DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS

Koko: px
Aloita esitys sivulta:

Download "DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS"

Transkriptio

1 DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS RYHMÄ P8 Marita Intonen toukokuu 2002

2 A. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...1 LÄMMITTÄMISEN, JÄÄHDYTTÄMISEN JA PURISTUKSEN VAIKUTUKSET AINEIDEN OMINAISUUKSIIN, AINEIDEN JA ILMIÖIDEN LUOKITTELU JA TUNNISTUS...1 A1. Kiinteän aineen laajeneminen...1 A2. Nesteen laajeneminen...1 A3. Kaasun laajeneminen A4. Kaasun laajeneminen A5. Lämmittäminen aiheuttaa kiinteän aineen muuttumisen nesteeksi...2 A6. Lämmittäminen aiheuttaa nesteen muuttumisen kaasuksi...2 A7. Aineen laajeneminen/kutistuminen olomuodon muuttuessa...2 A8. Puristuksen vaikutuksia kiinteän aineen ominaisuuksiin...2 A9. Puristuksen vaikutuksia nesteen ominaisuuksiin...3 A10. Puristuksen vaikutuksia kaasun ominaisuuksiin...3 A11.Puristaminen aiheuttaa kiinteän aineen muuttumisen nesteeksi...3 A12. Puristaminen aiheuttaa kaasun muuttumisen nesteeksi...3 MISTÄ LÄMPIMÄN JA KYLMÄN AISTIMUS AIHEUTUU...3 A13. Ihminen aistii ihonsa lämpötilan...3 A14. Lämpötilaerot...4 A15. Materiaalin vaikutus lämpöaistimukseen...4 TASAPAINOTILA JA TILANMUUTTUJIEN PERUSHAHMOTUS...4 A16. Kappaleiden lämpötilaerojen tasoittuminen...4 A17. Kappaleiden puristustilojen tasoittuminen...4 A18. Termodynaaminen systeemi A19. Termodynaaminen systeemi OLOMUODON MUUTOKSET...5 A20. Haihtuminen...5 A21. Veden olomuodon muutokset...5 A22. Sublimoituminen...5 A23. Härmistyminen...6 A24. Puristuksen vaikutus olomuodon muutoksiin A25. Puristuksen vaikutus olomuodon muutoksiin TIHEYDEN, PAINEEN, ILMANPAINEEN JA NOSTEEN PERUSHAHMOTUS...6 A26. Tiheyden perushahmotus...6 A27. Tiheyden esikvantifiointi...6 A28. Puristustilojen eron vaikutus voimiin A29. Puristustilojen eron vaikutus voimiin A30. Nosteen perushahmotus...7 A31. Kelluminen ja sen riippuvuus kappaleen muodosta...7 A32. Kelluminen ja sen riippuvuus nesteestä...7 B. KVANTIFIOINTI JA KVANTITATIIVISET KOKEET...8 TIHEYS...8 B1. Tiheyden kvantifiointi...8 PAINE...10 A33. Perushahmotus...10 B2. Esikvantifiointi...10 B3. Kvantifiointi...10 HYDROSTAATTINEN PAINE...12 A34. Perushahmotus...12

3 B4. Kvantifiointi...13 NOSTE...14 B5. Kvantifiointi...14 ILMANPAINE...16 B6. Ilmanpaineen määrittäminen...16 KYLLÄISEN HÖYRYN PAINE...17 A35. Perushahmotus A36. Perushahmotus B7. Esikvantifiointi...17 LÄMPÖTILA...18 B8. Kvantifiointi...18 LÄMPÖTILAKERTOIMET...19 B9. Pituuden lämpötilakertoimen kvantifiointi...19 KAASUJEN TILANYHTÄLÖT: BOYLEN LAKI, CHARLESIN LAKI, GAY-LUSSACIN LAKI ABSOLUUTTINEN LÄMPÖTILA...21 B10. Boylen laki: paineen riippuvuus tilavuudesta vakiolämpötilassa...21 B11. Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa...22 B12. Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa...24 LAKIEN YHDISTÄMINEN...26 C. STRUKTUROINTIA...27 PROSESSIN KUVAUS...28 KÄSITTEENMUODOSTUS...29

4 A. Perushahmotus ja esikvantifiointi Lämpöopissa tutkitaan lämmittämisen, jäähdyttämisen ja puristuksen vaikutuksia aineiden ominaisuuksiin. Kappaleet lämpenevät ja jäähtyvät, laajenevat ja kutistuvat, kun ympäristön lämpötila tai paine muuttuvat. Aineen olomuoto voi myös muuttua. Lämpöopissa tarkasteltavaa kohdetta sanotaan termodynaamiseksi systeemiksi. Systeemi on vuorovaikutuksessa ympäristönsä (olosuhteiden) kanssa. Lämmittämisen, jäähdyttämisen ja puristuksen vaikutukset aineiden ominaisuuksiin, aineiden ja ilmiöiden luokittelu ja tunnistus. Lämmittäminen yleensä suurentaa aineen tilavuutta, voi aiheuttaa kiinteän aineen muuttumisen nesteeksi tai nesteen muuttumisen kaasuksi. Jäähdyttäminen aiheuttaa päinvastaiset ilmiöt. Puristaminen pienentää tilavuutta ja voi myös lämmittää. Yleisesti: kun yhtä näistä kolmesta (aineen lämpötila, puristustila tai tilavuus) muutetaan, niin toinen muista kahdesta tai ne molemmat muuttuvat myös. A1. Kiinteän aineen laajeneminen A2. Nesteen laajeneminen i Metallinen pallo ja reikälevy, kuumennusvälineet Näytetään, että huoneenlämpötilassa oleva metallipallo sopii metallilevyssä olevan reiän läpi (Kuva 1). Kuumennetaan palloa kaasupolttimen liekillä ja sovitetaan uudestaan metallilevyssä olevaan reikään. Havaitaan, ettei pallo enää mahdu reiästä. Kun pallo taas jäähtyy, se sopii. on näyttää, että kiinteä aine laajenee lämmitettäessä ja kutistuu jäähtyessään. Kuva 1 Kolme lämpömittarin aihiota, paloöljyä, spriitä ja vettä, väriainetta, vesihaude Otetaan kolme lämpömittarin aihiota, joista ensimmäisessä on värjättyä vettä, toisessa värjättyä spriitä ja kolmannessa värjättyä paloöljyä. Merkitään tussilla viiva nestepintojen yläreunoihin. Upotetaan lämpömittarin aihiot kuumaan veteen ja merkitään nesteen uusi yläpinta. Nostetaan aihiot pois vesihauteesta ja tarkastetaan tilanne hetken kuluttua. on näyttää, että nesteet laajenevat lämmetessään ja kutistuvat jäähtyessään. Samalla voidaan alustavasti hahmottaa eri nesteiden erilaista laajenemista. A3. Kaasun laajeneminen 1 ii kaksi samanlaista ilmapalloa, hiustenkuivain, pakastin Kaksi samanlaista ilmapalloa puhalletaan yhtä täyteen. Toinen viedään pakastimeen ja toista lämmitetään varovasti hiustenkuivaajalla. Havaintojen 1

5 A4. Kaasun laajeneminen 2 tekemisen jälkeen ilmapallot jätetään huoneenlämpöön ja vertaillaan niitä uudelleen hetken kuluttua. on näyttää, että kaasut laajenevat lämmetessään ja kutistuvat jäähtyessään. Kylmempi pallo on pienempi tai löysempi. Huoneenlämpöiset pallot ovat taas saman kokoisia. Huomioita: keittopullo, keitinlasi, ilmapallo, vettä, kuumennusvälineet Pingotetaan tyhjä ilmapallo pienen tyhjän keittopullon suulle. Keittopullo laitetaan keitinlasiin, jossa on vettä, jota kuumennetaan (Kuva 2). on näyttää, että kaasut laajenevat lämmetessään ja kutistuvat jäähtyessään. Ilman lämmetessä tyhjä ilmapallo täyttyy ja jäähtyessä ilmapallo taas tyhjenee. Keittopullon ja lämpötilaeron pitää olla riittävän suuria, jotta ilmapallo laajenisi tarpeeksi. Kuva 2 A5. Lämmittäminen aiheuttaa kiinteän aineen muuttumisen nesteeksi uudenvuoden tina, kauha, kuumennusvälineet, vesiastia Kuumennetaan tinaa kauhassa, jolloin se muuttuu nesteeksi. Kaadetaan nestemäinen tina kylmään veteen, jolloin se muuttuu jälleen kiinteäksi. on näyttää, että lämmittäminen voi aiheuttaa kiinteän aineen muuttumisen nesteeksi ja jäähdyttäminen aiheuttaa päinvastaisen ilmiön. A6. Lämmittäminen aiheuttaa nesteen muuttumisen kaasuksi tislauslaitteisto Kuumennetaan vettä tislauslaitteistossa, jolloin vesi lämpenee ja muuttuu vesihöyryksi. Jäähdyttimessä vesihöyry muuttuu nesteeksi. on näyttää, että lämmittäminen voi aiheuttaa nestemäisen aineen muuttumisen kaasuksi ja jäähdyttäminen aiheuttaa päinvastaisen ilmiön. A7. Aineen laajeneminen/kutistuminen olomuodon muuttuessa iii metallinen kanisteri, jossa on metallikorkki, vettä, kuumennusvälineet Laitetaan kanisterin pohjalle vettä ja lämmitetään kanisteria niin, että vesi kiehuu. Tämän jälkeen korkki suljetaan ja kanisterin annetaan jäähtyä. Kanisteriin jäänyt vesihöyry muuttuu nesteeksi ja kanisteri puristuu kasaan. on näyttää, että aineen olomuodon muuttuessa se laajenee/kutistuu. A8. Puristuksen vaikutuksia kiinteän aineen ominaisuuksiin Kouluvälineillä on vaikeaa havaita muutoksia, kun kiinteän aineen puristustilaa muutetaan. 2

6 A9. Puristuksen vaikutuksia nesteen ominaisuuksiin muoviruisku, kuumaa vettä Otetaan muoviruisku puolilleen kuumaa vettä. Suljetaan sormella ruiskun pää ja vedetään mäntää ulospäin. Tarkkaillaan vettä. on havaita, että vesi alkaa kuplia (kiehua). Paineen pienentäminen alentaa lämpötilaa, jossa neste kiehuu. A10. Puristuksen vaikutuksia kaasun ominaisuuksiin iv Työn suoritus polkupyörän pumppu Painetaan polkupyörän pumpun mäntää voimakkaasti ja samalla estetään ilmaa pääsemästä pumpusta esim. sormella painamalla. Tunnustellaan pumpun ulkopintaa. on näyttää, että puristaminen pienentää tilavuutta ja lämmittää. A11.Puristaminen aiheuttaa kiinteän aineen muuttumisen nesteeksi Huomioita: Suorakulmaisen särmiön muotoinen jääpala, punnus, metallilankaa Jääpala tuetaan molemmista päistään esim. kahden pöydän väliin. Jään ympärille laitetaan ohut metallilanka ja suuri punnus laitetaan roikkumaan langan varaan painoksi. Lanka menee jään läpi ja lanka on senkin jälkeen yhtenäinen kimpale. on näyttää, että puristaminen voi aiheuttaa kiinteän aineen muuttumisen nesteeksi ja puristamisen lakkaaminen aiheuttaa päinvastaisen ilmiön. Ulkopuolisten tekijöiden poistaminen vaatisi oikeastaan työn tekemistä pakkasessa. A12. Puristaminen aiheuttaa kaasun muuttumisen nesteeksi nestekaasupullo (kerrottu empiria) Ravistellaan nestekaasupulloa ja loiskumisesta huomataan, että sen sisällä on nestettä. Kuitenkin pullosta tulee ulos kaasua. on näyttää, että puristaminen voi aiheuttaa kaasun muuttumisen nesteeksi ja puristamisen lakkaaminen aiheuttaa päinvastaisen ilmiön. Mistä lämpimän ja kylmän aistimus aiheutuu Ihminen aistii ihonsa lämpötilan. Koskettamalla voimme tuntea, että esim. vesi on kylmää, viileää, lämmintä tai kuumaa. Aineella on jokin ominaisuus, joka aiheuttaa erilaisia lämpöaistimuksia. Ihoa koskettava kappale muuttaa ihon lämpötilaa, mutta myös iho muuttaa kappaleen lämpötilaa. Esimerkiksi kuuma puu tai ilma jäähtyy ihoa koskettavalta osaltaan nopeasti, eikä polta, mutta kuuma vesi tai metalli polttaa. A13. Ihminen aistii ihonsa lämpötilan v Kylmä, kuuma ja haalea vesi, astiat Pidetään ensin toista kättä kylmässä ja toista kuumassa vedessä ja kastetaan sitten molemmat samaan haaleaan veteen. 3

7 A14. Lämpötilaerot on havaita kylmän ja lämpimän tuntemukset sekä alustavasti se, että tuntoaistin perusteella ei kuitenkaan voida sanoa, kuinka kylmää tai lämmintä jokin aine on. Tätä varten tarvitaan jokin uusi suure, sekä väline, jolla mittaus voidaan tehdä. metallipallo Jäähdytetään metallipallo esim. jääkaapissa ja otetaan se sieltä käteen. Puristetaan pallo nyrkin sisään. on havaita, että ihoa koskettava kappale muuttaa ihon lämpötilaa, mutta myös iho muuttaa kappaleen lämpötilaa. Käden ja pallon lämpötilat tasoittuvat. A15. Materiaalin vaikutus lämpöaistimukseen löylykauha, sauna (kerrottu empiria) Tutkitaan, miltä metallisen, puuvartisen kuuman löylykauhan eri osat tuntuvat on havaita, että kuuma metalli polttaa ihoa enemmän kuin saman lämpöinen puu. Lämpöenergia johtuu metallista käteen nopeammin kuin puusta käteen. Tasapainotila ja tilanmuuttujien perushahmotus A16. Kappaleiden lämpötilaerojen tasoittuminen Kuten työ A5 Kuten työ A5 on huomata, että jos erilämpöisiä kappaleita asetetaan toistensa kanssa kosketuksiin, ne ennen pitkää saavuttavat saman lämpötilan A17. Kappaleiden puristustilojen tasoittuminen Ilmapallo Puhalletaan ilmapallo täyteen, jolloin sen sisällä on suurempi ilman puristustila kuin ympäristössä. Avataan ilmapallon suu, jolloin ilma purkautuu pois. on huomata, että jos puristustilaltaan erilaiset kaasut asetetaan toistensa kanssa kosketuksiin, niiden puristustilat tasoittuvat. A18. Termodynaaminen systeemi 1 Vesilasi, vettä, jääpaloja, kalorimetri Laitetaan vettä ja jääpaloja lasiin suljettavaan kalorimetriin. Tarkkaillaan tulosta jonkin ajan kuluttua. on havainnollistaa, että jääpalat ja lasissa oleva vesi ovat systeemi, joka hakeutuu termiseen tasapainotilaan, jossa sen ominaisuudet pysyvät muuttumattomina. 4

8 A19. Termodynaaminen systeemi 2 Termospullo, vettä, jäätä Laitetaan vettä ja runsaasti jäätä termospulloon. Suljetaan pullo ja tutkitaan tilannetta hetken kuluttua. on havainnollistaa, että tasapainotilassa voi esiintyä samalla kertaa eri olomuotoja: jäätä, vettä sekä vesihöyryä. Töiden perusteella havaitaan, että aineen lämpötilan muuttaminen, puristustilan muuttaminen ja tilavuuden muuttaminen vaikuttavat toisiinsa. Määritellään nämä aineen tilanmuuttujiksi ja kutsutaan tilannetta, jossa ne eivät muutu systeemin tasapainotilaksi. Olomuodon muutokset Olomuodon muutoksia ovat: sulaminen, jähmettyminen, höyrystyminen, tiivistyminen, sublimoituminen ja härmistyminen. Aineen olomuotoa voidaan muuttaa lämmittämällä tai jäähdyttämällä. Myös paine vaikuttaa olomuodon muutospisteeseen. A20. Haihtuminen alkoholia, vettä, käsi Tiputetaan kämmenselälle muutama pisara alkoholia ja toiselle kämmenselälle muutama pisara vettä. Tarkkaillaan. on huomata, että alkoholi haihtuu nopeasti. Samalla voidaan havainnoida kylmän tuntemusta kämmenselässä ja todeta, että aineet haihtuvat eri nopeuksilla. A21. Veden olomuodon muutokset jäätä, tislauslaitteisto, kuumennusvälineet, pakastin Kuumennetaan tislauspullossa olevaa jäätä, kunnes se sulaa. Jatketaan kuumentamista kunnes vesi höyrystyy ja kulkeutuu jäähdyttimeen, jossa se tiivistyy vedeksi. Kerätään jäähdyttimestä saatava vesi astiaan ja pakastetaan se. on havainnollistaa veden sulaminen, höyrystyminen tiivistyminen ja jähmettyminen. Myös molemmat höyrystymistavat: haihtuminen ja kiehuminen ovat havaittavissa. Olomuodon muuttaminen vaatii lämmittämistä tai jäähdyttämistä. A22. Sublimoituminen märkä lakana, pakkanen (kerrottu empiria) Ripustetaan märkä lakana pakkasella ulos kuivumaan. Lakana jäätyy. Muutaman päivän kuluttua lakana on kuiva. on havainnollistaa olomuodon muutosta suoraan kiinteästä kaasuksi. 5

9 A23. Härmistyminen ihminen (esim. parrakas mies), pakkanen (kerrottu empiria) Pakkasella ulos hengitetty vesihöyry härmistyy kuuraksi. on havainnollistaa olomuodon muutosta suoraan kaasusta kiinteäksi. A24. Puristuksen vaikutus olomuodon muutoksiin 1 Huomioita: virvoitusjuomapullo, pakastin Virvoitusjuoma, joka pakastimesta otettuna on vielä nestettä, jäätyy äkkiä kun pullo avataan ja puristustila pienenee. on havainnollistaa, että puristustila voi vaikuttaa olomuodon muutokseen. Vesi käyttäytyy puristustilan muuttuessa eri tavalla kuin muut aineet. Muilla aineilla sulamispiste laskee, kun puristustila pienenee. A25. Puristuksen vaikutus olomuodon muutoksiin 2 keitinlasi, vettä, tyhjöpumppu Laitetaan huoneenlämpöistä vettä keitinlasiin ja keitinlasi tyhjöpumpun kuvun alle. Poistetaan ilma pumppaamalla Vesi alkaa kiehua. on havainnollistaa, että puristustilan muutos vaikuttaa aineen olomuodon muutokseen. Tiheyden, paineen, ilmanpaineen ja nosteen perushahmotus A26. Tiheyden perushahmotus samankokoiset styroksikuutio ja metallikuutio Punnitaan kädessä samankokoisia styroksi ja metallikuutioita ja huomataan niiden tuntuvan eri painoisilta. on havainnollistaa eri materiaalista valmistettujen kappaleiden erilaista massaa. A27. Tiheyden esikvantifiointi kuutioita: esim. puu, alumiini, rauta, messinki, vaaka Punnitaan kuutioita, sekä sama koko/eri aine että sama aine/eri koko. on huomata, että suurempi tilavuus jotain ainetta on, sitä suurempi on ainemäärän massa. Toisaalta samankokoisilla eriaineisilla kappaleilla on eri massa. A28. Puristustilojen eron vaikutus voimiin 1 ruisku Vedetään ruiskun mäntä auki. Painetaan sormi ruiskun suulle ja työnnetään mäntää sisäänpäin. on havainnollistaa puristustilan kasvamisen aiheuttamia voimia. Mitä syvemmälle mäntä halutaan painaa, sitä enemmän voimaa tarvitaan ruiskun painamiseen. 6

10 A29. Puristustilojen eron vaikutus voimiin 2 A30. Nosteen perushahmotus vi Magdeburgin puolipallot, tyhjöpumppu Asetetaan puolipallot vastakkain. Imetään ilma tyhjöpumpulla pois pallon sisältä. Yritetään irrottaa puolipalloja toisistaan vetämällä eri suuntiin (Kuva 3). on havainnollistaa miten suuren voiman puristustilojen ero voi synnyttää. Kuva 3 kappale, jousivaaka, vesiastia Mitataan kappaleen paino ilmassa, osittain vedessä ja vedessä eri syvyyksillä. on havaita, että mitä suurempi osa kappaleesta on veden alla, sitä pienempi on paino. Kun kappale on kokonaan veden alla, paino ei riipu siitä, miten syvällä kappale on. On siis olemassa jokin ylöspäin suuntautuva voima, jota kutsutaan nosteeksi. A31. Kelluminen ja sen riippuvuus kappaleen muodosta Huomioita: sinitarraa, vesiastia Muovataan sinitarraa eri muotoiseksi, kunnes löydetään muoto, jossa sinitarra kelluu. on havainnollistaa kappaleen muodon vaikutusta kellumiseen. Noste riippuu kappaleen muodosta. Sopivanmuotoinen (venemäinen) sinitarrapalan kellumiseen vaikuttaa tietysti myös sen sisällä oleva ilma. A32. Kelluminen ja sen riippuvuus nesteestä uimari, suolainen ja makea vesi (kerrottu empiria) Uimarin on helpompi kellua suolaisessa (esim. Kuollut Meri) kuin makeassa vedessä on havainnollistaa erilaisten nesteiden vaikutusta kellumisen 7

11 B. Kvantifiointi ja kvantitatiiviset kokeet Tiheys B1. Tiheyden kvantifiointi vii vaaka, mittalasi, eri ainetta olevia kappaleita (esim. puu, metalli, muovailuvaha) ja nesteitä (esim. vesi, suolaliuos, alkoholi) Tehdään sarja kokeita, jossa määritetään samanaineisten, erikokoisten kappaleiden tilavuus ja massa. Esitetään tulokset jokaiselle aineelle erikseen (V,m) koordinaatistossa. Havaitaan, että mittauspisteet asettuvat (V,m) koordinaatistossa suoralle. Suorat ovat jyrkkyydeltään erilaisia. Suoran jyrkkyys, eli fysikaalinen kulmakerroin ρ=m/v, on kutakin ainetta kuvaava, sille ominainen suure, tiheys. Mitä jyrkempi suora, sitä suurempi on aineen tiheys. Kiinteinä aineina käytimme puuta, alumiinia ja kuparia (Taulukko 1). Puu- ja kuparikappaleet olivat kuutioita, joten niiden tilavuuden määritimme mittaamalla. Alumiinikappaleiden tilavuus määritettiin mittalasiin upottamalla (Kuva 4). Kuva 4 Kulmakertoimista (Kuvaaja 1) saimme tiheyksiksi ρ puu = 0,68 g/cm³, ρ alumiini = 2,64 g/cm³ (taulukkoarvo 2,7 g/cm³) ja ρ kupari = 9,55 g/cm³ (taulukkoarvo 8,96 g/cm³). Taulukko 1 Tiheyden kvantifiointi - Kiinteät aineet puu alumiini kupari m (g) V (cm 3 ) m (g) V (cm 3 ) m (g) V (cm 3 ) 6,4 9, ,3 13,1 18, ,6 19,4 27, ,9 25,6 37, ,2 31,9 46, ,5 8

12 Tiheyden kvantifiointi - Kiinteät aineet m (g) y = 9,5484x - 0, y = 2,6381x + 4,0554 y = 0,6828x + 0, V (cm 3 ) Kuvaaja 1 Puu Alumiini Kupari Nesteinä käytimme vettä, etanolia (Industol) ja suolavesiliuosta. Tilavuudet määritimme mittalasin avulla ja massat vaa alla (Taulukko 2). Asetimme tyhjän mittalasin digitaalivaa alle ja taarasimme sen. Kulmakertoimista (Kuvaaja 2) saimme tiheyksiksi ρ vesi = 0,99 g/cm³ (taulukkoarvo 1,00), ρ etanoli = 0,80 g/cm³ (taulukkoarvo 0,79 g/cm³) ja ρ suolavesi = 1,12 g/cm³. Taulukko 2 Tiheyden kvantifiointi - Nesteet vesi etanoli suolavesi m (g) V (cm 3 ) m (g) V (cm 3 ) m (g) V (cm 3 )

13 Tiheyden kvantifiointi - Nesteet m (g) y = 1,1214x - 1,1054 y = 0,9899x - 1,792 y = 0,7979x - 0,5298 Vesi Etanoli Suolavesi V (cm3) Kuvaaja 2 Huomioita: Kiinteiden kappaleiden tilavuus määritettiin viivaimella mittaamalla ja siitä laskemalla. Ehkä olisimme saaneet parempia tuloksia työntömittaa käyttämällä. Erityisesti kuparin tiheys poikkeaa taulukkoarvosta. Paine A33. Perushahmotus terottamaton (tasapaksu) lyijykynä, terävä lyijykynä Pistetään tasapaksu kynä etusormien väliin ja puristetaan sitä kevyesti ja voimakkaammin. Pistetään toisesta päästä terotettu kynä etusormien väliin ja puristetaan sitä. on havaita omin aistein, miten tuntemus sormenpäissä muuttuu, kun kosketuspinta-ala ja voima muuttuvat. B2. Esikvantifiointi viii Yhteen kytketyt eripaksuiset ruiskut. Yhdistetään kaksi eripaksuista vedellä täytettyä ruiskua letkulla toisiinsa ja painetaan molempia mäntiä samanaikaisesti. Havaitaan, että suurempaa mäntää on painettava suuremmalla voimalla, jotta se pysyisi paikallaan. Todetaan, että voiman suurentaminen suurentaa painetta, vakiopaineen aiheuttama voima riippuu pinta-alasta. B3. Kvantifiointi Yliopiston laitteisto: kulhot, kelmut ja kannet. Neljän kulhon sarja(kuva 5). Valitaan kulhoista yksi standardiksi. Laitetaan sen kannen päälle punnuksia. Kytketään vuorotellen kukin kolmesta 10 Kuva 5

14 muusta testikulhosta standardikulhon kanssa Y-letkulla yhteen ja puhalletaan letkuun. Etsitään testikulhon kannelle punnukset joilla testikulhon ja standardikulhon kannet nousevat yhtä aikaa. Muutetaan standardikulhon punnuksia ja toistetaan koesarja. Saadaan seuraavat tulokset (Taulukko 3) ja niistä kuvaajat (A,F)-koordinaatistoon (Kuvaaja 3). Taulukko 3 Paineen kvantifiointi kulho d (cm) r (cm) A (cm 2 ) 1 pienin 11,2 5, toiseksipienin 14,5 7, toiseksisuurin (standardi) 17,8 8, suurin kulho A (cm 2 ) m (g) m (g) m (g) kulho A (cm 2 ) F (N) F (N) F (N) ,2 0,4 0, ,32 0, ,5 1 1, ,6 1,25 2 2,5 2 Paineen kvantifiointi y = 0,0062x F (N) 1,5 1 y = 0,004x y = 0,002x 0, A (cm 2 ) Kuvaaja 3 Havaitaan, että mittauspisteet asettuvat (A,F)-koordinaatistossa suoralle, Suoran kulmakerroin p=f/aon kaasun puristustilaa kuvaava suure, paine. 11

15 Huomioita: Hydrostaattinen paine Kalvojen nousun silmämääräinen arviointi oli todella vaikeaa, joten laskimme ennakkoon tarvittavien painojen suuruusluokan. Työn suoritus oli hauskaa. Käytännöstä tiedetään, että syvälle sukellettaessa korvat menevät lukkoon, koska paine kasvaa. Syvänmeren tutkimuslaitteiden on kestettävä suuria paineita. Neste pyrkii oman painonsa vaikutuksesta levittäytymään, mutta astian seinämät estävät sitä ja neste aiheuttaa niihin paineen. Tätä nesteen omasta painosta aiheutuvaa painetta kutsutaan hydrostaattiseksi paineeksi. A34. Perushahmotus Korkea purkki (esim. tennispallopurkki), jossa on reikiä eri korkeuksilla, vettä Asetetaan purkki juoksevan vesihanan alle (säädetään vedentulo niin, että vesi ei valu yli) on havaita, että vesi suihkuaa pisimmälle astian alimmasta reiästä, koska veden paine kasvaa syvemmälle mentäessä (Kuva 6). Kuva 6 12

16 B4. Kvantifiointi muoviputki (1,5 m), vettä, väkevää suolaliuosta, barometri, tietokonemittausjärjestelmä (ULI ja Logger Pro) Mitataan veden painetta muoviputkessa eri syvyyksillä tietokoneen paineanturilla (barometri) kuvan (Kuva 7) mukaisesti. Toistetaan mittaukset väkevällä suolavedellä. Saadaan seuraavat tulokset (Taulukko 4). Taulukko 4 Hydrostaattisen paineen kvantifiointi vesi suolavesi h (m) p (Pa) p (Pa) , , , , , , Kuva 7 Pisteet (h,p) -koordinaatistossa asettuvat suoralle (Kuvaaja 4). Hydrostaattisen paineen kvantifiointi p (Pa) y = 10868x suolavesi vesi y = 10220x ,1 0,2 0,3 0,4 0,5 0,6 0,7 h (m) Kuvaaja 4 Saadaan laki p~h. Suoran jyrkkyys riippuu nesteen tiheydestä. Mittaustulokset suolavedessä asettuvat jyrkemmälle suoralle kuin vedessä, sillä suolaveden tiheys on suurempi. 13

17 Mittaamalla saadut tulokset voidaan selittää seuraavalla päättelyllä. Tarkastellaan nesteestä erotettua suoraa lieriötä (Kuva 8), jonka pohjan pinta-ala on A, korkeus h ja tilavuus V=Ah. Kuva 8 Nesteen tiheys m m ρ = =, jolloin lieriön massa on m = ρah. V Ah Lieriön paino voidaan ilmaista nesteen tiheyden avulla. G = mg = ρ Ahg. Lieriöön vaikuttaa sen oman painon lisäksi vain ilman ja ympäröivän nesteen paineesta aiheutuvia voimia, jotka ovat joka kohdassa sen pintaa vastaan kohtisuoria. Ilmanpaine pi painaa lieriötä alaspäin voimalla Fi = pi A. Nestelieriö painaa alustaansa voimalla F + G = p A + ρahg ja aiheuttaa siten paineen: i Fi + G pi A + ρahg p = = = pi + ρhg. Nesteessä vallitseva paine on siis A A ilmanpaineen ja hydrostaattisen paineen summa. Hydrostaattinen paine p h = ρgh riippuu vain nesteen tiheydestä ρ ja syvyydestä h ja kohdistuu yhtä suurena kaikkiin suuntiin. i Noste Nesteeseen upotetun kappaleen alapintaan vaikuttaa suurempi hydrostaattinen paine kuin yläpintaan. Noste aiheutuu tästä paine-erosta. Se riippuu vain kappaleen koosta ja muodosta, ei siitä mitä ainetta kappale on. B5. Kvantifiointi Täydennetään perushahmottavaa työtä (A30) upottamalla jousivaakaan ripustettuja tilavuudeltaan tunnettuja kappaleita erilaisiin nesteisiin (Kuva 9). Tutkitaan kappaleen painon vähenemisen riippuvuutta upotustilavuudesta (Taulukot 5-7). 14 Kuva 9

18 Taulukko 5 Taulukko 6 Nosteen kvantifiointi Neste: vesi alumiini kupari V(cm 3 ) F(N) ilma F(N) vesi F (N) V(cm 3 ) F(N) ilma F(N) vesi F (N) 17 0,50 0,30 0, ,65 1,45 0, ,00 0,60 0, ,25 2,90 0, ,50 0,90 0, ,00 4,35 0, ,95 1,20 0, ,50 5,90 0, ,40 1,55 0, ,20 7,30 0,90 Nosteen kvantifiointi Neste: ruokaöljy alumiini kupari V(cm 3 ) F(N) ilma F(N) ruokaöljy F (N) V(cm 3 ) F(N) ilma F(N) ruokaöljy F (N) 17 0,50 0,30 0, ,65 1,50 0, ,00 0,65 0, ,25 2,93 0, ,50 0,95 0, ,00 4,40 0, ,95 1,25 0, ,50 5,95 0, ,40 1,59 0, ,20 7,40 0,80 Taulukko 7 Nosteen kvantifiointi Neste: alkoholi alumiini kupari V(cm 3 ) F(N) ilma F(N) etanoli F (N) V(cm 3 ) F(N) ilma F(N) etanoli F (N) 17 0,50 0,35 0, ,65 1,55 0, ,00 0,70 0, ,25 2,95 0, ,50 1,00 0, ,00 4,45 0, ,95 1,30 0, ,50 6,00 0, ,40 1,70 0, ,20 7,45 0,75 Todetaan, että F~V, ei riipu kappaleen aineesta. Sen sijaan se riippuu nesteestä (Kuvaaja 5). 15

19 Nosteen kvantifiointi - riippumattomuus aineesta F (N) 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 y = 0,0096x + 0,0626 y = 0,0092x + 0,045 y = 0,0091x + 0,0491 y = 0,0085x + 0,025 y = 0,0084x + 0,023 y = 0,0083x - 0,01 alumiini (vesi) kupari (vesi) alumiini (etanoli) kupari (etanoli) alumiini (ruokaöljy) kupari (ruokaöljy) 0, V (cm3) Kuvaaja 5 Havaitaan että verrannollisuuskerroin on nesteen tiheys Arkhimedeen laki: Nesteessä tai kaasussa olevaan kappaleeseen vaikuttava noste on yhtä suuri kuin kappaleen syrjäyttämän neste- tai kaasumäärän paino. Huomioita: Jouduimme käyttämään mittauksissa kolmea eri jousivaakaa, mittaustarkkuus siis vaihtelee. Upottaminen oli hankalaa, koska tarpeeksi suurta mittalasia oli vaikea löytää. Punnukset koskettivat mittalasin seinämiä. Mittaustulokset eivät siis ole kovin hääppöisiä. Ilmanpaine Ilmanpaineen aiheuttaa ilmakehän ilman paino. B6. Ilmanpaineen määrittäminen jousivaaka tai voimamittari, ruisku Vedetään jousivaa'alla mäntä ulos ensin avoimesta ruiskusta., jolloin voima on männän kitkavoima. Tukitaan ruisku ja toistetaan koe (Kuva 10). Tällöin voima on kitkavoima + ilmanpaineen mäntään kohdistama voima. 16 Kuva 10

20 F tukittu =17N F avoin = 5,5 N r = 0,006 m P = F A = F tukittu F ÿr 2 avoin = 17 N 5,5 N ÿ ( 0,006 m) kpa Kylläisen höyryn paine Veden pinnasta haihtuu vettä vesihöyryksi pinnan päällä olevaan ilmaan. Samalla myös vesihöyryä tiivistyy takaisin vedeksi. Tiivistyminen on sitä voimakkaampaa, mitä enemmän vesihöyryä ilman yläpuolella on. Kun astia on avoin, vesihöyry kulkeutuu pois. Kun astia peitetään kannella, vesihöyryn määrä lisääntyy, kunnes tiivistyminen on yhtä nopeaa kuin haihtuminen. Tällöin ilman vesihöyry on kylläistä ja sen paine on saavuttanut arvon, jota sanotaan kylläisen vesihöyryn paineeksi. Koska tiivistyminen nyt tasapainottaa haihtumisen, tämä paine ilmaisee samalla nesteen höyrystymispyrkimyksen voimakkuuden. A35. Perushahmotus 1 kattila ja kansi, keittolevy, vettä Kuumennetaan vettä ensin kannettomassa kattilassa. Tutkitaan haihtumista. Laitetaan sitten kattilan päälle kansi ja tutkitaan eroa. on havainnollistaa, että haihtuminen ja tiivistyminen ovat vastakkaisia prosesseja, jotka pyrkivät tasapainottamaan toisensa. A36. Perushahmotus 2 aerosolipullo (kertova empiria) Ravistellaan aerosolipulloa, kuullaan, että aine on pullossa nesteenä. Ulos suihkuava aine on kuitenkin kaasua. Suihkutetaan pullo tyhjäksi ja huomataan, että suihku on samanlainen aineen loppumiseen saakka. on huomata, että aerosolipullosta saadaan ainetta tasaisena virtana, koska aine on pullossa nesteenä, jonka höyrynpaine säilyy samana niin kauan kuin sitä on vähänkin jäljellä. Ilmeisesti nestettä kaasuuntuu niin, että paine pullossa pysyy vakiona. B7. Esikvantifiointi ruisku, lämmintä vettä, voimamittari Imetään lämmintä vettä ruiskuun ja alennetaan painetta vetämällä mäntää ulospäin, kunnes vesi kiehuu. Kiehumisen loputtua mitataan paine (mäntään kohdistuva voima, joka aiheutuu ruiskun sisäisen ja ulkoisen paineen erotuksesta). Havaitaan että ruiskussa paine > 0, joten sinne on syntynyt kaasua. Se ei ole ilmaa vaan sen on pakko olla vesihöyryä. Kun mäntä päästetään painumaan takaisin, havaitaan että vesihöyry "katoaa" (nesteytyy). 17

21 Lämpötila Aikaisemmin on havaittu, että lämpöaistin perusteella ei voida sanoa, kuinka kylmää tai lämmintä jokin aine on. Tätä varten tarvitaan suure, lämpötila, ja lämpömittari, jolla tämä suure voidaan mitata. Lämpötilan mittaaminen perustuu lämpöopin nollanteen pääsääntöön: Eristetyssä systeemissä kaikki lämpötilaerot tasoittuvat. Lämpömittariksi kelpaa periaatteessa mikä tahansa laite, jonka jokin mitattava ominaisuus riippuu lämpötilasta. Tämä ominaisuus ilmaisee silloin lämpömittarin oman lämpötilan. Lämpömittari sijoitetaan kohteeseen ja odotetaan kunnes niiden lämpötilaero on tasoittunut. Tällöin mittarin näyttämä ilmaisee myös kohteen lämpötilan. Lämpömittarin valinta riippuu tutkittavasta kohteesta, lämpötila-alueesta ja halutusta mittaustarkkuudesta. Eri lämpötiloissa voidaan käyttää hyväksi erilaisia lämpötilasta riippuvia ilmiöitä. Yleisimmin käytetään neste- ja kaksoismetallilämpömittareita, jotka perustuvat lämpölaajenemiseen. B8. Kvantifiointi Nesteen lämpölaajenemista voidaan tutkia ns. lämpömittarin aihion avulla. Otetaan kylmää vettä (a) ja kuumaa vettä (e), ja sekoitetaan niitä suhteessa 1:1. Intuitio sanoo, että seoksen (c) lämpötilan täytyy olla alkulämpötilojen keskiarvo. Vastaavasti sekoitetaan kylmää vettä (a) ja seosta (c), saadaan seosta (b). Ja vielä kuumaa vettä (e) ja seosta (c), saadaan seosta (d). Laitetaan lämpömittarin aihioon vuorotellen kuhunkin veteen (a)..(e). (Kuva11). Piirretään tussilla lämpömittarin aihion nestepatsaan korkeus jokaisessa lämpötilassa (Kuva12). Mitataan patsaiden korkeudet (Taulukko 8). Havaitaan että nestepinnan korkeuden muutos on verrannollinen lämpötilan muutokseen, t ~ h (Kuvaaja 6). Taulukko 8 Kuva 11 Lämpötilan kvantifiointi vesi h (cm) 1 6, ,8 4 8,6 5 9,5 Kuva 12 18

22 Lämpötilan kvantifiointi h (cm) vesi Kuvaaja 6 Täydellinen lämpötilan kvantifiointi vaatisi vielä peruspisteiden määrittämisen. Emme voineet tehdä tätä osiota, koska fysiikan laitoksella ei ollut käytettävissä jäitä. Voitaisiin kuitenkin todeta, että sulavaa jäätä sisältävässä seoksessa lämpömittarin mallin nestepinta asettuu aina samalle tasolle. Vastaavasti kiehuvassa vedessä nestepinta asettuu aina vakiotasolle. Tällöin yleisesti kahden peruspisteen 1 ja 2 avulla määritellyn lämpötilan t2 t1 lausekkeeksi tulee t x = ( hx h1 ). h h 2 1 Lämpötilakertoimet Eri aineiden pituudet, pinta-alat ja tilavuudet muuttuvat eri tavoin lämpötilan funktiona. B9. Pituuden lämpötilakertoimen kvantifiointi Kootaan Pascon Thermal Expansion mittauslaitteisto oheisen kuvan mukaisesti(kuva 13). Kuva 13 Metalliputki kiinnitetään alustaan ja sen läpi johdetaan virtaavaa vettä. Putken lämpötila määritetään mittaamalla yleismittarilla resistanssi ja lukemalla lämpötila laitteessa olevasta taulukosta. Pituuden muutoksen 19

23 mittari nollataan ensin käyttäen mahdollisimman kylmää vettä. Veden lämpötilaa muutetaan portaittain ja jokaisessa vaiheessa luetaan pituuden muutos. Mittaukset suoritetaan kupari, alumiini ja teräsputkilla, joiden pituudet ovat 70 cm. Saadaan seuraavat mittaustulokset (Taulukko 9): Taulukko 9 Pituuden lämpötilakertoimen määrittäminen kupari t( C) L (mm) alumiini teräs 24 0 t ( C) L (mm) t( C) L (mm) 46 0,3 20,5 0 18, ,115 30,5 0, , ,06 24,5 0,075 40,5 0, ,195 44,5 0, ,27 37,5 0, ,05 Tutkitaan, miten metalliputkien pituus muuttuu lämpötilan funktiona. Piirretään kuvaajat ( t, L)-koordinaatistoon. Saadaan seuraavat kuvaajat (Kuvaaja 7): 0,6 0,5 Pituuden lämpötilakerroin kupari alumiini teräs 0,4 L (mm) 0,3 0,2 y = 0,0187x - 0,3881 y = 0,0139x - 0,3399 y = 0,01x - 0,1892 0, t ( C) Kuvaaja 7 Koska kuvaajat ovat suoria, niin L ~ t, verrannollisuuskerroin riippuu aineesta. Jos oletetaan että putki venyy ja kutistuu tasaisesti koko mitaltaan, niin pituuden lämpötilariippuvuuden laiksi saadaan L = α L t, missä L on putken pituus alussa, t on lämpötilan muutos ja α on kyseisen aineen pituuden lämpötilakerroin. Kokeellisten mittausten lämpötilakertoimet saadaan suorien kulmakertoimista: kupari 13, (taulukkoarvo K 16, ), alumiini 18, K 6 (taulukkoarvo 23, K 6 )ja K teräs (taulukkoarvo 11, K 6 ) K 20

24 Huomioita: Veden lämpötilan säätämisessä oli ongelmia. Kylmää vettä oli lähes mahdotonta saada. Käyttämämme lämpötila-alue on siksi melko suppea. Kaasujen tilanyhtälöt: Boylen laki, Charlesin laki, Gay-Lussacin laki absoluuttinen lämpötila Kiinteiden kappaleiden ja nesteiden tilavuuksia voidaan muuttaa lämmittämällä ja puristamalla mutta vain hyvin vähän. Sen sijaan kaasut, jotka ovat yleensä paljon harvempaa ainetta, pyrkivät itsestään laajenemaan. Ne pysyvät koossa vain umpinaisessa säiliössä. Ne täyttävät säiliönsä tasaisesti ja aiheuttavat sinne tietyn paineen. Kaasua on myös helppo puristaa kokoon, jolloin sen paine nousee. Tilavuus, lämpötila ja paine ovat kaasusysteemin tilanmuuttujia. Kaksi niistä määrää kolmannen. Kaasusysteemin tilanyhtälöä voidaan tutkia vakioimalla yksi muuttuja kerrallaan ja määrittämällä kahden muun välinen riippuvuus. B10. Boylen laki: paineen riippuvuus tilavuudesta vakiolämpötilassa. Tutkitaan, miten lääkeruiskussa olevan ilman paine riippuu ruiskun tilavuudesta vakiolämpötilassa. Kytketään paineanturi letkun avulla ruiskuun (Kuva 14). Kun mäntää työnnetään sisään, säiliössä olevan ilman tilavuus pienenee ja paine kasvaa. Kun mäntää vedetään ulospäin, tilavuus kasvaa ja paine pienenee. Saadaan seuraavat tulokset (Taulukko 10) Kuva 14 Taulukko 10 Boylen laki: Paineen riippuvuus tilavuudesta vakiolämpötilassa V (ml) 1/V (1/ml) p (kpa) 20,00 0,05 97,91 15,00 0,07 123,58 12,00 0,08 150,63 10,00 0,10 175,18 7,00 0,14 237,67 5,00 0,20 313,54 4,00 0,25 379,93 Havainnollistetaan paineen ja tilavuuden välistä riippuvuutta (1/V,p) koordinaatistossa. Saadaan suora (Kuvaaja 8), joka voidaan asettaa kulkemaan origon kautta: paine on verrannollinen tilavuuden käänteisarvoon. P~1/V. 21

25 Boylen laki p (kpa) ,00 0,05 0,10 0,15 0,20 0,25 0,30 1/V (1/ml) Kuvaaja 8 Jos Boylen koe toistettaisiin korkeammassa lämpötilassa, saataisiin (1/V,p)- koordinaatistossa kuvaajaksi jyrkempi suora. B11. Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa. Upotetaan paineanturiin kytketty keittopullovesihauteeseen, jota lämmitetään uppokuumentimella. Lämpötilaa mitataan lämpötila-anturilla (Kuva 15). Mitataan umpinaisessa kaasusäiliössä olevan kaasun paine eri lämpötiloissa (Taulukko 11) ja esitetään tulokset (t,p)-koordinaatistossa (Kuvaaja 9). Kuva 15 22

26 Taulukko 11 Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa t (s) p (kpa) t ( C) 4,5 98,469 23, ,748 26, ,585 28, ,143 31, ,701 34, ,817 38, ,5 102,654 40,71 226,5 102,933 43, ,769 46, ,606 48, ,5 105,164 53, ,5 106,559 56, ,5 107,396 59, ,5 107,675 62, ,233 64,484 Charlesin laki p (kpa) t ( C) Kuvaaja 9 Mittauspisteet osuvat suoralle, joten kaasun paineen muutos on verrannollinen lämpötilan muutokseen p~ t. Yleisemmin tutkittaessa on osoittautunut, että suora on riippumaton käytetystä kaasusta.. Ekstrapoloidaan suoraa pienempiin lämpötiloihin. Jos siis kaasun jäähtyminen voisi jatkua samanlaisena, sen paine häviäisi kokonaan siinä lämpötilassa, jossa suora leikkaa lämpötila-akselin. Mittauksissamme tämä lämpötila on n C (Kuvaaja 10). 23

27 Charlesin laki, absoluuttisen lämpötilan määritys p (kpa) t ( C) 20 0 Kuvaaja 10 Tämä laki on ensimmäinen havainto, joka viittaa alimpaan mahdolliseen lämpötilaan. Sen perusteella voidaan ottaa käyttöön absoluuttinen lämpötilaasteikko, jonka nollakohtana on Celsius-asteikon piste 273 C, jota sanotaan absoluuttiseksi nollapisteeksi. Tällä asteikolla kaasun paine on verrannollinen lämpötilaan. Huomioita: Koejärjestely oli poikkeuksellinen, koska laitoksen muuton vuoksi tavallisesti käytettävää vesihaudetta ei ollut käytössä. Ongelmaksi muodostui veden epätasainen lämpeneminen. Uppokuumennin oli sekoitettaessa eri etäisyyksillä lämpötila-anturista ja saattoi jopa osua siihen. Lämpötila vaihteli epämääräisesti. Mittaustulokset ovat tämän vuoksi epätarkkoja. Absoluuttiselle lämpötilalle saamamme arvio on huono, koska lämpötilan mittausalueemme on kovin suppea ekstrapolointiin verrattuna. B12. Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa 100 ml keittopullo, johon on kytketty ruisku, upotetaan uppokuumentimella lämmitettävään veteen. Mitataan pullon painetta ja systeemin lämpötilaa. Paine pyritään pitämään vakiona kasvattamalla ruiskun tilavuutta. Mitataan kaasun lämpötila (anturilla) ja tilavuus (ruiskusta lukien) sopivin väliajoin (Taulukko 12). 24

28 Taulukko 12 Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa p (mbar) t ( C) V (ml) 1010,622 28, ,157 35, ,207 40, ,5 51, ,305 56, ,915 63, ,11 70, Kun ilmaa lämmitetään vakiopaineessa, tilavuuden muutos on verrannollinen lämpötilan muutokseen. Sen lämpölaajenemista esittää (t,v)- koordinaatistossa suora (Kuvaaja 11). V (ml) Gay-Lussacin laki t ( C) Kuvaaja 11 Vakiopaineessa V~t. Tulos on riippumaton kaasusta ja sen määrästä. Kun tätä suoraa ekstrapoloidaan kohti matalia lämpötiloja, se leikkaa t-akselin (V=0) absoluuttisessa nollapisteessä (Kuvaaja 12). 25

29 Gay-Lussacin laki 140 V (ml) y = 0,3434x + 90, Lakien yhdistäminen t ( C) Kuvaaja 12 Ratkaisemalla suoran yhtälöstä muuttujan x arvo, kun y = 0, saadaan ÿ absoluuttiselle lämpötilalle likiarvo t = 263 C. Töissä B10, B11 ja B12 käyttämämme mittauslaitteisto oli ULI ja mittausohjelma Logger Pro. Boylen ja Gay-Lussacin lait voidaan yhdistää. Edellisen mukaan kaasun isotermisessa prosessissa (T=vakio) on pv=vakio. Jälkimmäisen mukaan isobaarisessa muutoksessa (p=vakio) on V = vakio. Sen vuoksi on tarkoituksenmukaista tarkastella lauseketta T pv kaasun tilanmuutoksissa. T Kaasusysteemi voidaan muuttaa tilasta p1,v1, T1 tilaan p2,v2, T2 muuttamalla sen tilavuutta ensin isotermisesti, kunnes sen paine on p 2, sitten isobaarisesti, kunnes sen lämpötila on T 2. Ensimmäinen muutos noudattaa Boylen lakia: p1v 1 p2v' =, missä V on kaasun tilavuus T1 T1 ensimmäisen muutoksen jälkeen. Toinen muutos noudattaa Gay-Lussacin lakia: p2v' p2v2 =. T1 T2 Kaasusysteemin alku- ja lopputilan tilanmuuttujat toteuttavat siis tilanyhtälön: p V p V T =. 1 T2 Kaasusysteemi noudattaa Boylen lain pätevyysalueella tilanyhtälöä T pv =vakio. 26

30 C. Strukturointia Ideaalikaasu on teoreettinen mallikaasu, jonka ideaalikaasun tilanyhtälö määrittelee. Ideaalikaasu noudattaa Boylen ja Gay-Lussacin lakeja kaikissa paineissa ja lämpötiloissa. Sen tilavuus pienenee rajattomasti paineen kasvaessa tai lämpötilan laskiessa. Se ei siis nesteydy, kuten jokainen todellinen kaasu. Kaikki kaasut noudattavat ideaalikaasun tilanyhtälöä, kun ne ovat riittävän harvoja. Italialainen Amadeus Avogadro esitti vuonna 1822 hypoteesin, jonka mukaan samassa tilavuudessa, paineessa ja lämpötilassa kaikki kaasut sisältävät saman määrän molekyylejä. Boylen lain pätevyysalueella kaikki kaasusysteemit noudattavat samaa tilanyhtälöä pv=nrt, missä R = moolinen kaasuvakio ja n = ainemäärä. 27

31 Prosessin kuvaus Valitsimme lämpöopin kokonaisuuden, koska siinä oli paljon yläasteen opetukseen kuuluvia töitä. Valintamme oli yksimielinen. Teimme työsuunnitelman jo ennen lämpöopin LAB-luentoja, joten jouduimme käyttämään siihen paljon aikaa ja vaivaa. Meillä oli käytettävissä lukuvuotisten labluennon runko, joten suunnittelu lähti käsitteellisistä tavoitteista, joita tukemaan pyrimme löytämään töitä. Suurimman osan töistä teimme helmikuun viikonloppujaksolla. Fysiikan laitoksen muutto oli kesken, joten jouduimme joissakin töissä käyttämään korvaavia laitteistoja. Lab-luento oli vasta työvuoron jälkeen. Luento selkeytti entisestään kuvaamme kokonaisuudesta. Muita kokonaisuuteen kuuluvia töitä teimme vähitellen kevään ja kesän aikana. Kokonaisuuden valmiiksi saattaminen venyi pahasti osittain henkilökohtaisten syiden, osittain sen takia, että huomasimme, ettemme voikaan tehdä kaikkia aikomiamme töitä omalla koululla. Viimeiset työt teimme vasta elokuun intensiivijaksolla. Raportin kirjoittaminen oli työlästä, koska töiden suorittaminen venyi. Kokonaisuus oli todella työläs ja aikaa vievä. Teimme töitä hampaat irvessä (Kuva 16). Kuitenkin kokonaisuus opetti meille paljon ja koimme sen hyödylliseksi omassa työssämme. Toisaalta kokonaisuuden teoreettinen tausta oli meille riittävän helppo, joten uskomme ymmärtäneemme kaiken tekemämme. Työnjaon roolit ovat kurssin kestäessä vakiintuneet: tietotekniikka on Intosen vastuulla, kun taas tarkkuutta ja huolellisuutta vaativat mittaukset ja niiden kirjaaminen ovat Majavan alaa. Työskentelytapamme on parityö, emme siis jaa töitä itsenäisesti suoritettaviin osiin. Kuva 16 28

32 Käsitteenmuodostus A23 A21 A21 Kiinteä sulamispiste Hydrostaattinen paine A21 Tiheys A22 B6 Massa A34,B4 erot A26, A27 B1 Tilavuus A25 A24 Materiaali sublimoituminen Kaasumainen A20,A21 Nestemäinen härmistyminen sulaminen tiivistyminen jähmettyminen höyrystyminen kiehumispiste Voima Nost e Kylläisen höyryn paine A35,A36,B7 Paine Puristustila A15 Ilmanpaine B8 Lämpötila B8 A33,B2,B3 A28,A29 A30,A31,A32, B5 Olomuoto Olomuodon muutos A13 Aine A5,A6 A5,A6 A7 A17 Supistuminen Tasoittuminen A14,A16 A19 Ympäristö A16,A17 Lämpene - minen A1,A2,A3,A4 A1,A2,A3,A4 Puristuminen Laajeneminen Lämpöopin 0:s pääsääntö Termodynaaminen systeemi A8,A9,A10 terminen tasapainotila A18, A19 Lämpömittari Vuorovaikutus Lämpimyys Lämpöilmiöt Jäähtyminen A11,A12 Tilavuus B10 Boylen laki Tilanmuuttujat Lämpötila B11 Charlesin laki Kaasujen yleinen tilanyhtälö Paine B12 Gay-Lussacin laki A7 B9 Ideaalikaasu Avogadron laki Pituuden lämpötilakerroin Lähdeluettelo i Hirvonen et al: Aine ja energia, Fysiikan opettajan opas 2, s. 94 ii MFKA: Kylmää ja lämmintä, s. 37 iii Hirvonen et al: Aine ja energia, Fysiikan opettajan opas 2, s. 92 iv Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 33 v Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 23 vi Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 18 vii Lavonen, Kurki-Suonio, Hakulinen: Galilei 1, Fysiikka luonnontieteenä, s. 16 viii Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 9 29

Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus. 8. Lämpöoppi 1. : Tilanyhtälö

Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus. 8. Lämpöoppi 1. : Tilanyhtälö Leena Ylivuori ja Tarja Ihalin/ DFCL3/ LAB/ raportti/ webbiversio/ 8. kokonaisuus 8. Lämpöoppi 1. : Tilanyhtälö 1. Johdanto Tässä työkokonaisuudessa on tutkittu lämmittämisen, jäähdyttämisen ja puristuksen

Lisätiedot

Lämpötila ja lämpöenergia

Lämpötila ja lämpöenergia Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Lämpötila ja lämpöenergia Tilanmuuttujien perushahmotus Lämpötila, paine, tasapaino Lämpötilalla tarkoitetaan

Lisätiedot

Lämpötila, lämpö energiana

Lämpötila, lämpö energiana Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Lämpötila, lämpö energiana Tilanmuuttujien perushahmotus Lämpötila, paine, tasapaino Lämpötilalla tarkoitetaan

Lisätiedot

Lämpöilmiöitä. Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005

Lämpöilmiöitä. Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Lämpöilmiöitä Erilaisia lämpöilmiöitä esiintyy sekä elävässä että elottomassa luonnossa, ja myös teknologisessa ympäristössä. Ulkoilman

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A TEHTÄVIEN RATKAISUT 8-1. Jousivaa an lukema suolavedessä on pienempi kuin puhtaassa vedessä, koska suolaveden tiheys on suurempi kuin puhtaan veden ja siksi noste suolavedessä on suurempi kuin puhtaassa

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

PULLEAT JA VALTAVAT VAAHTOKARKIT

PULLEAT JA VALTAVAT VAAHTOKARKIT sivu 1/6 PULLEAT JA VALTAVAT VAAHTOKARKIT LUOKKA-ASTE/KURSSI Soveltuu ala-asteelle, mutta myös yläkouluun syvemmällä teoriataustalla. ARVIOTU AIKA n. 1 tunti TAUSTA Ilma on kaasua. Se on yksi kolmesta

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Fysiikka 1 Luku 2. Työn tarkoitus Työssä tutustutaan mittaamiseen, mittaustarkkuuteen ja mittausvirheen laskemiseen.

Fysiikka 1 Luku 2. Työn tarkoitus Työssä tutustutaan mittaamiseen, mittaustarkkuuteen ja mittausvirheen laskemiseen. Fysiikka 1 Luku 2 Työkortit 1. Ajan mittaus Työn tarkoitus Työssä tutustutaan mittaamiseen, mittaustarkkuuteen ja mittausvirheen laskemiseen. ajanottolaite Työn suoritus 1. Käynnistä kello, kun opettaja

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö 1. Selitä fysikaalisesti, miksi: a) sateessa kastuneet vaatteet tuntuvat kylmältä, b) pyykit kuivuvat myös pakkasessa, c) uunista pudonneen hehkuvan hiilenpalan

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

NESTEEN TIHEYDEN MITTAUS

NESTEEN TIHEYDEN MITTAUS NESTEEN TIHEYDEN MITTAUS AALTO-YLIOPISTO INSINÖÖRITIETEIDEN KORKEAKOULU KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Emma Unonius, Justus Manner, Tuomas Hykkönen 15.10.2015 Sisällysluettelo Teoria...

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI

4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI 4 Aineen olomuodot 4.2 Höyrystyminen POHDI JA ETSI 4-1. a) Vesi asettuu astiassa vaakatasoon Maan vetovoiman ja veden herkkäliikkeisyyden takia. Painovoima tekee työtä, kunnes veden potentiaalienergia

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

PANK PANK- 4306 ASFALTTIMASSAN JÄÄTYMIS- SULAMIS-KESTÄVYYS. Asfalttimassat ja päällysteet 1. MENETELMÄN TARKOITUS JA SOVELTAMISALUE

PANK PANK- 4306 ASFALTTIMASSAN JÄÄTYMIS- SULAMIS-KESTÄVYYS. Asfalttimassat ja päällysteet 1. MENETELMÄN TARKOITUS JA SOVELTAMISALUE Asfalttimassat ja päällysteet PANK- 4306 PANK ASFALTTIMASSAN JÄÄTYMIS- SULAMIS-KESTÄVYYS. PÄÄLLYSTEALAN NEUVOTTELUKUNTA Hyväksytty: Korvaa menetelmän: 7.12.2011 1. MENETELMÄN TARKOITUS JA SOVELTAMISALUE

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

DYNAMIIKAN PERUSKÄSITTEET

DYNAMIIKAN PERUSKÄSITTEET DYNAMIIKAN PERUSKÄSITTEET 1. Perushahmotus Kappale Mekaniikassa kappaleiksi sanotaan yleisesti kaikkia aineellisia olioita. Kappaleita ovat esimerkiksi: pallo, kirja, pöytä ja auto. Myös elektroni on kappale,

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

AIR-MIX-RUISKUN PERUSKÄYTTÖ

AIR-MIX-RUISKUN PERUSKÄYTTÖ AIR-MIX-RUISKUN PERUSKÄYTTÖ 1. Ruiskun pesu ennen käyttöönottoa 2. Maalin lisäys ja maalaus 3. Ruiskunpesu maalauksen jälkeen RUISKUN KÄYTTÖ MAALAUKSISSA Air-Mix-ruiskua käytetään lähinnä kalusteovien

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden Oulun yliopisto Fysiikan opetuslaboratorio 1 PINTAJÄNNITYS 1. Työn tavoitteet Nesteen ollessa levossa voi havaita sen pinnan muistuttavan jännitettyä, kimmoisaa kalvoa. Pinta pyrkii saavuttamaan mahdollisimman

Lisätiedot

Aurinkotislaus on yksi töistä, jotka kuuluvat kansainvälisen kemian vuoden 2011 aikana järjestettävään maailmanlaajuiseen kokeeseen.

Aurinkotislaus on yksi töistä, jotka kuuluvat kansainvälisen kemian vuoden 2011 aikana järjestettävään maailmanlaajuiseen kokeeseen. Aurinkotislaus Aurinkotislaus on yksi töistä, jotka kuuluvat kansainvälisen kemian vuoden 2011 aikana järjestettävään maailmanlaajuiseen kokeeseen. Tässä työssä oppilaat rakentavat auringonvalon avulla

Lisätiedot

Kiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn

Kiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn FYSKKA (FY02l: 2. KURSS: Lämpö vasraa KUUTEEN (6) TEHnÄVÄÄN il KOE 21.02.2013 1. a) Suuren matkustajalentokoneen lentokorkeus maahan nähden on 10,5 km, vauhti980 km/h ja massa 310 000 kg. Laske lentokoneen

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Limsan sokeripitoisuus

Limsan sokeripitoisuus KOHDERYHMÄ: Työn kohderyhmänä ovat lukiolaiset ja työ sopii tehtäväksi esimerkiksi työkurssilla tai kurssilla KE1. KESTO: N. 45 60 min. Työn kesto riippuu ryhmän koosta. MOTIVAATIO: Sinun tehtäväsi on

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot