä voiala-alueista Molepien vaihtoehtojen voialat näyvät jossain äärin läheisiin yliin ja taajaiin Vaihtoehdon 1 voialat näyvät laajiillaan 2652 asuaan asuntoihin (lapaoreuden uaan tarasteltuna) ja vaihtoehdon 2 voialat eniillään 2807 asuaan asuntoihin ( lapaoreuden uaan tarasteltuna) Molepien vaihtoehtojen voialat näyvät 20 iloetrin säteellä viiteen asutusesittyään Sodanylän esustaajaaan seä Vaalajärven, Riipin, Sassalin ja Syväjärven yliin Vaihtoehdon 2 näyäalueella asuvien asuaiden äärä näyttää olevan hiean suurepi uin vaihtoehdon 1 näyäalueella asuvien asuaiden Merittävipiä erot ovat Sodanylän esustaajaassa seä Riipin ylällä Näyäalueanalyysia tehtäessä ei ole ollut äytettävissä ysittäisten raennusten oreustietoja Tästä johtuen näyä-alue on hyvin area erityisesti taajaan raennetuille alueilla Koreaat raennuset saattavat peittää tuulivoialoiden näyvyyttä Oheisessa tauluossa on esitetty voiala-alueista 20 iloetrin säteellä näyäalueella asuvien asuaiden äärä asutusesittyittäin: Vaihtoehto 1 Napaoreus Vaihtoehto 1 Lapaoreus Vaihtoehto 2 Napaoreus Vaihtoehto 2 Lapaoreus Kylä Sodanylän esustaajaa Vaalajärvi Riipi Sassali ja Syväjärvi Muut alueet Asuaita yhteensä WSP Finland Oy 5 Heiiläntie 7 FI-002 Helsini

6

7 Näyäalueanalyysi voialan napaoreuden (140) uaan Jouhaisselä - Tuore Kulvaoselä Vaihtoehto Kelonteeäjärvi Vaalajärvi SODANKYLÄ Orajärvi Riipijärvi Unari Tuulivoiala tai sen osa näyy silänoreudella (165) Tuulivoiala (VE1) Etäisyysvyöhye Vesistö Raennetut alueet Maantie Maastotiedot, oreusalli MML 2011 Maanpeite, CLC 2006 SYKE, EEA Tiestö Digiroad / Liiennevirasto 20

8 Näyäalueanalyysi voialan lapaoreuden (2) uaan Jouhaisselä - Tuore Kulvaoselä Vaihtoehto Kelonteeäjärvi Vaalajärvi SODANKYLÄ Orajärvi Riipijärvi Unari Tuulivoiala tai sen osa näyy silänoreudella (165) Tuulivoiala (VE1) Etäisyysvyöhye Vesistö Raennetut alueet Maantie Maastotiedot, oreusalli MML 2011 Maanpeite, CLC 2006 SYKE, EEA Tiestö Digiroad / Liiennevirasto 20

9 Näyäalueanalyysi voialan napaoreuden (140) uaan Jouhaisselä - Tuore Kulvaoselä Vaihtoehto Kelonteeäjärvi Vaalajärvi SODANKYLÄ Orajärvi Tuulivoiala tai sen osa näyy silänoreudella (165) 1-3 Riipijärvi Unari 0 Tuulivoiala (VE2) Etäisyysvyöhye Vesistö Raennetut alueet Maantie Maastotiedot, oreusalli MML 2011 Maanpeite, CLC 2006 SYKE, EEA Tiestö Digiroad / Liiennevirasto 20

10 Näyäalueanalyysi voialan lapaoreuden (2) uaan Jouhaisselä - Tuore Kulvaoselä Vaihtoehto Kelonteeäjärvi Vaalajärvi SODANKYLÄ Orajärvi Tuulivoiala tai sen osa näyy silänoreudella (165) 1-3 Riipijärvi Unari 0 Tuulivoiala (VE2) Etäisyysvyöhye Vesistö Raennetut alueet Maantie Maastotiedot, oreusalli MML 2011 Maanpeite, CLC 2006 SYKE, EEA Tiestö Digiroad / Liiennevirasto 20

Palkisvaara-Kannusvaara tuulivoimapuiston näkymäalueanalyysi WSP Finland Oy

Palkisvaara-Kannusvaara tuulivoimapuiston näkymäalueanalyysi WSP Finland Oy Palkisvaara-Kannusvaara tuulivoimapuiston näkymäalueanalyysi 1482013 WSP Finland Oy Näkymäalueanalyysi Näkemäalueanalyysilla saadaan yleiskuva siitä, mihin tuulivoimalat käytettyjen lähtötietojen perusteella

Lisätiedot

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011 BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

Lakikangas I tuulivoimapuisto, Karijoki

Lakikangas I tuulivoimapuisto, Karijoki CPC LAKIAKANGAS I OY Lakikangas I tuulivoimapuisto, Karijoki Näkymäalueanalyysi V6 x x HH37/HH47.3.6 P7 Näkymäalueanalyysi V6 x x HH37/HH47 7) Vadbäck Hans.3.6 Sisällysluettelo Lähtötiedot... Näkemäalueanalyysi...

Lisätiedot

BL20A0700 Sähköverkkotekniikan peruskurssi

BL20A0700 Sähköverkkotekniikan peruskurssi BLA7 ähöveroteniian perusurssi Viavirrat BLA7 ähöveroteniian perusurssi Viojen aiheuttajat lastollinen ylijännite Laitteiden toiintahäiriö tai virhetoiinta nhiillinen erehdys Yliuoritus BLA7 ähöveroteniian

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

KALA 1.3.2010, Asia 52,, Liite 2.3. Varisto, Martinkyläntien meluselvitys välillä Vihdintie - Riihimiehentie Vantaan kaupunki

KALA 1.3.2010, Asia 52,, Liite 2.3. Varisto, Martinkyläntien meluselvitys välillä Vihdintie - Riihimiehentie Vantaan kaupunki KALA 1.3.2010, Asia 52,, Liie 2.3 Variso, Marinylänien eluselviys välillä Vihdinie - Riihiiehenie Vanaan aupuni Variso, Marinylänien eluselviys välillä Vihdinie Riihiiehenie, Vanaa 2(11) Meluselviys Vanaan

Lisätiedot

Niinimäen tuulivoimahanke Näkemäalueanalyysi

Niinimäen tuulivoimahanke Näkemäalueanalyysi 5.4.2016 Asiakas Tornator Oyj Raino Kukkonen raino.kukkonen(at)tornator.fi Raportin laatija WSP Finland Oy Tuija Pakkanen tuija.pakkanen(at)wspgroup.fi Ilkka Oikarinen ilkka.oikarinen(at)wspgroup.fi 2/16

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

LIITE 2. Ympäristöteemakartat. Kouvolan seudun rataympäristöselvitys, Vaihe I Liitteet

LIITE 2. Ympäristöteemakartat. Kouvolan seudun rataympäristöselvitys, Vaihe I Liitteet , Vaihe I Liitteet LIITE 2 Ypäristöteeaartat Kartat 4 ja on jaettu Luonto ja aisea seä Ihiset ja aanäyttö arttasarjoihin Kartta 1/19 Iitti Kartta 2/19 Iitti Kartta 3/19 Iitti/Kuusanosi/Eliäi Kartta 4/19

Lisätiedot

Niinimäen tuulivoimahanke Näkemäalueanalyysi

Niinimäen tuulivoimahanke Näkemäalueanalyysi 5.4.2016 Asiakas Tornator Oyj Raino Kukkonen raino.kukkonen(at)tornator.fi Raportin laatija WSP Finland Oy Tuija Pakkanen tuija.pakkanen(at)wspgroup.fi Ilkka Oikarinen ilkka.oikarinen(at)wspgroup.fi 2/27

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Valuma-aluejärjestelmä vesistöihin liittyvän seuranta- ja tutkimustiedon tukena

Valuma-aluejärjestelmä vesistöihin liittyvän seuranta- ja tutkimustiedon tukena Valuma-aluejärjestelmä vesistöihin liittyvän seuranta- ja tutkimustiedon tukena LifeDatan karttapalveluseminaari 6.2.2014 Riitta Teiniranta Matti Joukola, Jaakko Suikkanen, Anu Häkkinen, Tiia Kiiski, Pekka

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Luku 2. Jatkuvuus ja kompaktisuus

Luku 2. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012 aupan palveluveroselvitys 28.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 2 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja ostovoiman

Lisätiedot

Keskusta-alueet ja vähittäiskauppa kaupunkiseuduilla -raportti 15.4.2014

Keskusta-alueet ja vähittäiskauppa kaupunkiseuduilla -raportti 15.4.2014 Keskusta-alueet ja vähittäiskauppa kaupunkiseuduilla -raportti 15.4.2014 Raportin laatimiseen taustaa Perustuu SYKE:n tutkimushankkeisiin Kaupunkiseutujen yhdyskuntarakenteen monikeskuksisuus ja kauppa

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere Tampereen aupuni Juha Jaaola PL 487 33101 Tampere LAUSUNTO RAIDELIIKENTEEN NOPEUDEN KASVATTAMISESTA RANTA- TAMPELLAN ALUEEN RUNKOMELU- JA TÄRINÄRISKIIN Ranta-Tampellan alueen tärinää on arvioitu selvitysessä

Lisätiedot

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face S-114.240 Hahmontunnistus ihmisläheisissä äyttöliittymissä Kasvojen tunnistus ja identiteetin taristus: ZN-Face Kalle Korhonen sorhon@cc.hut.fi 13.4.2000 Tiivistelmä: Raportissa tutustutaan aupalliseen

Lisätiedot

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

2.1. Bijektio. Funktion kasvaminen ja väheneminen ******************************************************** .. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää

Lisätiedot

Liite 2. Maisema- ja kulttuuriympäristön karttatarkastelu, näkemäalueanalyysien tulokset ja kuvasovitteet

Liite 2. Maisema- ja kulttuuriympäristön karttatarkastelu, näkemäalueanalyysien tulokset ja kuvasovitteet Liite 2 Maisema- ja kulttuuriympäristön karttatarkastelu, näkemäalueanalyysien tulokset ja kuvasovitteet 2 (33) SISÄLTÖ 1 NÄKEMÄALUEANALYYSIT... 3 2 KUVASOVITTEET... 12 3 (33) 1 Näkemäalueanalyysit Näkemäalueanalyysi

Lisätiedot

TUULIVOIMAPUISTO LÅNGMOSSA. Näkemäalueanalyysi. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

TUULIVOIMAPUISTO LÅNGMOSSA. Näkemäalueanalyysi. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Sivu 1 / 7 Langmossa_Nakemaalue analyysi_ck180814-1jr Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO LÅNGMOSSA Näkemäalueanalyysi Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä 1 2017-08-11

Lisätiedot

Paikkatietopalveluita hyvällä Sykkeellä!

Paikkatietopalveluita hyvällä Sykkeellä! Paikkatietopalveluita hyvällä Sykkeellä! Poimintoja SYKEn paikkatieto- ja kaukokartoituspalveluista Kaisu Harju, Suomen ympäristökeskus SYKE SYKEn geoinformatiikkapäivät 3.12.2013 Sisältö Mitä tietoja

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN JA LOVIEN ITOITUS REIKIEN JA LOVIEN ITOITUS Leiauslujuuen ja poiittaisen etolujuuen ansiosta Kertotuotteisiin on mahollista tehä reiiä. Erityisesti ristiiiluraenteinen soeltuu ohteisiin, joissa

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje

Lisätiedot

Katisen kaava-alue, Hämeenlinna

Katisen kaava-alue, Hämeenlinna Raboll Finland Oy Senaatti Kiinteistöt Katisen kaava-alue, Häeenlinna Meluselvitys Syyskuu 2008 Katisen kaava-alue, Häeenlinna Meluselvitys 4.9.2008 Senaatti Kiinteistöt Raboll Finland Oy Tekijä: Marja

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012 aupan palveluveroselvitys Luonnos 11.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 1 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan

Lisätiedot

YMPÄRISTÖASIANTUNTIJA OPISKELIJANUMERO

YMPÄRISTÖASIANTUNTIJA OPISKELIJANUMERO YMPÄRISTÖASIANTUNTIJA OPISKELIJANUMERO 1A/2010 PÄÄKIRJOITUS REILUA MENOA! Vuoa 2009 ova väriänee erilaise riisi ja niihin raaisujen haeinen. Uuisosioissa ää ei ole ovin poieavaa, ua riisi uen alouden aanua

Lisätiedot

Välipohjan kestävyys. CrossLam Kuhmo CLT. Esimerkki Kuormitus. 2.0 Poikkileikkaus

Välipohjan kestävyys. CrossLam Kuhmo CLT. Esimerkki Kuormitus. 2.0 Poikkileikkaus simeri Välipohjan estävyys.0 Kuormitus Asuinraennusen välipohjan ominaisuormat on esitetty alla olevassa uvassa. Seuraamusluoa on CC K FI,0 (ei esitetä laselmassa. Tässä laselmassa tarastetaan vain ysi

Lisätiedot

LIMINKA. Limingan lakeus Värminkoski. 1 lk pohjavesialue. Matinlauri. Pappila. VE1: kaksoisraide. VE2: Oikaisu. VE 2: Kaksoisraide.

LIMINKA. Limingan lakeus Värminkoski. 1 lk pohjavesialue. Matinlauri. Pappila. VE1: kaksoisraide. VE2: Oikaisu. VE 2: Kaksoisraide. 723 Liingan laeus 724 Värinosi Mäntyetsiö 3-4 725 1 l pohjavesialue - Aliulun raentaisella on haitallinen vaiutus taajaauvaan asila Kilola 726 VÄMINKOSKI Liina 1 727 Matinlauri 728 729 Kaitera Ko Pappila

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL SERTIFIKAATTI VTT-C-184-03 Myönnetty 28.8.2012 TUOTTEEN NIMI VALMISTAJA Kerto-S ja Kerto-Q Raenteellinen LVL Metsäliitto Osuusunta Metsä Wood PL 24 08101 LOHJA TUOTEKUVAUS SERTIFIOINTIMENETTELY Kerto-S

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Kuva 1. Tuulivoimaloiden näkyvyyteen vaikuttaa havainnoijan sijainti suhteessa rakennuksiin tai muihin näkymäesteisiin.

Kuva 1. Tuulivoimaloiden näkyvyyteen vaikuttaa havainnoijan sijainti suhteessa rakennuksiin tai muihin näkymäesteisiin. FCG Finnish Consulting Group Oy Näkyvyys 1 (5) Näkyvyys ja näkymäalueanalyysi 1 Johdanto Hankkeen yhteydessä on laadittu näkymäalueanalyysi, joka antaa yleiskuvan siitä, mille asutusalueille tai loma-asuntoalueille

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Paikkatietoaineistot. - Paikkatieto tutuksi - PAIKKATIETOPAJA hanke 9.5.2007

Paikkatietoaineistot. - Paikkatieto tutuksi - PAIKKATIETOPAJA hanke 9.5.2007 Paikkatietoaineistot - Paikkatieto tutuksi - PAIKKATIETOPAJA hanke 9.5.2007 Maanmittauslaitoksen aineistoja PerusCD rasterimuotoinen (2 x 2 m) peruskartta-aineisto Maanmittauslaitoksen näyteaineistoa,

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3

1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 2.1 Kaupalliset esittymät Lohjalla 3 2.2 Kaupallisten palveluiden pinta-ala aupan esittymissä 2006 ja 2010 9 2.3 Päivittäistavaraaupan palveluvero

Lisätiedot

Corine Land Cover 2012

Corine Land Cover 2012 Corine Land Cover 2012 Dokumentin päivityspvm: MK 11.11.2014 Sisältö 1. Spatiaaliset näkymät... 1 2. Ominaisuustietojen kuvaus... 1 3. Luokitus... 2 4. Lisätietoja... 3 5. UML-malli... 5 6. Luokkakuvaus

Lisätiedot

Maanpeite-tietotuotetyö

Maanpeite-tietotuotetyö Maanpeite-tietotuotetyö Lena Hallin-Pihlatie / Suomen ympäristökeskus Riikka Repo, Riitta Teiniranta, Minna Kallio, Elise Järvenpää Tietotuotteet ja yksilöivät tunnisteet -koulutus 16.4 Messukeskus Sisältö

Lisätiedot

Sisävesitutkimus ja pienvesien kunnostus Helsingissä. Purot Lammet ja järvet Lähteet hulevesi

Sisävesitutkimus ja pienvesien kunnostus Helsingissä. Purot Lammet ja järvet Lähteet hulevesi Sisävesitutkimus ja pienvesien kunnostus Helsingissä Purot Lammet ja järvet Lähteet hulevesi Purojen veden laadun tutkimus 35 puroa, joista vesinäytteitä haetaan nykyisin kerran vuodessa, keväällä Alkanut

Lisätiedot

Tuulivoima-alueiden havainnollistamisprojekti

Tuulivoima-alueiden havainnollistamisprojekti Tuulivoima-alueiden havainnollistamisprojekti Projektisuunnittelija Eeva Paitula eeva.paitula@satakunta.fi 28.11.2012, Alueiden käyttö 1 Ympäristöministeriön rahoittama pilottiprojekti Osa Satakunnan vaihemaakuntakaavaa

Lisätiedot

Liite A: Valokuvasovitteet

Liite A: Valokuvasovitteet Liite A: Valokuvasovitteet Kuvasovite on koostettu valokuva, johon suunniteltujen tuulivoimaloiden kuvat on sijoitettu tietokoneohjelman avulla hyödyntämällä tiettyjä koordinaatteja ja korkeusarvoja. Kyseessä

Lisätiedot

Interaktiiviset menetelmät

Interaktiiviset menetelmät Interatiiviset menetelmät. Johdanto. Interatiivinen SWT-menetelmä 3. GDF-menetelmä 4. Yhteenveto Optimointiopin seminaari - Kevät 000 /. Johdanto Interatiivisissa menetelmissä päätösenteijä ja analyytio

Lisätiedot

ALAHÄRMÄ. Seinäjoki-Oulu palvelutason parantaminen, YVA-menettely

ALAHÄRMÄ. Seinäjoki-Oulu palvelutason parantaminen, YVA-menettely ALAHÄMÄ Knuuttilan raitti 1l. pohjavesialue Kironylä Voltti/Knuuttilan ja Isontalon raitit ö Kiron ypäristö, aaunnallisesti arvoas ulttuuriypäristö (Maauntaaava) Voltin asea 1l. pohjavesialue Puisaari

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Juhana Kanainen j8081 Teemu Lahti l8636 Henri Taranen l84319 SATE010 Dynaaminen enttäteoria AALTO-OPAS H-BEND Sivumäärä: 1 Jätetty tarastettavasi:

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN J LOVIEN ITOITUS Leiauslujuuen ja poiittaisen vetolujuuen ansiosta Kerto -tuotteisiin on maollista teä reiiä. Reiät voivat olla joo pyöreitä tai suoraulmaisia. Erityisesti ristiviiluraenteinen

Lisätiedot

NUMMELAN CITYMARKETIN LAAJENNUKSEN LIIKENTEELLISET VAIKUTUKSET

NUMMELAN CITYMARKETIN LAAJENNUKSEN LIIKENTEELLISET VAIKUTUKSET T UMM TYMKT UKS KTST VKUTUKST ähtöohdat uelan ityaret laajenee noin errosneliöetrin uudella liietilalla aajennus johtaa uutosiin pysäöinnin järjestelyissä Uusia pysäöintipaioja ei uitenaan tule uin yenunta

Lisätiedot

Kaukokartoitusaineistot ja maanpeite

Kaukokartoitusaineistot ja maanpeite Kansallinen maastotietokanta hanke Maasto-työpaja 20.9.2016 Kaukokartoitusaineistot ja maanpeite Pekka Härmä Suomen Ympäristökeskus 1 Sisältö SYKE tietotarpeet Tietolähteet maanpeitetiedon tuottamisessa

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

WP1: Inventory of existing data sources for land cover and land use

WP1: Inventory of existing data sources for land cover and land use WP1: Inventory of existing data sources for land cover and land use GIS ja insitu aineistot maanpeitteestä ja maankäytöstä Minna Kallio, SYKE, Lucas-seminaari, 3.6.2015 Yleiskuvan saaminen aineistoista

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

HYVINKÄÄ HANGONSILLAN ASUINALUEET KORTTELIVIITESUUNNITELMAT

HYVINKÄÄ HANGONSILLAN ASUINALUEET KORTTELIVIITESUUNNITELMAT HYINKÄÄ HNGONSILLN SUINLUEET KORTTELTESUUNNITELMT ritehtitoimisto Petri Rouhiainen Oy - 9.9.04 LUEEN YLEISSUUNNITELMT 0-0 s. Osayleisaava, Ideailailu, aavaruno KORTTELTESUUNNITELMT 0-04 s.4 ineiston taroitus,

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Konttorikonemiehet Oy

Konttorikonemiehet Oy m m Konttorionemiehet Oy MALLISTO 2011-2012 Konttorionemiehet Oy Hintoihin sisältyy alv 23 %. Voimassa 31.1.2012 saaa Kaii hinnat voimassa 31.1.2012 saaa. Eri turvaluoat toimistopapereille Konttorionemiehet

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

ASEMAKAAVOJEN 480 ja 481 SELOSTUS

ASEMAKAAVOJEN 480 ja 481 SELOSTUS ASEMAKAAVOJEN 0 ja SEOSTUS 0 KEVÄTAAKSONPURO PORVOO KAUPUNGINOSA 0 orttelit -0 erillispientalojen orttelialueita, yleisten raennusten orttelialue seä atu- ja viristysalueita KEVÄTAAKSONKAIO PORVOO KAUPUNGINOSAT

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

Suomen Corine maanpeite 2012 osana eurooppalaista maanpeiteseurantaa

Suomen Corine maanpeite 2012 osana eurooppalaista maanpeiteseurantaa Suomen Corine maanpeite 2012 osana eurooppalaista maanpeiteseurantaa Pekka Härmä, Markus Törmä, Elise Järvenpää, Suvi Hatunen, Minna Kallio, Riitta Teiniranta, Tapani Säynätkari Joulukuu 2014 Sisältö Taustaa

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011 Taajamaosayleisaava Kaupallisen selvitysen päivitys Lohjan aupuni, Taajamaosayleisaava Kaupallisen selvitysen päivitys 1 1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 2.1 Kaupalliset esittymät

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot