BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011"

Transkriptio

1 BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen

2 BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen avulla ääritetään paalujen etäisyydet, laatan pasuus, raudoitus ja tarvittaessa paalun yläpuolinen vahvistus Tyypillisen paalulaatan paaluväli on 3-4, laatan pasuus ja teräsuituäärä g/ 3 Paaluaistoille asetetaan lisäsi aistaraudoitteet Paalulaattaa uorittaa yleensä tasaisesti jaaantunut uora Teollisuuslaattoihin ohdistuu yös pisteuoria

3 BY 56 Paalulaatta - Suunnittelu Alusta Kuorat Paaluoo, -luoa ja -jao Laatan betoniluoa ja -lujuus Betonin oinaisuusien äärittäinen Liiuntasauat Taivutus Leiaus Leiautuinen Lävistysestävyys Haleilu Taipua

4 BY 56 Paalulaatta - Suunnittelu Alusta Tulee olla laatan painon antava, tasainen ja sula, betonia läpäiseätön seä oieassa oreustasossa ja -uodossa Kuorat Tasainen uora, liienneuora, sysäyslisästä, jarruuorista (vaaavoia) Paaluoo ja -jao Suositeltava oo on alle 5 x 5 2 Betonilujuus > C30/37 Betonin oinaisuusien äärittäinen Standardilla ASTM C1018 saatujen jäännösertoiien (R 20,50 -arvot) avulla Liiuntasauat Masiiväli 40

5 BY 56 Paalulaatta Mitoittava oentti Kioteoria ja aistaenetelä Tässä ohjeessa äytetään ioteorialla ja aistaenetelällä saatavia itoittavia taivutusoentteja Kaistaenetelää sovellettaessa ei poieta paljon ioteorian uaisista oenteista eiä haleilusta ole haittaa äyttötilassa Laatta lasetaan oleissa suunnissa (x ja y) yhteen suuntaan antavina aistoina Kosa suuriat oentit ioteorian uaan esiintyvät yleensä paalujen ohdalla, ääräytyy laatan oreus siis tavallisesti tuipoiileiausten uaan Kun paalulaattaan vaiuttaa seä tasainen uora että pisteuora, itoitetaan paaluaistat paleina Ellei tarein ainita, palin leveys on enintään 2/3 jännevälistä

6 BY 56 Paalulaatta Mitoittava oentti Tasaisen uoran aiheuttaat tuioentit (aistaenetelä): jos vastaainen tui on vapaasti tuettu jos vastaainen tui on jäyästi iinnitetty jos vastaaisena tuena on paalu, jona yli laatta on jatuva d d 1 pd L 10 1 pd L 16 2 n 2 n d 1 14 p d L 2 n Myötöviivateoria Erilaisia urtoeaniseja eli yötöviivaalleja (artioeanisit ja lasoseanisi) Lasoseanisi on urtotapana aiista sitein Menetelässä oenttiestävyyden oletetaan pysyvän uuttuattoana pitin yötöviivoja, iä ei uitenaan toteudu teräsuitubetonin ohdalla Jäännöstaivutusestävyys heienee haleaien asvaessa, itä ei ole arvioitu yötöviivateoriassa Laajalti uissa Euroopan aissa äytetty

7 BY 56 Paalulaatta Mitoittava oentti FEM-analyysi Tietoonepohjaisella ohjelalla Mallin olettausena on, että laatta säilyy haleaattoassa tilassa FEM-analyysin antaiin tulosiin voidaan luottaa niin auan, un betoni on haleaattoassa tilassa, eli un raenne toiii ioisena Teräsuidulla raudoitetun paalulaatan pasuus ja uituäärä voidaan itoittaa äsin itoitusohjeita äyttäen, osa äsinlasennalla saavutetaan riittävä taruus Laatan taipuat lasetaan uitenin usein äyttäällä FEM-analyysiä

8 BY 56 Paalulaatta Teräsuitubetonin oenttiapasiteetti Ysinertaistettu teräsuitubetoniraenteen jännitysjaaua Menetelä uvaa tilannetta ennen haleaien uodostuista, jolloin taivutusvetolujuus on suuriillaan M bd. bd. bd 2 h 6 R R g 3 20,50( ) 1,27 20,7, suositus 40 g 3

9 BY 56 Paalulaatta Lisäraudoitetun teräsuitubetonin oenttiapasiteetti Kun raenteeseen laitetaan lisäraudoitusta, teräsuitujen aiheuttaa oenttiapasiteetti lasetaan uaan yseisissä ohdissa Paaluaistojen oenttiapasiteettiin lasetaan siis yhteen seä lisäraudoitusen että teräsuitujen antaat apasiteetit Kesiaistoilla oenttiapasiteettiin lasetaan ainoastaan teräsuitujen antaa apasiteetti M x h x Fs d F 0. 6 d 2 x F s yd A s F 0.37 bd R ( h x) R g 3 20,50( ) 1,27 20,7, suositus 40 g 3

10 BY 56 Paalulaatta Leiautuinen Laatan leiausapasiteetti uodostuu betonin apasiteetista ja raudoitusen apasiteetista Betonin apasiteetti on olennaisesti riippuvainen betonin lujuudesta seä paalun halaisijasta Laatan riittävän läpileiausapasiteetin saavuttaisesi on joo asvatettava laatan pasuutta tai paalun halaisijaa Lisäraudoittaattoan uitubetonin leiausestävyyden rataiseiseen ei ole hyväsyttyjä eneteliä VRd c [ CRd c(100 l c ) 1/ 3,, 1 cp v d ] b w d v 0. 7 d d 1 n( h / b )( h / d) w 1.5 n ( b bw ) / h d 0.12R 20, 50 cb 3

11 BY 56 Paalulaatta Lävistys Kriittisipiä ohtia paalujen osetuspinnat Haleaien syntyinen poiileiausessa on estettävä riittävällä raudoitusella Vetoraudoitusta (verot tai tangot) voidaan joutua lisääään teräsuitujen lisäsi Valutenisistä syistä ei taas leiausraudoitus ole suositeltava Laatan pasuus usein siten, että lävistysapasiteetti tulee riittävä suuresi ilan leiausraudoitusta vrd c CRd c l 1/ 3,, (100 c ) 1 cp d d 0.12R 20, 50 cb

12 BY 56 Paalulaatta Käyttörajatila Mitoitus suoritetaan urtorajatilalla, joten äyttörajatilaa ei tarvita ( r ) Haleilu Paalulaattaraenne voidaan suunnitella haleaattoana Kosa haleilu ei ole sallittu, teräsuitubetonin itoitettu taivutusvetolujuus ei saa asvaa suureasi uin pitäaiaistaivutusvetolujuus, jolloin haleaia syntyy Taipua Laatan pasuus valitaan niin suuresi, että taipuia ei tarvitse lasea Taipuat voidaan äärittää haleileattoalle teräsuitubetonilaatalle ioteorialla äyttäen tehollista ioodulia ja ottaen huoioon viruan Olennaisen osan laatan taipuista uodostavat ns. pitäaiaistaipuat utistuasta ja viruasta

13 Paalulaatat Maaperä ei anna Paalujen päällä olevat teollisuuslattiat Kuitubetoni valetaan aan päälle, utta suunniteltu ovettuneena antavana paalulta paalulle Mitoitusessa riittisen ohta paalualueet (taivutusoentti ja lävistys) Optiipaaluväli esellä 2,5 5 ja reunoilla 1,5 3,5 (neliöäinen paalujao) Reunoilla on suositeltavaa äyttää paliaistaa Erittäin suuri ajallinen säästö Kuituäärä g/³ Pasuudesi suositellaan > 180 (lävistys)

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

BL20A0700 Sähköverkkotekniikan peruskurssi

BL20A0700 Sähköverkkotekniikan peruskurssi BLA7 ähöveroteniian perusurssi Viavirrat BLA7 ähöveroteniian perusurssi Viojen aiheuttajat lastollinen ylijännite Laitteiden toiintahäiriö tai virhetoiinta nhiillinen erehdys Yliuoritus BLA7 ähöveroteniian

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN JA LOVIEN ITOITUS REIKIEN JA LOVIEN ITOITUS Leiauslujuuen ja poiittaisen etolujuuen ansiosta Kertotuotteisiin on mahollista tehä reiiä. Erityisesti ristiiiluraenteinen soeltuu ohteisiin, joissa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

BLY. Suunnittelun perusteet. Petri Manninen

BLY. Suunnittelun perusteet. Petri Manninen BLY Suunnittelun perusteet Petri Manninen BY 56 - Lähtökohdat Euroopassa ei ole Eurokoodi-tasoista suunnitteluohjetta kuitubetonista Käytössä erilaisia standardeja, joilla määritetään kuitubetonin ominaisuudet

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Maantien 152 (Kehä IV) alustava suunnittelu FOCUS -alueen kohdalla

Maantien 152 (Kehä IV) alustava suunnittelu FOCUS -alueen kohdalla .. Maantien (Kehä IV) alustava suunnittelu FOCUS -alueen ohdalla Aluevaussuunnitela Tuusula Yhteystiedot P (Jaaonatu ) Vantaa Kotipaia Vantaa Y-tunnus - Puh. Fasi www.poyry.fi Pöyry Finland Oy Copyright

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

T Puurakenteet 1 3 op

T Puurakenteet 1 3 op T5903 Puuraenteet 3 op Kantavat puuraenteet Rasitusuoot Veto Taivutus Kiepahus Leiaus Puristus Nurjahus Vääntö Yhistett rasituset T5903 Puuraenteet 3 op Kantavat puuraenteet Rasitusuoot Veto Vetojännits

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN J LOVIEN ITOITUS Leiauslujuuen ja poiittaisen vetolujuuen ansiosta Kerto -tuotteisiin on maollista teä reiiä. Reiät voivat olla joo pyöreitä tai suoraulmaisia. Erityisesti ristiviiluraenteinen

Lisätiedot

T Puurakenteet 5 op

T Puurakenteet 5 op T51905 Puuraenteet 5 op Kantavat puuraenteet Rasitusuoot Veto Taivutus Kiepahus Leiaus Puristus Nurjahus Vääntö Yhistett rasituset 1 Veto T51905 Puuraenteet 5 op Kantavat puuraenteet Rasitusuoot Vetojännits

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Rakennuksen runkoon kohdistuvat vaakavoimat siirretään jäykistysosille jäykkien välipohjalevyjen välityksellä.

Rakennuksen runkoon kohdistuvat vaakavoimat siirretään jäykistysosille jäykkien välipohjalevyjen välityksellä. LAATASTON LEVYTOIMINTA Laatastton levytoiinta Suunnittelu onnettouuskuorille BNK 23 Ontelolaatat taipuisalla tuella BNK 18 Ontelolaatta - seinäliitos BNK 27 Rakennuksen runkoon kohdistuvat vaakavoiat siirretään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere Tampereen aupuni Juha Jaaola PL 487 33101 Tampere LAUSUNTO RAIDELIIKENTEEN NOPEUDEN KASVATTAMISESTA RANTA- TAMPELLAN ALUEEN RUNKOMELU- JA TÄRINÄRISKIIN Ranta-Tampellan alueen tärinää on arvioitu selvitysessä

Lisätiedot

SEMKO OY RR-NOSTOANKKURIT KÄYTTÖOHJE, EUROKOODIEN MUKAINEN SUUNNITTELU

SEMKO OY RR-NOSTOANKKURIT KÄYTTÖOHJE, EUROKOODIEN MUKAINEN SUUNNITTELU SEMKO OY RR-NOSTOANKKURIT KÄYTTÖOHJE, EUROKOODIEN MUKAINEN SUUNNITTELU FMC no. 41874.126.300 4.12.2012 2 Sisällysluettelo 1 Toimintatapa... 3 2 Rakenne... 3 2.1 Osat ja materiaalit... 3 2.2 Valmistustapa...

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Esimerkkilaskelma. Liimapuuristikon liitos murtorajatilassa ja palotilanteessa R60 (täysin suojattu liitos)

Esimerkkilaskelma. Liimapuuristikon liitos murtorajatilassa ja palotilanteessa R60 (täysin suojattu liitos) Esimerilaselma Liimapuuristion liitos murtorajatilassa ja palotilanteessa R60 (täsin suojattu liitos) 13.6.014 Sisällsluettelo 1 LÄHTÖTIEDOT...- 3 - KUORMAT...- 3-3 MATERIAALI...- 3-4 MITOITUS MURTORAJATILASSA...-

Lisätiedot

Välipohjan kestävyys. CrossLam Kuhmo CLT. Esimerkki Kuormitus. 2.0 Poikkileikkaus

Välipohjan kestävyys. CrossLam Kuhmo CLT. Esimerkki Kuormitus. 2.0 Poikkileikkaus simeri Välipohjan estävyys.0 Kuormitus Asuinraennusen välipohjan ominaisuormat on esitetty alla olevassa uvassa. Seuraamusluoa on CC K FI,0 (ei esitetä laselmassa. Tässä laselmassa tarastetaan vain ysi

Lisätiedot

TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä

TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä Vaarnalevyt lattioiden liikuntasaumoihin Versio: FI 6/2014 Tekninen käyttöohje TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmät Vaarnalevyt lattioiden

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

Jännitetty elementtisilta

Jännitetty elementtisilta Tielaitos Jännitetty eleenttisilta Siltojen tyyppipiirrustukset Helsinki 2000 TIEHALLINTO Siltayksikkö Jännitetty eleenttisilta Tielaitos TIEHALLINTO Helsinki 2000 ISBN 951-726-612-X TIEL 2160004-2000

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL SERTIFIKAATTI VTT-C-184-03 Myönnetty 28.8.2012 TUOTTEEN NIMI VALMISTAJA Kerto-S ja Kerto-Q Raenteellinen LVL Metsäliitto Osuusunta Metsä Wood PL 24 08101 LOHJA TUOTEKUVAUS SERTIFIOINTIMENETTELY Kerto-S

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012 aupan palveluveroselvitys 28.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 2 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja ostovoiman

Lisätiedot

Elementtipaalulaatat rautateillä 27.01.2016

Elementtipaalulaatat rautateillä 27.01.2016 Elementtipaalulaatat rautateillä 27.01.2016 Siirtymärakenteen ja laattatyypin valinta Radan stabiliteetti ja painumaerojen tasaaminen Olemassa oleva/ uusi rata/kaksoisraiteet Sillan tausta/ pehmeiköt jotka

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

A-PALKKI PIKAMITOITUSTAULUKOT

A-PALKKI PIKAMITOITUSTAULUKOT A-PALKKI PIKAMITOITUSTAULUKOT A-PALKIT A200 A265 A320 A370 A400 A500 Taloudellinen ratkaisu ontelolaattatasojen kantavaksi palkkirakenteeksi. Suomen Betoniyhdistyksen käyttöseloste nro 216-23.9.2004. 2

Lisätiedot

Betonilattiat 2014 by 45 / BLY 7

Betonilattiat 2014 by 45 / BLY 7 S I S Ä L L Y S L U E T T E L O OSA 1 YLEISTÄ... 9 1.1 SOVELTAMISALA... 9 1.2 BETONILATTIOIDEN PERUSTYYPIT... 10 1.2.1 Maanvarainen lattia... 10 1.2.2 Paalulaatta... 11 1.2.3 Pintabetonilattia... 11 1.2.3.1

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2. / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,

Lisätiedot

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4. 1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

Ontelolaatat suunnitellaan, valmistetaan ja asennetaan voimassaolevien standardien SFS-EN 1168, SFS 7016 ja SFS-EN 13670 mukaan.

Ontelolaatat suunnitellaan, valmistetaan ja asennetaan voimassaolevien standardien SFS-EN 1168, SFS 7016 ja SFS-EN 13670 mukaan. 1 Betoninormikortti n:o 27 3.5.2012 ONTELOLAATTA - SEINÄLIITOS Eurokoodi 1992-1-1 1. Normikortin soveltamisalue Tämä normikortti käsittelee raskaasti kuormitettujen (tyypillisesti yli 8-kerroksisten rakennusten)

Lisätiedot

Betonilattiat 2014 BY45/BLY7

Betonilattiat 2014 BY45/BLY7 Betonilattiat 2014 BY45/BLY7 Kim Johansson, BY 9.4.2014 Tampere 1 Toimikunta 2011/1 2013/10 Pentti Lumme, puheenjohtaja Rudus Oy Martti Matsinen, BLY Jouko Ilvonen, Semtu Oy Casper Ålander, Celsa Steel

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Saumattomat betonilattiat suunnittelu ja toteutus. Betonipäivät 2010 Casper Ålander

Saumattomat betonilattiat suunnittelu ja toteutus. Betonipäivät 2010 Casper Ålander Saumattomat betonilattiat suunnittelu ja toteutus Betonipäivät 2010 Casper Ålander 1 Miksi lattiat halkeilevat? Onko unohdettu betonin perusominaisuuksia? Alhainen vetolujuus Kutistuma ~ 0,6 mm/m Lämpökutistuma

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 202 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

13260 Paalulaattarakenteet RTS 09:13

13260 Paalulaattarakenteet RTS 09:13 1 13260 Paalulaattarakenteet RTS 09:13 13261 Paikalla valettavat paalulaatat 13261.1 Paikalla valettujen paalulaattojen materiaalit 13261.1.1 Paikalla valettujen paalulaattojen materiaalit tie- ja katurakenteissa

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012 aupan palveluveroselvitys Luonnos 11.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 1 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja

Lisätiedot

Mitoitusesimerkkejä Eurocode 2:n mukaisesti

Mitoitusesimerkkejä Eurocode 2:n mukaisesti Maanvaraisen lattian mitoitus by45/bly7 2014 Mitoitusesimerkkejä Eurocode 2:n mukaisesti BETONI LATTIA 2014 by 45 BETONILATTIAT 2002, korvaa julkaisut by 8 (1975), by 12 (1981), by 31 (1989), by 45 (1997

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Liitos ja mitat. Lisäksi mitoitetaan 4) seinän suuntainen sideraudoitus sekä 6) terästapit vaakasuuntaisille voimille.

Liitos ja mitat. Lisäksi mitoitetaan 4) seinän suuntainen sideraudoitus sekä 6) terästapit vaakasuuntaisille voimille. 25.9.2013 1/5 Liitoksen DO501 laskentaesimerkki Esimerkissä käsitellään tyypillisten elementtien mittojen mukaista liitosta. Oletetaan liitoksen liittyvän tavanomaiseen asuinkerrostaloon. Mitoitustarkastelut

Lisätiedot

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

2.1. Bijektio. Funktion kasvaminen ja väheneminen ******************************************************** .. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää

Lisätiedot

RTA-, RWTL- ja RWTS-nostoAnkkurit

RTA-, RWTL- ja RWTS-nostoAnkkurit RTA-, RWTL- ja RWTSnostoAnkkurit Eurokoodien mukainen suunnittelu RTA-, RWTL- ja RWTS-nostoAnkkurit 1 TOIMINTATAPA...2 2 RTA-NOSTOANKKUREIDEN MITAT...3 2.1 RTA-nostoankkureiden mitat ja toleranssit...3

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Luu 2 Disreettiaiaiset järjestelmät - aiataso DEE- Lineaariset järjestelmät Risto Mionen 6.9.26 Diseettiaiainen vs jatuva-aiainen Jatuvan signaalin u(t) nätteistäminen disreetisi

Lisätiedot

PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU

PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU Timo Ollila 011 Oulun seuun ammattioreaoulu PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU Timo Ollila Opinnäytetyö 14.4.011 Raennusteniian oulutusohjelma Oulun seuun

Lisätiedot

NAULALIITOSTEN MITOITUS

NAULALIITOSTEN MITOITUS NAULALIITOSTEN MITOITUS Sisällysluettelo 1 Yleistä... Esiporaus... 3 Materiaalit... 4 Kuormitustapa...3 5 Leiausrasitettu naula...4 5.1 Puutavara-puutavara -liitos...4 5. Kerto-Kerto -liitos...5 5.3 Kerto-Puutavara

Lisätiedot

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan

Lisätiedot

ESIMERKKI 3: Nurkkapilari

ESIMERKKI 3: Nurkkapilari ESIMERKKI 3: Nurkkapilari Perustietoja: - Hallin 1 nurkkapilarit MP10 ovat liimapuurakenteisia mastopilareita. 3 Halli 1 6000 - Mastopilarit on tuettu heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.

Lisätiedot

PiiMat - teräskuitubetonit

PiiMat - teräskuitubetonit PiiMat - teräskuitubetonit Tuotetietoa ja suunnitteluohjeita PIIMAT OY 10. lokakuuta 2013 PiiMat - teräskuitubetonit Tuotetietoa ja suunnitteluohjeita Teräskuitubetonit Teräskuitubetonilla tarkoitetaan

Lisätiedot

www.kastowin.com Sahaus. Varastointi. Ja enemmän.

www.kastowin.com Sahaus. Varastointi. Ja enemmän. Uusi KASTOwin Mestariteos sarjatuotantona www.astowin.com Sahaus. Varastointi. Ja enemmän. Enemmän uin ainutlaatuinen: Uusi KASTOwin. Kannattavan automaattisahausen asi täreintä teijää ovat: suuri leuuteho

Lisätiedot

Esimerkkilaskelma. Liimapuuristikon liitos murtorajatilassa ja palotilanteessa R60 (täysin suojattu liitos)

Esimerkkilaskelma. Liimapuuristikon liitos murtorajatilassa ja palotilanteessa R60 (täysin suojattu liitos) Esimerilaselma Liimapuuristion liitos murtorajatilassa ja palotilanteessa R60 (täysin suojattu liitos) 8.5.014 3.9.014 MRT mitoitus Sisällysluettelo 1 LÄHTÖTIEDOT... - 3 - KUORMAT... - 3-3 MATERIAALI...

Lisätiedot

BY 211 Osa 2 KORJAUSSIVU 1. PAINOKSEEN (v. 2015)

BY 211 Osa 2 KORJAUSSIVU 1. PAINOKSEEN (v. 2015) by 11 Betonirakenteiden suunnittelu 014 osa BY 11 Osa KORJAUSSIVU 1. PAINOKSEEN (. 015) s.3 Teksti 6..4. Kaistamenetelmä - kaistat ottaat pituusakselinsa suunnassa ain taiutus- ja leikkausrasituksia, mutta

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

HauCon perustusmuotti

HauCon perustusmuotti HauCon perustusmuotti Anturamuottijärjestelmä Recostal ES Mittatilauksena, paikalleen jäävä muottijärjestelmä joka on itsetukeva 1m asti. ES anturaleveys = > 1,20 m. Anturamuottijärjestelmä Recostal FS

Lisätiedot

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa.

Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. LAATTAPALKKI Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. Laattapalkissa tukimomentin vaatima raudoitus

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Unidrain. Yksityiskohta 1. Yksityiskohta 2. Laattojen kiinnitysmassa. Kalvo Vahvikenauha. Ruuvi. Laatoitus. Sauma. Ritilä Kehys. Sauma.

Unidrain. Yksityiskohta 1. Yksityiskohta 2. Laattojen kiinnitysmassa. Kalvo Vahvikenauha. Ruuvi. Laatoitus. Sauma. Ritilä Kehys. Sauma. itilä Kehys Malli H (mm) 300 12 700 17 800 18 900 19 1000 20 1200 22 H Tasoituskerros Viemärikaivo Valu Viemärikaivoliitäntä Aihe: akennusohje: Tasoituskerroksella varustettu betoni Päiväys : 2010-02-12

Lisätiedot

Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase)

Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase) 1. Yleistä a) Tasapainoreation yleinen muoto: a + bb f r cc + dd K c C D B èq a b, jossa d f r [X] = yhdisteen X onsentraatio a,b,c,d = yhdisteen stöiömetria (ainetaseesta) f = reationopeus eteenpäin r

Lisätiedot

TUOTTEEN NIMI EDUSTAJA/ VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 1.10.2013. Alkuperäinen englanninkielinen

TUOTTEEN NIMI EDUSTAJA/ VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 1.10.2013. Alkuperäinen englanninkielinen TUOTTEEN NIMI SERTIFIKAATTI VTT-C-10100-13 Myönnetty 1.10.2013 Alkuperäinen englanninkielinen Xella kattoelementit Xella lattiaelementit EDUSTAJA/ VALMISTAJA Xella Danmark A/S Helge Nielsen Allé 7 DK-8723

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

9 ALIKERAVA 381 AK-58 AK-69 LPA-22 259 K-8 LPA-22 LPA 314 K-27 AK-43 LPA AK-43 T-1 2:146 SAMPOLANKATU SIBELIUKSENTIE. i-21. 40 db. 40 db +68.10.

9 ALIKERAVA 381 AK-58 AK-69 LPA-22 259 K-8 LPA-22 LPA 314 K-27 AK-43 LPA AK-43 T-1 2:146 SAMPOLANKATU SIBELIUKSENTIE. i-21. 40 db. 40 db +68.10. 8 0 8. Kp 0 8. 8. LPA- :6 0--6-M60.7 8..6 6 I II.8 KESKUSTA K-8 t 7 II 0 SAMPOLANKATU...0 SIBELIUKSENTIE.. 0 öintitalo SANTANIITYNKUJA Santaniitynuja 8 8.6 8. 8 AK-6 8 SANTANIITYNKUJA pp/t LPA 0 AK- 7

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde SYMBOLILUETTELO a [/s ] ihisen käveystä aiheutuva askettu kiihtyvyys x [] huoneen suurin eveys- tai pituus [] attian eveys eff [] attian värähteevän osan tehoinen eveys e=,78 [-] Neperin uku s [] attiapakkien

Lisätiedot

EPOP Kevät

EPOP Kevät EPOP Kevät 2012 16.1.2012 Projeti 1 Muutosilmiöt Piirianalyysi 1:ssä äsitellyt tasa- ja vaihtovirta-analyysit ovat jatuvan tilan menetelmiä, joissa oletetaan, että piirin herätteet (riippumattomat lähteet)

Lisätiedot

R-STEEL LENKKI EuRoKoodIEN mukainen SuuNNITTELu

R-STEEL LENKKI EuRoKoodIEN mukainen SuuNNITTELu R-STEEL LENKKI Eurokoodien mukainen suunnittelu R-STEEL LENKKI 1 R-STEEL LENKIN TOIMINTATAPA... 2 2 R-STEEL LENKIN MITAT JA MATERIAALIT... 4 2.1 R-Seel Lenkin mitat... 4 2.2 R-Steel Lenkin materiaalit

Lisätiedot

PILARIANTURAN A 3 MITOITUS 1

PILARIANTURAN A 3 MITOITUS 1 PILARIANTURAN A 3 MITOITUS 1 SINISELLÄ MERKITYT KOHDAT TÄYTETÄÄN Pilarin mitoituslaskelmista = 148,4kN Geo Pd Ant. ² maa Pilari BETONI TERÄS kn/m² kn kn m²~ kn m C8/35- A500HW 100 148,4 13,099 1,8 1,4

Lisätiedot

RAKENNUSTEKNIIKKA Olli Ilveskoski 20.08.2006

RAKENNUSTEKNIIKKA Olli Ilveskoski 20.08.2006 CONCRETE RESIDENTIAL HOUSES PIENTALON TERÄSBETONIRUNKO https://www.virtuaaliamk.fi/opintojaksot/030501/1069228479773/11 29102600015/1130240838087/1130240901124.html.stx Ks Esim opintojaksot: Rakennetekniikka,

Lisätiedot

TKK/ Sillanrakennustekniikka Rak SILLAT JA PERUSTUKSET (4op) TENTTI Tenttipaperiin: Sukunimi, etunimet, op.

TKK/ Sillanrakennustekniikka Rak SILLAT JA PERUSTUKSET (4op) TENTTI Tenttipaperiin: Sukunimi, etunimet, op. TKK/ Sillanrakennustekniikka Rak-.07 SIAT JA PERUSTUKSET (4op) TENTTI 9.5.008 Tenttipaperiin: Sukunii, etuniet, op. kirjan nro, vsk. Selosta itä tarkoitetaan seuraavilla siltatereillä tai niityksillä:

Lisätiedot

1 Maanvaraisen tukimuurin kantavuustarkastelu

1 Maanvaraisen tukimuurin kantavuustarkastelu 1 Maanvaraisen tukiuurin kantavuustarkastelu Oheinen tukiuuri on perustettu hiekalle φ = 5 o, γ s = 18 /. Muurin takana on soratäyttö φ = 8 o, γ s = 0 / Pintakuora q = 10 /. Mitoita tukiuurin peruslaatan

Lisätiedot

NUMMELAN CITYMARKETIN LAAJENNUKSEN LIIKENTEELLISET VAIKUTUKSET

NUMMELAN CITYMARKETIN LAAJENNUKSEN LIIKENTEELLISET VAIKUTUKSET T UMM TYMKT UKS KTST VKUTUKST ähtöohdat uelan ityaret laajenee noin errosneliöetrin uudella liietilalla aajennus johtaa uutosiin pysäöinnin järjestelyissä Uusia pysäöintipaioja ei uitenaan tule uin yenunta

Lisätiedot

Maanvaraisen kuitubetonilattian suunnittelu. Maanvaraisen kuitubetonilattian suunnittelu

Maanvaraisen kuitubetonilattian suunnittelu. Maanvaraisen kuitubetonilattian suunnittelu Dipl. ins. Teuvo Meriläinen Aaro Kohonen Oy NT-112 Teräskuitubetonin suunnitteluohje Kuitutyypit Virtuaalikuidun käsite Jäännöslujuuskerroin (R-luku) Laatuvaatimusten merkintä Pistekuormien vaikutus lattiaan

Lisätiedot

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004.

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT Koooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. SISÄLTÖ YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT 1. PUSTIDN SOVLTAMINN...

Lisätiedot

HalliPES 1.0 OSA 14: VOIMALIITOKSET

HalliPES 1.0 OSA 14: VOIMALIITOKSET HalliPES 1.0 OSA 14: VOIMALIITOKSET 28.4.2015 1.0 JOHDANTO Tässä osassa esitetään primäärirungon voimaliitosia ja niien mitoitusohjeita. Voimaliitoset mitoitetaan tapausohtaisesti määräävän uormitusyhistelmän

Lisätiedot

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY YLEISTÄ Kaivanto mitoitetaan siten, että maapohja ja tukirakenne kestävät niille kaikissa eri työvaiheissa tulevat kuormitukset

Lisätiedot

Muurattavat harkot. SUUNNITTELUOHJE 2016 Eurokoodi 6. (korvaa 19.1.2016 ohjeen)

Muurattavat harkot. SUUNNITTELUOHJE 2016 Eurokoodi 6. (korvaa 19.1.2016 ohjeen) Muurattavat harkot SUUNNITTLUOHJ 2016 urokoodi 6 (korvaa 19.1.2016 ohjeen) SISÄLTÖ 1. Yleistä, Lakka muurattavat harkot s. 3 2. Tekniset tiedot s. 3 3. Mitoitustaulukot s. 4 3.1 Mitoitusperusteet s. 4

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot