- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

Koko: px
Aloita esitys sivulta:

Download "- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja"

Transkriptio

1 mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo mitataan käyttäen yksikköä - esim. pituus on suure, jolla mitataan kuinka monta metriä (tai senttimetriä, kilometriä jne.) mitattavan kohteen (esim. esineen, matkan) pituus on - suureissa on aina lukuarvo (25) ja yksikkö (km) - esim. 25 km - esim. pituuen mittaamiseksi pitää olla sovittuna jokin yleisesti tunnettu yksikkö pituuen mittaamiseen sovittu perusyksikkö on metri (lyhenne m) ja sen kerrannaisyksiköt (kilometri, senttimetri, millimetri jne.)

2 Pituuen yksiköt ja niien muunnokset Esim. 5 am = 5 * 100 m = 500 m Suheluvulla tarkoitetaan, kuinka monta pienempää yksikköä sisältyy seuraavaan suurempaan yksikköön. Esim. 1 cm = 10 mm Esim. 0 m = 0 m : 100 = 0, hm Muita yleisesti käytettyjä pituusmittoja ovat esim. 1 maili = 1 609,44 m 1 tuuma (1 tai 1 inch) = 2,54 cm 1 meripeninkulma (mpk) = m

3 Muita yleisesti käytettyjen suureien yksiköitä Massan yksiköt Huom. Suureesta massa käytetään arkikielessä termiä paino 7..1 Vetomitat Suheluku = l 100 l 10 l 0,1 l 0,01 l l

4 Tehtäviä: 1. Muuta metreiksi. Alleviivaa oikea vastaus. 0, m 0,9 m a) 00 cm = m g) 9 am = 90 m 0 m 900 m 0,001 m m b)10 cm = 0,01 m h) 0,0 km = 0 m 0,1 m 00 m 0,45 m 0,21 m c) 4500 mm = 4,5 m i) 0,021 km = 2,1 m 45 m 21 m 0,22 m m ) 220 mm = 2,2 m j) 5,5 km = m 22 m m 0,67 m e) 67 m = 6,7 m 67 m

5 Järjestä suuruusjärjestykseen suurimmasta alkaen suurin pienin 1 m = 700 mm = 0 cm = 0,6 m = 9 am = 0,0002 km = 0,05 hm =. Ilmoita pituus halutussa yksikössä a) m = km b) 0,1 am = m c) 99 mm = cm ) 0,002 hm = mm e) 0,15 km = m f) 700 m = am g) mm = km h) 8,9 cm = mm i) 6 m = hm

6 Ilmoita halutuissa yksiköissä a) 450 g = kg b) 50 mm = m c) litraa = l ) 0,7 litraa = cl e) 4050 mm = m f) 20 cl = l g) 1 kg 5 g = g h) 9 ml = l 5. Neljässä eri astiassa oli vettä 1,6 litraa, 5 l, 00 cl ja 480 ml. Paljonko vettä oli yhteensä?

7 Pinta-alayksiköt - pinta-alayksiköien välinen suheluku = 100 siirryttäessä aina seuraavaksi pienempään yksikköön kerromme pinta-alan 100:lla, siirryttäessä aina seuraavaksi suurempaan yksikköön jaamme pinta-alan 100:lla. neliökilometri km 2 (neliöhehtometri) hm 2 (neliöekametri) am 2 neliömetri m 2 neliöesimetri m 2 neliösenttimetri cm 2 neliömillimetri mm 2 Kun siirrytään kahta pienempään yksikköön, kerrotaan luvulla Esim. 1, km 2 = 1, 10000am 2 = 1000 am 2 Kun siirrytään yhtä pienempään yksikköön, kerrotaan luvulla 100. Esim.,5 m 2 =,5 100 m 2 = 50 m 2 neliökilometri km 2 (neliöhehtometri) hm 2 (neliöekametri) am 2 neliömetri m 2 neliöesimetri m 2 neliösenttimetri cm 2 neliömillimetri mm 2 Kun siirrytään kahta suurempaan yksikköön, jaetaan luvulla Esim. 1, am 2 = 1, : 10000km 2 = 0,0001 km 2 Kun siirrytään yhtä suurempaan yksikköön, jaetaan luvulla 100. Esim.,5 m 2 =,5 : 100 m 2 = 0,05 m 2 Yksiköitä neliöhehtometri ja neliöekametri ei yleensä käytetä, vaan niien tilalla käytetään seuraavia yksiköitä: 1 neliöhehtometri = 1 hehtaari (1 ha) = m 2 1 neliöekametri = 1 aari (1 a) = 100 m 2

8 - - Tehtäviä 1. Alleviivaa oikea vaihtoehto 200 m 2 0,014 m 2 a) 2 a = 20 m 2 b) 14 m 2 = 0,14 m m 2,14 m 2 0,1 m 2 5,45 m 2 c) 0,001 ha = 1 m 2 ) 0, km 2 = 54,5 m 2 10 m m 2 0,008 m 2 78,9 m 2 e) 0,0008 a = 0,08 m 2 f) 789 m 2 = 7,89 m 2 0,8 m 2 0,789 m 2 0,0007 m 2 0,044 m 2 g) 7 cm 2 = 0,007 m 2 h) 440 cm 2 = 0,44 m 2 0,07 m 2 4,4 m 2 0, m 2 0,000 m 2 i) 1 mm 2 = 0, m 2 j) mm 2 = 0,00 m 2 0,00001 m 2 0,0 m 2 2. Yhistä vasemman puolen pinta-ala-arvo viivalla vastaavaan oikean puolen arvoon 1 m m 2 0,1 ha 10 m a 1 cm 2 0,001 m mm 2 0,1 cm m 2 0, km m 2 10 ha 0,01 km 2

9 Järjestä suuruusjärjestykseen suurimmasta alkaen. (Ohje: muuta kaikkia ensin neliömetreiksi) 0,0004 km 2 = suurin 80 m 2 = mm 2 = m 2 = 0,5 a = cm 2 = 0,01 ha = pienin 5. Ilmoita pinta-ala halutussa yksikössä a) 9 m 2 = m 2 b) 550 mm 2 = cm 2 c) 1000 m 2 = a (am 2 ) ) 0,006 a = m 2 e) 0,02 km 2 = ha (hm 2 ) f) cm 2 = m 2 g) 49 a = ha h) mm 2 = m 2

10 Täytä ristikko Pystysuoraan: 1: Neliömetrin saasosa 2: Sata neliömetriä : Kymmenentuhatta neliömetriä Vaakasuoraan: 4: Miljoona neliömetriä 5: Neliömetrin miljoonasosa 6: Neliömetrin kymmenestuhannesosa 7. Tilavuusyksiköt - tilavuusyksiköien välinen suheluku = 1000 siirryttäessä aina seuraavaksi pienempään yksikköön kerromme tilavuuen 1000:lla, siirryttäessä aina seuraavaksi suurempaan yksikköön jaamme tilavuuen 1000:lla.

11 - 6 - kuutiokilometri km kuutiohehtometri hm kuutioekametri am kuutiometri m kuutioesimetri m kuutiosenttimetri cm kuutiomillimetri mm kuutiokilometri km kuutiohehtometri hm kuutioekametri am kuutiometri m kuutioesimetri m kuutiosenttimetri cm kuutiomillimetri mm Kun siirrytään kahta pienempään yksikköön, kerrotaan luvulla Esim. 1, km = 1, am = am Kun siirrytään yhtä pienempään yksikköön, kerrotaan luvulla Esim.,5 m =, m = 500m Kun siirrytään kahta suurempaan yksikköön, jaetaan luvulla Esim am = : km = 1,7 km Kun siirrytään yhtä suurempaan yksikköön, jaetaan luvulla Esim. 500 mm = 500 : 1000 cm =,5 cm 7.4 Vetomittojen ja tilavuusmittojen vastaavuus - vetomitoilla ja tilavuusmitoilla mitataan samaa asiaa TILAVUUSMITAT Kuutiokilometri (km ) Kuutiohehtometri (hm ) Kuutioekametri (am ) Kuutiometri (m ) Kuutioesimetri (m ) Kuutiosenttimetri (cm ) Kuutiomillimetri (mm ) VETOMITAT litraa (1000 miljaria) litraa (1 miljari) litraa (1 miljoona) litraa 1 litra 0,001 litraa = 1 ml 0, litraa = 0,001 ml

12 - 7 - VETOMITAT TILAVUUSMITAT Kilolitra 1000 m = 1 m Hehtolitra 100 m 2 Dekalitra 10 m 2 Litra 1 m Desilitra 0,1 m = 100 cm Senttilitra 0,01 m = 10 cm Millilitra 0,001 m = 1 cm Huom! Tärkeää muistettavaa: 1 m = 1000 litraa 1 litra = 1 m 1 ml = 1 cm Tehtäviä 1. Muuta haluttuun yksikköön. a) 4,5 km = m b) 25 m = cm c) 5200 mm = m ) m = am e) 0,45 hm = m f) 45 m = litraa g) 750 cm = ml h) 70 m = cl

13 Yhistä viivalla samat tilavuuet 1 l cl 100 l 0,1 cm 100 m 100 ml 10 ml 100 mm 0,001 m 1 cm 0,1 m 0,1 l 1 m 1 m

14 Muuta kuutiometreiksi (valitse alla olevista laatikoista mustan laatikon arvoa vastaava m -arvo) 400 m 9 m 0,04 m 0,4m 4 m 0,009 m 0,09 m 0,9 m mm l 0,012 m 1,2 m m 1 m 10 m 1000 m 5800 cm 66 l 0,00058 m 0,0058 m 5,8 m 0,0066 m 0,066 m m 6,6 m 7 cm l 0, m 0,0007 m 0,7 m 0,079 m 0,79 m 7,9 m 2,5 l 8000 ml 0,00025 m 0,025 m 0,25 m 0,008 m 0,8 m 80 m

15 Muuta haluttuun yksikköön 000 l 5 m 600 ml 0,2 cl 70 l 0,0009 m 0,808 m mm 157 cm 4 m = m m l m cm l l cm ml ml m

16 Järjestä suuruusjärjestykseen pienimmästä alkaen (Ohje: Muutetaan kaikki yksiköt kuutioesimetreiksi (= litra)) suurin pienin

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi 1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma

Lisätiedot

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. 1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

1. Lasketaan käyttäen kymmenjärjestelmävälineitä

1. Lasketaan käyttäen kymmenjärjestelmävälineitä Turun MATIKKAKAHVILA 22.09.2016 Teija Laine 1. OTTEITA UUDESTA OPETUSSUUNNITELMASTA: "Vuosiluokkien 3 6 matematiikan opetuksessa tarjotaan kokemuksia, joita oppilaat hyödyntävät matemaattisten käsitteiden

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Miten mittayksiköiden muunnoksia hallitaan luokilla 5 ja 6?

Miten mittayksiköiden muunnoksia hallitaan luokilla 5 ja 6? Miten mittayksiköiden muunnoksia hallitaan luokilla 5 ja 6? Missä: Kolme paikkakuntaa ja neljä koulua. Milloin: Vuoden 2014 lopussa tai vuoden 2015 alussa. Oppilaita: yhteensä 385 (mukana on myös erityisopetuksen

Lisätiedot

AVOIN MATEMATIIKKA Osio 2: pinta-aloja

AVOIN MATEMATIIKKA Osio 2: pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA Osio : pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 SI-järjestelmä ja ISO Päivittäiseen elämäämme liittyy paljon mittaamista.

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09) 102 378 http://www.mfka.fi Peruskoulun

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

AVOIN MATEMATIIKKA 9 Osio 3: Geometrian tietojen syventämistä

AVOIN MATEMATIIKKA 9 Osio 3: Geometrian tietojen syventämistä Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 9 Osio : Geometrian tietojen syventämistä Sisältö on lisensoitu avoimella CC BY.0 -lisenssillä. 1 8. Kappaleiden pinta-aloja Kappaleiden kokonaispinta-alassa

Lisätiedot

Opetettavia asioita: pituus, massa, tilavuus, aika, pinta-ala

Opetettavia asioita: pituus, massa, tilavuus, aika, pinta-ala Mittaaminen ja arviointi Olemme keränneet opetusvinkkejä ja materiaalia mittaamisen opetukseen eri luokka-asteilla. Opetettavia asioita: pituus, massa, tilavuus, aika, pinta-ala Tavoitteena on oppilaan

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

WTW SWANTM. Suorakaiteen muotoinen nauha-asennettava tuloilmalaite

WTW SWANTM. Suorakaiteen muotoinen nauha-asennettava tuloilmalaite SWANTM WTW Suorakaiteen muotoinen nauha-asennettava tuloilmalaite Lyhyesti Nauha-asennettava seinästä-seinään tuloilmalaite Hajotinosa on kevyt alumiinirakenne 2, 3 tai rakoa Vaaka-/pystyhajotus Teleskooppirakenne

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 OPS M2-1, Liite 1 21.12.2007 PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 www.ilmailuhallinto.fi LENTOKONEEN VALOT Huom. Katso luku 6 1. MÄÄRITELMIÄ Kun tässä luvussa

Lisätiedot

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE ID TERVEYSTIETEIDEN LAITOS POHJOIS-SUOMESSA 985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE PL 5000, 9004 OULUN YLIOPISTO, PUH. 08-5750, FAX.

Lisätiedot

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet MAA. Koe Jussi Tyni 0.9.0 Tee pisteytysruudukko! Vastaa yhteensä tehtävään. Muista kirjoittaa selkeät välivaiheet A-OSIO Vastaa tehtävistä A A kahteen ja palauta vastaukset. Tähän osioon on käytettävissä

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Kenguru 2006 sivu 1 Cadet-ratkaisut

Kenguru 2006 sivu 1 Cadet-ratkaisut Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa

Lisätiedot

6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU

6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU 6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU Murtoluku Sekaluku Osoittaja Nimittäjä Kokonaisosa Murto-osa Murtoluvun muuttaminen Jos murtoluvun osoittaja on suurempi

Lisätiedot

Puzzle-SM 2000. Loppukilpailu 18.6.2000 Oulu

Puzzle-SM 2000. Loppukilpailu 18.6.2000 Oulu Puzzle-SM Loppukilpailu 8.6. Oulu Puzzle Ratkontaaikaa tunti Ratkontaaikaa tunti tsi palat 6 Varjokuva 7 Parinmuodostus 7 Paikallista 7 Metris 7 ominopalapeli Kerrostalot Pisteestä toiseen Heinäsirkka

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

ASENNUSOHJE MINSTER JA TURMALIN

ASENNUSOHJE MINSTER JA TURMALIN Turmalin-savikattotiili Minster-betonikattotiili ASENNUSOHJE Päivitetty 14.12.2012 Tämä korvaa aiemmat asennusohjeet Puh. +358 9 2533 7200 ~ Faksi +358 9 2533 7311 ~ www.monier.fi Sivu 1 / 9 Alkulause

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Tilaus No CVE-25/150. Tilaus No. Tilaus No. Tilaus No CKB50 TB50 DBB50

Tilaus No CVE-25/150. Tilaus No. Tilaus No. Tilaus No CKB50 TB50 DBB50 CPE-18 CBE-7 CUE-8 CTE-11 CLE-11 CUV-13 www.restec.fi CVE-25/ 200 PESUKORIT 500x500 mm Erikoishinnat teille CPE-18 CTE-11 CBE-7 CLE-11 RCE-55 CVE-25/200 CVE-25/150 CUV-13 CUE-8 LVC21 LVC21B LVC15 LVC15B

Lisätiedot

Asennusohje Sadevesienkeräilysäiliö 3 m 3

Asennusohje Sadevesienkeräilysäiliö 3 m 3 Asennusohje Sadevesienkeräilysäiliö 3 m 3 Uponor-sadevesienkeräilysäiliö 3 m 3 5 1 3 2 4 1. Sadevesiputki (tuloputki). - 2. Suojaputki vesiletkulle. - 3. Huoltokaivo. - 4. Ylivuotoputki. - 5. Vesiposti

Lisätiedot

Matematiikkaa erityisopiskelijoille

Matematiikkaa erityisopiskelijoille Matematiikkaa erityisopiskelijoille Hannele Ikäheimo Luentorunko 1.10.2016 1. Tutkimuksia 2. Kokemuksia 3. Ota selvää 4. Korjaava opetus 5. Koulutusta 6. Lisätietoa 1. Suomalaisia tutkimustuloksia * Matematiikan

Lisätiedot

Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinnon tehtävien ratkaisu

Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinnon tehtävien ratkaisu 1 Suomen Navigaatioliitto Finlands Navigationsförbund rf Saaristomerenkulkuopin tutkinnon 22.04.2005 tehtävien ratkaisu Tehtävät on ratkaistu Microsoft PowerPoint ohjelmalla. Apuna on käytetty Carta Marina

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Postitusohjeet Kotisuora

Postitusohjeet Kotisuora Postitusohjeet Kotisuora 1.10.2015 lähtien 1 Posti Oy Kotisuora palvelut Kotisuora (Postisen välissä jaettava palvelu) Kotisuora, premium (yksittäin jaettu palvelu) Ma Ti Ke To Pe Kotisuora Kotisuora,

Lisätiedot

KE1 Ihmisen ja elinympäristön kemia

KE1 Ihmisen ja elinympäristön kemia KE1 Ihmisen ja elinympäristön kemia Arvostelu: koe 60 %, tuntitestit (n. 3 kpl) 20 %, kokeelliset työt ja palautettavat tehtävät 20 %. Kurssikokeesta saatava kuitenkin vähintään 5. Uusintakokeessa testit,

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut.

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut. sivu 1 / 16 3 pistettä 1. Kello laitetaan pöydälle viisaripuoli ylöspäin juuri silloin, kun minuuttiviisari osoittaa etelään. Kuinka monen minuutin kuluttua minuuttiviisari seuraavan kerran osoittaa itään?

Lisätiedot

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta MITTAVAUNU MATERIAALIA 1( 35) 1 TYÖNTÖMITTA 1.1 Yleistä työntömitasta Työntömitta ( tönäri, mauseri ) kuuluu tekniikan alan perustyökaluihin, joten sen oikeaoppinen käyttö on jokaisen ammattilaisen osattava.

Lisätiedot

Arviointia ja laskemista

Arviointia ja laskemista 9 Arviointia ja laskemista Arkielämässä joudutaan joskus arvioimaan eri tietoja ilman tarkkaa laskemista. Tällöin lukuja voidaan pyöristää ennen laskemista, jolloin saatu tulos on arvio. Lähtöarvojen pyöristyksen

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Taimikonhoidon omavalvontaohje

Taimikonhoidon omavalvontaohje Omavalvonnalla laatua ja tehoa metsänhoitotöihin Taimikonhoidon omavalvontaohje Taimikonhoidon merkitys Taimikonhoidolla säädellään kasvatettavan puuston puulajisuhteita ja tiheyttä. Taimikonhoidon tavoitteena

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

Kenguru Benjamin, ratkaisut (1 / 6) luokka

Kenguru Benjamin, ratkaisut (1 / 6) luokka Kenguru Benjamin, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Kuinka monta kokonaislukua on lukujen 19,03 ja,009 välissä? (A) 14 (B) 15 (C) 16 (D) 17 (E) enemmän kuin 17 Luvut 3, 4, 5, 6, 7, 8, 9, 10, 11,

Lisätiedot

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan.

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

K3K M2K HHA K3K20 0

K3K M2K HHA K3K20 0 Havainnoija 2753 Ahola Markus Viime laskenta 08.6.2015 klo 4.25-9.47 Lähtöpiste 0500 m koillisnurkasta 500 500 450. 450 400. K3K25 400 350. 350 300. 300 250. 250 200. 200 150. M2K15 150 100. 100 50. HHA2

Lisätiedot

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY NUORILLE NAISILLE

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY NUORILLE NAISILLE ID TERVEYSTIETEIDEN LAITOS POHJOIS-SUOMESSA 985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY NUORILLE NAISILLE PL 5000, 9004 OULUN YLIOPISTO, PUH. 08-53750, FAX. 08-537566 KYSELYLOMAKKEEN

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

ASENNUSOHJE UPONOR UMPISÄILIÖ 3 M 3. Uponor umpisäiliö 3 m 3. Helppo käsitellä helppo asentaa.

ASENNUSOHJE UPONOR UMPISÄILIÖ 3 M 3. Uponor umpisäiliö 3 m 3. Helppo käsitellä helppo asentaa. ASENNUSOHJE UPONOR UMPISÄILIÖ 3 M 3 Uponor umpisäiliö 3 m 3. Helppo käsitellä helppo asentaa. Uponor umpisäiliö 3 m 3 Kaivanto Umpisäiliön kaivanto mitoitetaan niin, että ankkurointilevyt mahtuvat sen

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma. Mikko Korhonen Pohjois-Karjalan metsäkeskus

Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma. Mikko Korhonen Pohjois-Karjalan metsäkeskus Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma Mikko Korhonen Pohjois-Karjalan metsäkeskus Mitä on korjuujälki? Metsikön puuston ja maaperän tila puunkorjuun jälkeen.

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET Pisteytys on pyritty tekemään pelkistetyksi, jotta kaikki korjaajat päätyisivät samaan arvosteluun.

Lisätiedot

WB-työpöydät. 5years. 2years

WB-työpöydät. 5years. 2years WB-työpöydät WB-työpöydät on suunniteltu vaativiin kokoonpanoympäristöihin. Pöytien perusajatuksena on yksinkertaisuus ja hyvä ergonomia, joiden ansiosta yksittäisen työpöydän voi muokata useisiin eri

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit:

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit: 1 Käyttöpaine min./max. 2 bar / 8 bar Ympäristölämpötila min./maks. -10 C / +60 C Keski Paineilma Hiukkaskoko maks. 5 µm Paineilman öljypitoisuus 0 mg/m³ - 1 mg/m³ Mäntään kohdistuvan voiman mittapaine

Lisätiedot

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? 1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa

Lisätiedot

Rautalankamalleja ainearvohakuihin STN-tietopankissa. Riitta Housh

Rautalankamalleja ainearvohakuihin STN-tietopankissa. Riitta Housh Rautalankamalleja ainearvohakuihin STN-tietopankissa Riitta Housh 6.8.2013 2 STN:n numeeriset tietokannat ominaisuusarvojen hakuun 3 Ominaisuustietojen haku STN Expressin automaattitoiminnon avulla Klikkaa

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Kenguru 2015 Cadet Ratkaisut

Kenguru 2015 Cadet Ratkaisut sivu 1 / 16 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Jätekeskusten paloturvallisuus - riskit ympäristölle tulipalotilanteessa

Jätekeskusten paloturvallisuus - riskit ympäristölle tulipalotilanteessa Jätekeskusten paloturvallisuus - riskit ympäristölle tulipalotilanteessa Tuomo Rinne, Hanna Hykkyrä, Kati Tillander, VTT Jarkko Jäntti, Timo Väisänen, Pelastusopisto Pasi Yli-Pirilä, Ilpo Nuutinen, Juhani

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka)

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka) Kenguru 2013 Ecolier sivu 1 / 8 3 pistettä 1. Missä kuviossa mustia kenguruita on enemmän kuin valkoisia kenguruita? Kuvassa D on 5 mustaa kengurua ja 4 valkoista. 2. Nelli haluaa rakentaa samanlaisen

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,

Lisätiedot

Arab Company for Petroleum and Natural Gas Services (AROGAS) Johtaja, insinööri Hussein Mohammed Hussein

Arab Company for Petroleum and Natural Gas Services (AROGAS) Johtaja, insinööri Hussein Mohammed Hussein MISR PETROLEUM CO. Keneltä Kenelle Teknisten asioiden yleishallinto Suoritustutkimusten osasto Arab Company for Petroleum and Natural Gas Services (AROGAS) Johtaja, insinööri Hussein Mohammed Hussein PVM.

Lisätiedot

Betonin sahausjärjestelmä. KÄYTTÖOHJEKIRJA. ICS, Blount Europe SA Rue Emile Francqui 5 B-1435 Mont-Saint-Guibert BELGIA. www.icsbestway.

Betonin sahausjärjestelmä. KÄYTTÖOHJEKIRJA. ICS, Blount Europe SA Rue Emile Francqui 5 B-1435 Mont-Saint-Guibert BELGIA. www.icsbestway. Betonin sahausjärjestelmä. KÄYTTÖOHJEKIRJA ICS, Blount Europe SA Rue Emile Francqui 5 B-1435 Mont-Saint-Guibert BELGIA www.icsbestway.com www.icsbestway.com 1 Sisältö TURVAOHJEITA 3 SAHAN TEKNIKEN ERITTELY

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

L1 L2 L3 L4 L5 Akseliväli (mm) 3300 3750 3750. L1 L2 L3 L4 L5 Akseliväli (mm) 3750 3750

L1 L2 L3 L4 L5 Akseliväli (mm) 3300 3750 3750. L1 L2 L3 L4 L5 Akseliväli (mm) 3750 3750 TEKNISET TIEDOT Täysin uusi Ford Transit alustavat tekniset tiedot Mallisto Täysin uusi Transit Van -pakettiauto L1 L2 L3 L4 L5 Akseliväli 3300 3750 3750 Kokonaispituus 5531 5981 6704 Kokonaispaino 3100

Lisätiedot

Harrasteilmailun ilma-alusten punnitus. 17.4.2013 Markku Hiedanpää

Harrasteilmailun ilma-alusten punnitus. 17.4.2013 Markku Hiedanpää Harrasteilmailun ilma-alusten punnitus 17.4.2013 Markku Hiedanpää Miksi ilma-aluksia punnitaan Jotta voidaan määritellä onko ilma-alus tyyppihyväksymistodistuksen (so. koelennoilla tositettujen), tyyppitodistuksen

Lisätiedot

AMMATIKKA top

AMMATIKKA top AMMATIKKA top 6..006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA. Tekniikka ja liikenne: O. Matkailu-,

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

Kenguru 2011 Ecolier (4. ja 5. luokka)

Kenguru 2011 Ecolier (4. ja 5. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot