6-1 Hyötysuhde ja tehokerroin

Koko: px
Aloita esitys sivulta:

Download "6-1 Hyötysuhde ja tehokerroin"

Transkriptio

1 67 6 Lämpövoimakoneet ja jäähdyttimet 6-1 Hyötysuhde ja tehokerroin Lämpövoimakone (engl. heat engine) on laite, joka muuttaa lämpöenergiaa työksi. Tavallisesti laitteessa tapahtuu kiertoprosessi, jonka aikana laitteessa oleva työaine (engl. working substance) ottaa vastaan lämpöä, luovuttaa sitä, laajenee ja supistuu, ja joissakin tapauksissa muuttaa olomuotoaan. Esimerkiksi polttomoottorissa työaineena on ilman ja polttoaineen seos, ja höyryturbiinissa työaineena on vesi. Lämpövoimakoneen toimintaa voidaan havainnollistaa kuvan 1 mukaisella energiavirtadiagrammilla. Siinä korkeassa lämpötilassa oleva lämpösäiliö 1 luovuttaa koneen työaineelle yhden kiertoprosessin eli syklin (engl. cycle) aikana lämpömäärän Q H. Kone käyttää osan näin saamastaan energiasta tekemällä ympäristöönsä syklin aikana työn W ja luovuttaa loppuosan Q C = Q H W matalassa lämpötilassa T C olevaan lämpösäiliöön 2. Huomaa, että Q H, Q C ja W ovat kaikki positiivisia, sillä ne on yksinkertaisuuden vuoksi määritelty energiaa vastaanottavaan systeemiin (tässä tapauksessa koneeseen, lämpösäiliöön 2 ja ympäristöön) siirtyneiksi lämpömääriksi ja tehdyksi työksi. Tätä merkkisopimusta, missä Q H, Q C ja W ovat aina positiivisia, käytetään tämän kappaleen loppuun saakka. Sen sijaan kuvissa 1, 2, 3, 6 ja 7 esiintyvät Q H ja Q C ovat koneeseen siirtyneitä lämpömääriä ja W on koneen tekemä työ, joten ne voivat olla myös negatiivisia. Kuva 1.

2 Lämpövoimakoneen hyödyllinen tuotos on sen tekemä nettotyö W. Yhden syklin aikana tehdyn työn suhde koneen syklin aikana vastaanottamaan lämpömäärään Q H on koneen hyötysuhde (engl. efficiency) 68 η = W Q H = Q H Q C Q H = 1 Q C Q H. (6.1) Lämpösäiliöön 2 siirtynyt lämpömäärä Q C menee lämpövoimakoneen kannalta hukkaan. Jos Q C olisi nolla, koneen hyötysuhde olisi 1 ja kone muuttaisi lämmön täydellisesti työksi (tällöin W olisi sama kuin Q H ). Tämä olisi myös prosessin ainoa lopputulos, sillä syklin jälkeen lämpövoimakone on päätynyt takaisin alkutilaansa. Tällainen prosessi on Kelvinin muotoileman termodynamiikan toisen pääsäännön mukaan mahdoton. Kelvinin muotoilema pääsääntö seuraa suoraviivaisesti Clausiuksen yleisestä entropian kasvun periaatteesta. Koska ideaalinen lämpövoimakone on syklin jälkeen alkuperäisessä tilassaan, sen entropia ei ole muuttunut. Ympäristöön tehty työ W voidaan käyttää reversiibelisti (esimerkiksi punnuksen nostamiseen), joten myöskään ympäristön entropian ei tarvitse muuttua. Näin ollen ainoa väistämätön entropian muutos tapahtuu lämpösäiliöissä 1 ja 2. Jos nämä lämpösäiliöt ovat syklin aikana sisäisissä tasapainotiloissa lämpötiloissa ja T C, lämpömäärien Q H ja Q C siirtymiset ovat niiden kannalta reversiibelejä ja isotermisiä prosesseja. Tällöin lämpösäiliöiden 1 ja 2 entropioiden muutokset ovat yhtälön (5.35) mukaan S 1 = Q H / ja S 2 = Q C /T C (lämpösäiliöön 1 siirtynyt lämpömäärä on Q H ). Entropian kokonaismuutos on siis S = S 1 + S 2 = Q H + Q C T C. (6.2) Entropian kasvun periaatteen mukaan S 0, joten yhtälöstä (6.2) saadaan ehto Q C T C Q H. (6.3) Lämpösäiliöön 2 siirtynyt lämpömäärä Q C ei siis voi olla nolla (paitsi siinä mahdottomaksi osoittautuvassa tapauksessa, että tämä lämpösäiliö on absoluuttisessa nollapisteessä, ts. T C = 0 K). Tästä seuraa, että kiertoprosessiin perustuva lämpövoimakone ei voi muuttaa lämpöä täydellisesti työksi. Jos näin tapahtuisi, kokonaisentropia pienenisi. Kun tulos (6.3) sijoitetaan lämpövoimakoneen hyötysuhteen lausekkeeseen (6.1), saadaan epäyhtälö η 1 T C = T C. (6.4) Hyötysuhteella on siis teoreettinen yläraja, joka riippuu vain lämpötiloista ja T C. Tämä yläraja saavutetaan ideaalisella reversiibelisti toimivalla lämpövoimakoneella, jolla S = 0. Jos = 100 C ja T C = 0 C, hyötysuhteen yläraja on η max = 100/373 = 0, 268. Käytännössä lämpösäiliön 2 lämpötila ei voi olla matalampi kuin koneen ympäristön lämpötila, joten T C :n on oltava suuruusluokkaa 300 K. Höyrykoneilla on korkeapaineista kylläistä höyryä käyttämällä päästy lämpösäiliön 1 lämpötilaan 500 C, jolloin η max = 473/773 = 0, 61. Todellisten, irreversiibelisti toimivien lämpövoimakoneiden hyötysuhteet ovat vain noin 50 % teoreettisista ylärajoistaan. Lämpövoimakone voi myös toimia kuvan 2 mukaisesti käänteisesti. Tällöin koneeseen tehdään ulkopuolelta yhden syklin aikana työ W, jonka avulla se ottaa matalassa lämpötilassa

3 69 Kuva 2. T C olevasta lämpösäiliöstä 2 lämpömäärän Q C ja siirtää korkeammassa lämpötilassa olevaan lämpösäiliöön 1 kokonaislämpömäärän Q H = Q C + W (tässäkin tapauksessa Q H, Q C ja W on määritelty positiivisiksi). Tällaisessa kiertoprosessissa lämpösäiliöiden 1 ja 2 entropioiden muutokset ovat S 1 = Q H / ja S 2 = Q C /T C, joten entropian kokonaismuutos yhden syklin aikana on Tästä saadaan ehto S = S 1 + S 2 = Q H Q C T C 0. (6.5) Q C T C Q H. (6.6) Jos käänteisesti toimivan lämpövoimakoneen tarkoituksena on jäähdyttää lämpösäiliötä 2, se on jäähdytin (engl. refrigerator). Sen tehokkuutta luonnehtii jäähdyttimen sisältä poistetun lämpömäärän Q C suhde koneeseen tehtyyn työhön W : ε r = Q C W = Q C Q H Q C. (6.7) Tätä suhdetta sanotaan jäähdyttimen tehokertoimeksi (engl. coefficient of performance, COP). Kun lausekkeeseen (6.7) sijoitetaan ehto (6.6), saadaan tehokertoimelle epäyhtälö ε r T C T C. (6.8) Jos esimerkiksi jääkaapin sisä- ja ulkopuolella olevat lämpötilat ovat 5 C ja 20 C, sen tehokertoimen teoreettinen yläraja on ε r max = 278/15 = 19. Tällaisen jääkaapin sisältä voidaan siis ideaalitapauksessa poistaa 1 joulen työllä 19 joulen lämpömäärä. Jos koneen tarkoituksena on lämmittää lämpösäiliötä 1, sitä sanotan lämpöpumpuksi (engl. heat pump). Sen tehokkuutta mitataan tehokertoimella ε p (COP-arvolla, jota sanotaan myös lämpökertoimeksi tai energiatehokkuusluvuksi), joka on korkeampaan lämpötilaan siirretyn lämpömäärän Q H suhde koneeseen tehtyyn työhön W : ε p = Q H W = Q H Q H Q C. (6.9)

4 70 Kun tähän sijoitetaan ehto (6.6), saadaan epäyhtälö ε p T C. (6.10) Lämpöpumpun tehokertoimen yläraja on suurempi kuin jäähdyttimen tehokertoimen yläraja: ε p max = ε r max + 1. (6.11) Näin ollen 5 C:n lämpötilassa olevasta ympäristöstä (esimerkiksi maaperästä) voidaan ideaalisella lämpöpumpulla siirtää 20 C:n lämpöiseen huoneilmaan 1 joulen työllä 20 joulen lämpömäärä. 6-2 Carnot n kiertoprosessi Vuonna 1824 ranskalainen insinööri Sadi Carnot kehitti sellaisen hypoteettisen, reversiibelisti toimivan lämpövoimakoneen periaatteen, jolla on paras mahdollinen hyötysuhde. Tämä Carnot n kone (engl. Carnot engine) käyttää Carnot n kiertoprosessia (engl. Carnot cycle), joka muodostuu neljästä peräkkäisestä reversiibelistä osasta: (1) Ensin isoterminen prosessi, jossa kone ottaa lämpötilassa vastaan lämpömäärän Q H > 0. Tällöin sen entropia kasvaa määrällä S 1 = Q H /. (2) Sen jälkeen adiabaattinen prosessi, jonka aikana työaine jäähtyy lämpötilaan T C. Sen aikana entropia ei muutu. (3) Tämän jälkeen isoterminen prosessi lämpötilassa T C, jonka aikana kone luovuttaa lämpömäärän Q C > 0. Tällöin koneen entropia pienenee Q C /T C :n verran, ts. entropian muutos on S 2 = Q C /T C. (4) Lopuksi adiabaattinen prosessi, jonka aikana systeemi palaa alkutilaansa. Tällöin työaine lämpenee alkulämpötilaansa entropian pysyessä muuttumattomana. Koska Carnot n kone päätyy kiertoprosessissa takaisin alkutilaansa, entropian (ja muiden tilamuuttujien) kokonaismuutos on sen aikana nolla: Tästä saadaan relaatio S = S 1 + S 2 = Q H Q C T C = 0. (6.12) Q C Q H = T C, (6.13) joka osoittaa, että Carnot n koneen hyötysuhde (6.1) on sama kuin epäyhtälön (6.4) määrittelemä hyötysuhteen teoreettinen yläraja η = 1 Q C Q H = 1 T C = T C = η max. (6.14) Carnot n koneen työaineena voi olla esimerkiksi kaasu, neste, kiinteä aine, nesteen pintakalvo tai paramagneettinen aine. Kuva 3 esittää yksinkertaista, ideaalikaasun tilavuuden muutokseen perustuvaa Carnot n konetta. Koska ideaalikaasun sisäinen energia riippuu

5 71 Kuva 3. vain sen lämpötilasta, kaasun isotermisen laajenemisen a b aikana tekemä työ W ab > 0 on sama kuin sen vastaanottama lämpömäärä Q H : Q H = W ab = Vb V a P (V ) dv = nr ln V b V a. (6.15) Samasta syystä kaasuun isotermisen puristuksen c d aikana tehty työ W cd > 0 on sama kuin sen luovuttama lämpömäärä Q C : Vd Q C = W cd = P (V ) dv = nrt C ln V c. (6.16) V c V d Kaasun adiabaattisen laajenemisen b c aikana tekemä työ W bc > 0 on sama kuin sen sisäisen energian pieneneminen: W bc = E b E c = E( ) E(T C ). (6.17) Vastaavasti kaasuun adiabaattisen puristuksen d a aikana tehty työ W da > 0 on sama kuin sen sisäisen energian kasvu: W da = E a E d = E( ) E(T C ). (6.18) Nämä työt ovat täsmälleen yhtä suuret, joten kiertoprosessin adiabaattisten osien aikana tehty nettotyö W bc W da on nolla.

6 72 Jos kerroin γ = C P /C V oletetaan lämpötilavälillä (T C, ) vakioksi, tilavuuksien V b ja V c sekä V a ja V d välillä on yhtälön (2.25) mukaan relaatiot V γ 1 b = T C Vc γ 1 ja Va γ 1 = T C V γ 1 d. Jakamalla ensimmäinen yhtälö puolittain toisella saadaan tulos ( Vb V a ) γ 1 = ( Vc V d ) γ 1, ts. V b V a = V c V d. (6.19) Tämä yhdessä yhtälöiden (6.15) ja (6.16) kanssa osoittaa, että lämpömäärien ja lämpötilojen välinen relaatio (6.13) on tässäkin tapauksessa voimassa. Yhtälöiden (6.15) - (6.19) mukaan kiertoprosessin aikana tehty nettotyö on W = W ab + W bc W cd W da = nr( T C ) ln V b V a. (6.20) Tästä ja Q H :n lausekkeesta (6.15) saadaan suoraan koneen hyötysuhteeksi (6.1) joka on sopusoinnussa yleisen tuloksen (6.14) kanssa. η = W Q H = T C = η max, (6.21) Yhtälön (6.13) johto perustui entropian muutoksen lausekkeeseen S = Q/T, joka puolestaan perustuu pohjimmiltaan termodynaamisen lämpötilan T määrittelevään yhtälöön (4.9) ( S/ E) V = 1/T. Täsmälleen sama lämpömäärien Q ja lämpötilojen T välinen relaatio (6.13) saatiin myös yhtälöitä (6.15), (6.16) ja (6.19) käyttämällä. Nämä yhtälöt perustuvat aivan toisenlaiseen lämpötilan T määrittely-yhtälöön, ideaalikaasun tilanyhtälöön (1.11) P V = nrt, ja sen määrittelemään ideaalikaasulämpötilaan. Koska molemmat lämpötilan määrittely-yhtälöt johtavat samaan tulokseen (6.13), voidaan todeta, että termodynaaminen lämpötila-asteikko on identtinen ideaalikaasulämpötila-asteikon kanssa, kuten valintaa (4.9) tehtäessä ennakoitiin. Molemmat määritelmät johtavat samaan absoluuttiseen lämpötila-asteikkoon eli Kelvin-asteikkoon. 6-3 Käytännöllisiä sovelluksia Polttomoottori (engl. internal combustion engine) on tunnetuin esimerkki lämpövoimakoneesta. Siinä lämpöenergia tuotetaan polttamalla sylinterin sisällä polttoainetta. Sen kaksi päätyyppiä ovat kehittäjiensä Nikolaus Otton ja Rudolf Dieselin mukaan nimetyt ottomoottori ja dieselmoottori. Ottomoottori Kuva 4 esittää nelitahtisen (engl. four-stroke) ottomoottorin toimintaa. (a) Imutahdin (engl. intake stroke) aikana mäntä liikkuu alaspäin, jolloin sylinteriin virtaa avoimen imuventtiilin (engl. intake valve) kautta ilman ja bensiinihöyryn seos. Nykyaikaiseen ruiskutusmoottoriin polttoaine syötetään yleensä välittömästi imuventtiilin eteen (sylinterin ulkopuolelle) sijoitetulla, elektronisesti ohjatulla ruiskutussuuttimella (engl. injector), jonka avulla ruiskutettavaa polttoaineannosta ja ruiskutusajankohtaa voidaan säätää hyvin tarkasti (kuva 5).

7 73 Kuva 4. Kuva 5. (b) Puristustahdin (engl. compression stroke) aikana imuventtiili on kiinni ja ylöspäin liikkuva mäntä puristaa polttoaineseoksen lähes adiabaattisesti maksimitilavuudesta rv minimitilavuuteen V, missä r on moottorin puristussuhde (engl. compression ratio). (c) Puristustahdin lopussa sytytystulppa (engl. spark plug) sytyttää polttoaineseoksen. Palamisen tuottaman lämpömäärän takia kaasun lämpötila nousee ja paine kasvaa nopeasti ja lähes isokoorisesti. (d) Työtahdin (engl. power stroke) aikana kuumentunut kaasu laajenee lähes adiabaattisesti maksimitilavuuteen rv työntäen mäntää alaspäin ja tehden työtä. (e) Poistotahdin (engl. exhaust stroke) alussa poistoventtiili (engl. exhaust valve) avautuu, jolloin kaasun lämpötila ja paine laskevat nopeasti ja lähes isokoorisesti. Tämän jälkeen mäntä liikkuu ylöspäin ja työntää palaneen polttoaineseoksen poistoventtiilin kautta sylinterin ulkopuolelle. Poistoventtiilin sulkeuduttua imuventtiili avautuu ja moottorin seuraava imutahti alkaa.

8 74 Kuva 6. Kuva 6 esittää ottomoottorin idealisoidun kiertoprosessin P V -diagrammia. Polttoaineseoksen palaessa systeemi ottaa vakiotilavuudessa välillä b c vastaan lämpömäärän Q H > 0, joka voidaan esittää kaasun lämpökapasiteetin C V määritelmän perusteella lämpötilan muutoksen T c T b funktiona muodossa Q H = C V (T c T b ), (6.22) jos C V oletetaan välillä (T b, T c ) vakioksi. Vastaavasti systeemi luovuttaa poistotahdin aikana ympäristöönsä vakiotilavuudessa välillä d a lämpömäärän Q C > 0, joka on Q C = C V (T d T a ). (6.23) Muuta lämmönvaihtoa systeemin ja sen ympäristön välillä ei ole, koska puristus- ja työtahdit (prosessit a b ja c d) ovat adiabaattisia. Näin ollen ottomoottorin hyötysuhde (6.1) on η = 1 Q C Q H = 1 T d T a T c T b. (6.24) Tätä lauseketta voidaan yksinkertaistaa käyttämällä hyväksi ideaalikaasun adiabaattiselle ja reversiibelille tilavuuden muutokselle johdettua yhtälöä (2.25). Sen mukaan lämpötilojen T a ja T b sekä T d ja T c välillä on relaatiot T a (rv ) γ 1 = T b V γ 1 ja T d (rv ) γ 1 = T c V γ 1, ts. T b = T a r γ 1 ja T c = T d r γ 1. (6.25) Kun nämä T b :n ja T c :n lausekkeet sijoitetaan yhtälöön (6.24), saadaan hyötysuhteen lausekkeeksi η = 1 r (γ 1). (6.26) Toisaalta yhtälön (6.25) mukaan r γ 1 = T b /T a, joten hyötysuhde voidaan esittää myös muodossa η = 1 T a T b. (6.27)

9 Jos ottomoottorin puristussuhde on r = 8 ja γ = 1, 40 (kuten ilmalla), yhtälöstä (6.26) laskettu teoreettinen hyötysuhde on η = 0, 56 (56 %). Lausekkeesta (6.26) nähdään, että hyötysuhdetta voidaan parantaa kasvattamalla puristussuhdetta. Samalla kuitenkin myös puristustahdin lopussa vallitseva polttoaineseoksen lämpötila T b = T a r γ 1 kohoaa. Jos lämpötila kohoaa liian korkeaksi, polttoaineseos syttyy puristustahdin aikana räjähdyksenomaisesti itsestään. Tämä esisytytys (engl. pre-ignition) aiheuttaa moottorille vahingollista hallitsematonta ja epätasaista nakuttavaa palamista (engl. detonation), nakutusta. Sitä pyritään estämään sopivilla bensiinin lisäaineilla, aikaisemmin lyijytetraetyylillä ja nykyisin metyylitertiääributyylieetterillä (MTBE), jotka nostavat bensiinin puristuskestävyyden mittana käytettävää oktaanilukua (engl. octane rating). Korkeaoktaanista bensiiniä käytettäessä ottomoottorin puristussuhteen maksimiarvo on käytännössä r = 10. Bensiinimoottorien todelliset hyötysuhteet ovat tyypillisesti 35 %:n suuruusluokkaa. Dieselmoottori Kuva 7 esittää dieselmoottorin idealisoitua kiertoprosessia. Dieselmoottori poikkeaa ottomoottorista oleellisimmin polttoaineen syötön ja sytytystavan osalta. Sen imutahdin aikana sylinteriin tulee vain ilmaa, ei polttoaineseosta. Koska puristustahdin a b aikana ei ole vaaraa polttoaineen ennenaikaisesta syttymisestä, voidaan käyttää suurta puristussuhdetta (tyypillisesti r = 15 20). Puristustahdin jälkeen sylinteriin aletaan ruiskuttaa korkealla paineella polttoainetta, joka syttyy siellä olevassa hyvin kuumassa ilmassa itsestään (ilman sytytystulppaa). Polttoaineen ruiskutusta jatketaan palovaiheen b c ajan sellaisella nopeudella, että kaasun paine pysyy palamisen tuottaman lämmön takia koko ajan vakiona. Tänä aikana kaasu laajenee työtä tehden tilavuudesta V b = V tilavuuteen V c = φv b = φv, missä φ = V c /V b on moottorin ruiskutussuhde tai polttosuhde. Kun polttoaineen ruiskutus loppuu, kaasu laajenee adiabaattisesti tilavuuteen V d = rv ja tekee lisää työtä. Lopuksi poistoventtiili avautuu, jolloin kaasun lämpötila ja paine laskevat isokoorisesti. 75 Kuva 7.

10 Sylinteriin ruiskutettavan polttoaineen palaessa systeemi ottaa vakiopaineessa välillä b c vastaan lämpömäärän Q H > 0, joka on Q H = C P (T c T b ), (6.28) jos C P oletetaan välillä (T b, T c ) vakioksi. Palamistuotteiden poistuessa sylinteristä systeemi luovuttaa ympäristöönsä vakiotilavuudessa välillä d a lämpömäärän Q C > 0, joka on Q C = C V (T d T a ). (6.29) Koska prosessit a b (ilman puristaminen) ja c d (palamistuotteiden laajeneminen) ovat adiabaattisia, muuta lämmönvaihtoa ei ole, joten dieselmoottorin hyötysuhde (6.1) on η = 1 Q C = 1 1 T d T a. (6.30) Q H γ T c T b Ideaalikaasun adiabaattiselle ja reversiibelille prosessille johdettua yhtälöä T V γ 1 = vakio käyttämällä lämpötilojen välille saadaan relaatiot T a (rv ) γ 1 = T b V γ 1 ja T d (rv ) γ 1 = T c (φv ) γ 1. (6.31) Vähentämällä nämä yhtälöt puolittain toisistaan saadaan tulos joten hyötysuhteen lausekkeeksi (6.30) tulee 76 T d T a = 1 r γ 1 ( φ γ 1 T c T b ), (6.32) η = 1 1 φ γ 1 T c T b γr γ 1 = 1 1 φ γ 1 T c /T b 1 T c T b γr γ 1. (6.33) T c /T b 1 Ideaalikaasun tilanyhtälön mukaan isobaarisessa prosessissa T/V = vakio, jos kaasun molekyylien lukumäärä ei muutu. Jos palovaihe b c täyttää tämän ehdon, lämpötilojen T c ja T b suhde on T c = V c = φv = φ. (6.34) T b V b V Kun tämä tulos sijoitetaan yhtälöön (6.33), hyötysuhteen lauseke redusoituu lämpötiloista riippumattomaan muotoon η = 1 1 φ γ 1 γr γ 1 φ 1. (6.35) Jos tähän sijoitetaan arvot r = 20, φ = 2 ja γ = 1, 40, hyötysuhteen teoreettiseksi arvoksi saadaan η = 0, 65 (65 %). Dieselmoottorin todellinen hyötysuhde on tyypillisesti 40 %:n suuruusluokkaa. Jäähdytin Jos Carnot n konetta käytetään takaperin, siitä tulee ideaalinen jäähdytin. Esimerkiksi kuvan 3 mukaisessa ideaalikaasuun perustuvassa koneessa kaasu jäähtyy aluksi adiabaattisessa laajenemisessa a d lämpötilaan T C ja ottaa sen jälkeen isotermisessä laajenemisessa d c lämpösäiliösta 2 lämpömäärän Q C. Tämän jälkeen kaasu lämpenee adiabaattisessa puristuksessa c b takaisin alkulämpötilaansa ja luovuttaa isotermisessä puristuksessa b a lämpösäiliöön 1 lämpömäärän Q H. Tämän kiertoprosessin aikana koneeseen tehty

11 nettotyö on sama kuin koneen tekemä nettotyö vastakkaissuuntaisessa kiertoprosessissa, siis yhtälön (6.20) mukainen työ W. Vastaavasti kaasuun isotermisessä laajenemisessa d c absorboitunut lämpömäärä on sama kuin sen isotermisessä puristuksessa c d luovuttama lämpömäärä, siis yhtälön (6.16) mukainen Q C. Kun lisäksi otetaan huomioon, että yhtälön (6.19) mukaan V c /V d = V b /V a, saadaan jäähdyttimen tehokertoimeksi (6.7) 77 ε r = Q C W = T C T C. (6.36) Vertaamalla tätä epäyhtälöön (6.8) nähdään, että saatu ε r on sama kuin tehokertoimen teoreettinen maksimiarvo. Käytännön jäähdyttimien toiminta perustuu yleensä pääasiassa työaineen olomuodon muutokseen. Työainetta sanotaan kylmäaineeksi ja se on yleensä jokin hiilivety, esimerkiksi isobutaani. Kun neste höyrystyy (muuttuu kaasuksi), molekyylit joutuvat kauemmas toisistaan ja niiden välisten vetovoimien aiheuttama potentiaalienergia kasvaa. Jos tämä tapahtuu adiabaattisesti, potentiaalienergian kasvu tapahtuu molekyylien liike-energian kustannuksella ja systeemi jäähtyy. Toisaalta molekyylien liike-energia ja lämpötila pienenevät myös siksi, että prosessin aikana systeemi laajenee ja tekee tällöin työtä, jolloin sen sisäinen energia kokonaisuudessaan pienenee. Jos riittävästi jäähtynyt systeemi asetetaan termiseen kontaktiin jäähdytettävän tilan kanssa, systeemi absorboi tilasta lämpöä, jolloin nesteen höyrystyminen ja systeemin tilavuuden kasvu jatkuvat isotermisesti. Kun työaine on muuttunut melkein kokonaan kaasuksi, se puristetaan adiabaattisesti pienempään tilavuuteen. Lopuksi näin saatu kuumentunut, korkeapaineinen kaasu asetetaan termiseen kontaktiin ympäristönsä kanssa ja puristamista jatketaan. Tällöin kaasu luovuttaa ympäristöönsä isotermisesti lämpöenergiaa ja nesteytyy. Uusi sykli aloitetaan kasvattamalla systeemin tilavuutta adiabaattisesti, jolloin kylmäaine alkaa jälleen höyrystyä ja jäähtyä. Kuva 8 esittää jääkaapin (kuva 9) työaineen kiertoprosessin P V -diagrammia. Kompressori puristaa kylmän ja matalapaineisen kylmäainekaasun välillä d a adiabaattisesti kuumaksi ja korkeapaineiseksi kaasuksi. Se luovuttaa välillä a b lauhduttimessa (engl. condenser) huoneilmaan lämpömäärän Q H ja nesteytyy, jolloin sen tilavuus edelleen pienenee. Tämän jälkeen neste joutuu paisuntaventtiiliin (engl. expansion valve), jossa Kuva 8.

12 78 Kuva 9. se osittain höyrystyen laajenee adiabaattisesti ja jäähtyy välillä b c. Kylmä nesteen ja höyryn seos vastaanottaa höyrystimessä (engl. evaporator) jääkaapin sisältä välillä c d lämpömäärän Q C ja höyrystyy melkein täydellisesti (tilavuuden edelleen kasvaessa). Tämän jälkeen kylmäaine joutuu jälleen kompressoriin ja aloittaa uuden syklin. Jääkaapin työaine virtaa kuvan 9 mukaisesti suljetussa putkistossa, jäähdytyspiirissä. Sen toinen osa muodostuu jääkaapin sisällä olevasta höyrystinputkistosta, jossa kylmäaineella on matala lämpötila ja alhainen paine. Toinen osa on jääkaapin ulkopuolella oleva lauhdutinputkisto, jossa työaine on kuumaa ja korkeapaineista. Normaalisti jäähdytyspiirin molemmat osat sisältävät kylmäinetta sekä neste- että kaasuolomuodossa, jotka esiintyvät niissä samanaikaisesti keskinäisessä tasapainotilassa. Esimerkki Erään jääkaapin kylmäaineen lämpötila, paine, tilavuus ja sisäinen energia sekä nesteolomuodon osuus kylmäaineen muodostamasta neste-höyry-seoksesta ovat kuvan 8 mukaisissa tiloissa a, b, c ja d seuraavat: Tila T ( C) P (kpa) V (m 3 ) E (kj) Nestettä (%) a , b , c , d , (a) Mikä on Q H? (b) Mikä on Q C? (c) Minkä työn kompressoria käyttävä moottori tekee yhden syklin aikana? (d) Mikä on jääkaapin tehokerroin?

13 (a) Q H on välillä a b huoneilmaan siirtyvä lämpömäärä. Kyseessä on isoterminen ja isobaarinen tilavuuden pieneneminen, jossa systeemiin tehdään yhtälön (2.15) mukaan työ W = P V = 2, (0, , 0682) J = 135 kj. Taulukon mukaan systeemin sisäisen energian muutos on E = E(b) E(a) = 1171 kj 1963 kj = 792 kj. Näin ollen ensimmäisen pääsäännön (2.7) mukaan systeemiin siirtyy prosessin aikana lämpömäärä Q = E W = 792 kj 135 kj = 927 kj, ts. systeemi luovuttaa huoneilmaan lämpömäärän Q H = 927 kj. Kylmäaineen sisäinen energia siis pienenee huomattavasti, vaikka sen lämpötila ei muutu. Tämä johtuu kylmäaineen nesteytymisestä: molekyylien välisten vetovoimien potentiaalienergia pienenee molekyylien päästessä lähemmäs toisiaan. (b) Prosessi c d on systeemin isoterminen ja isobaarinen laajeneminen, jonka aikana se tekee työn W = P V = (0, , 2202) J = 84 kj (tässä kappaleessa käytetyn merkkisopimuksen mukaisesti W :llä tarkoitetaan positiivista työtä, nyt siis systeemin tekemää työtä). Systeemin sisäisen energian muutos on E = 1651 kj 1005 kj = 646 kj. Näin ollen systeemin jääkaapista vastaanottama lämpömäärä on Q = Q C = E + W = 646 kj + 84 kj = 730 kj. Tässä prosessissa kylmäaineen sisäinen energia kasvaa, koska molekyylien välinen potentiaalienergia kasvaa niiden joutuessa höyrystymisen takia kauemmas toisistaan. (c) Yhden syklin aikana systeemi luovuttaa ympäristöönsä nettolämpömäärän Q H Q C = 927 kj 730 kj = 197 kj. Koska tämä energia on tuotava systeemiin ulkopuolelta, sen täytyy olla kompressoria käyttävän moottorin tekemä työ yhden syklin aikana: W = 197 kj. (d) Jääkaapin tehokerroin on määrittely-yhtälön (6.7) mukaan ε r = Q C /W = 730/197 = 3,71. Se on sama kuin lämpötilojen 5 C = 278 K ja 80 C välillä toimivan jäähdyttimen tehokertoimen yläraja ε r max = T C /( T C ) = 278/75 = 3, Kuva 10 esittää ilmastointilaitetta, joka toimii täsmälleen samoin kuin jääkaappi. Jäähdytettävänä tilana on tässä tapauksessa huone tai koko rakennus, ja lämpö luovutetaan Kuva 10.

14 ulkoilmaan. Tätä varten höyrystin on sijoitettu rakennuksen sisäpuolelle ja lauhdutin sen ulkopuolelle. Lämpöpumppu Lämpöpumppu toimii samalla tavalla kuin jääkaappi, mutta nyt lämpö otetaan rakennuksen ulkopuolelta ja siirretään sisäpuolelle. Tavallisimmat lämmönlähteet ovat maaperä, vesistö, ulkoilma ja rakennuksen ilmanvaihdon poistoilma. Lämpöpumpun tehokkain lämmönlähde on maa- tai kallioperä. Sitä hyödyntävä maalämpöpumppu voidaan mitoittaa rakennuksen päälämmitysjärjestelmäksi talven kaikkiin olosuhteisiin. Siinä lämpö otetaan maahan sijoitetussa putkistossa kiertävästä liuoksesta. Aiemmin käytettiin yleisimmin vaakasuoraan noin 1 m:n syvyyteen sijoitettua putkistoa. Nykyään suosituimmaksi maalämmön keräysjärjestelmäksi on tullut ns. lämpökaivo, joka ei vaadi juuri lainkaan tilaa. Siinä lämmönkeräysputket on sijoitettu rakennuksen viereen porattuun kaivoon, jonka syvyys on tavallisesti m (ja halkaisija on noin 15 cm). Yli 15 m:n syvyydessä kallioperässä vallitseva lämpötila on vuodenajoista riippumatta lähes vakio (paikasta ja syvyydestä riippuen C). Vastaavalla tavalla lämpöä voidaan ottaa myös vesistöistä. Tässä tapauksessa lämmönkeräysputket sijoitetaan vesistön pohjalle, jolloin liuokseen siirtyy lämpöä sekä vedestä että pohjasedimentistä. Suomessa maalämpöpumpun tehokertoimen (6.9) ε p = Q H /W (lämpökertoimen) todellinen vuotuinen keskimääräinen arvo vaihtelee normaaleissa käyttöolosuhteissa välillä 2, 6 3, 6. Se on sitä suurempi, mitä korkeampi on lämmönlähteen lämpötila ja mitä matalampi on käyttökohteen lämpötila. Tästä syystä lämpöpumpun kannalta parhaat lämmönjakotavat ovat vesikiertoinen lattialämmitys (jossa putkistoon menevän veden lämpötila on vain vähän yli 30 C) ja ilmalämmitys. Ilmalämpöpumppu (kuva 11) ottaa lämpöä ulkoilmasta rakennuksen ulkoseinälle sijoitetulla puhallin/höyrystinyksiköllä. Lämmön luovutus tapahtuu joko yhden tai useamman puhallin/ lauhdutinyksikön avulla suoraan rakennuksen sisäilmaan tai vaihtoehtoisesti joko käyttöveden esilämmittämiseen ja/tai lämmitysverkoston veteen. Ilmalämpöpumpun tehokerroin laskee nopeasti ulkolämpötilan laskiessa: parhailla nykyisillä laitteilla tehokerroin on +7 C:n lämpötilassa 5, 5 ja 20 C:n lämpötilassa 2, 5. Ilmalämpöpumppua ei kannata pitää lainkaan käynnissä, jos lämpötila on alempi kuin noin 25 C. Tästä syystä ilmalämpöpumppu ei Suomen oloissa sovellu rakennuksen ainoaksi lämmityslaitteeksi, eikä sitä mitoiteta suurimman mahdollisen energiatarpeen mukaan. Toisaalta kovien pakkasten esiintyminen rajoittuu normaalisti vain hyvin pieneen osaan vuodesta. Tästä syystä pakkaset eivät pienennä kovin oleellisesti ilmalämpöpumpulla saatavaa säästöä. Esimerkiksi vain puolelle teholle suurimmasta mahdollisesta energiatarpeesta mitoitettu lämpöpumppu voi tuottaa yli 90 % vuoden aikana tarvittavasta lämmitysenergiasta. Ilmalämpöpumpun hankintakustannukset ovat myös huomattavasti edullisemmat kuin maalämpöpumpulla. Lähes kaikki ilmalämpöpumput voidaan kääntää toimimaan myös käänteiseen suuntaan, joten ne voivat toimia kesällä sisäilman jäähdyttiminä. Tämä kuluttaa energiaa, mutta Suomessa kesäajan kokonaiskulutus on kuitenkin normaalisti vain pieni osa siitä energiasta, jonka lämpöpumppu talven aikana säästää. Tämä johtuu kesä- ja talviajan erilaisista lämpötilaeroista. Talvella lämpöpumppu pyrkii pitämään rakennuksen sisäosat jopa yli 40 C ulkoilmaa lämpimämpänä. Kesällä yleensä riittää, että sisälämpötila on enintään 5 C matalampi kuin ulkolämpötila. Lisäksi viilennystä tarvitaan kesällä vain ajoittain, mutta lämmitystä tarvitaan talvella jatkuvasti. 80

15 Kuva

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun

Lisätiedot

Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics)

Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics) e1 3 Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics) Tärkeä käsite termodynamiikassa on termodynaamisen prosessin suunta. Kaikki prosessit ovat oikeasti irreversiibelejä (irreversible),

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1)

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1) LH0- Lämövoimakoneen kiertorosessin vaiheet ovat: a) Isokorinen aineen kasvu arvosta arvoon 2, b) adiabaattinen laajeneminen, jolloin aine laskee takaisin arvoon ja tilavuus kasvaa arvoon 3 ja c) isobaarinen

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Pentti Saarenrinne Copyright TUT and The McGraw-Hill Companies,

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

2. Termodynamiikan perusteet

2. Termodynamiikan perusteet Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan

Lisätiedot

Lämpöpumpun toiminta. Toiminnan periaate

Lämpöpumpun toiminta. Toiminnan periaate Lämpöpumpun toiminta Lämpöpumppu eroaa monissa suhteissa perinteisestä öljylämmityksestä sekä suorasta sähkölämmityksestä. Kuten öljylämmitys, lämpöpumppulämmitys on keskuslämmitys, toisin sanoen lämpö

Lisätiedot

19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit

19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit 19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit Kokeelliset havainnot ja teoria (mm. luku 18.4) Ainemäärän pysyessä vakiona harvan kaasun sisäenergia riippuu ainoastaan sen lämpötilasta eli U = U(T

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Energia Asteikot ja energia -Miten pakkasesta saa energiaa? Celsius-asteikko on valittu ihmisen mittapuun mukaan, ei lämpöenergian. Atomien liike pysähtyy vasta absoluuttisen

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Tekijä: Markku Savolainen. STIRLING-moottori

Tekijä: Markku Savolainen. STIRLING-moottori Tekijä: Markku Savolainen STIRLING-moottori Perustietoa Perustietoa Palaminen tapahtuu sylinterin ulkopuolella Moottorin toiminta perustuu työkaasun kuumentamiseen ja jäähdyttämiseen Työkaasun laajeneminen

Lisätiedot

ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET. Lämpöpumput 1.10.2010

ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET. Lämpöpumput 1.10.2010 ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET Lämpöpumput 1.10.2010 Lämpöpumpun toiminta ja pääkomponentit Lämpöpumppu ottaa lämpöä alemmasta lämpötilatasosta ja siirtää sitä korkeampaan lämpötilatasoon.

Lisätiedot

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa!

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa! Tervetuloa! Maalämpö 15.3.2012 Arto Koivisto Viessmann Oy Mustertext Titel Vorlage 1 01/2006 Viessmann Werke Ennen aloitusta... Tervetuloa! Osallistujien esittely. (Get to together) Mitä omia kokemuksia

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia) Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden

Lisätiedot

ENERGIATEHOKAS KARJATALOUS

ENERGIATEHOKAS KARJATALOUS ENERGIATEHOKAS KARJATALOUS PELLON GROUP OY / Tapio Kosola ENERGIAN TALTEENOTTO KOTIELÄINTILALLA Luonnossa ja ympäristössämme on runsaasti lämpöenergiaa varastoituneena. Lisäksi maatilan prosesseissa syntyvää

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

TEKNIIKKA. Dieselmoottorit jaetaan kahteen ryhmään: - Apukammiomoottoreihin - Suoraruiskutusmoottoreihin

TEKNIIKKA. Dieselmoottorit jaetaan kahteen ryhmään: - Apukammiomoottoreihin - Suoraruiskutusmoottoreihin TALOUDELLISUUS Dieselmoottori on vastaavaa ottomoottoria taloudellisempi vaihtoehto, koska tarvittava teho säädetään polttoaineen syöttömäärän avulla. Ottomoottorissa kuristetaan imuilman määrää kaasuläpän

Lisätiedot

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA IKI-Kiuas Oy teetti tämän tutkimuksen saatuaan taloyhtiöiltä positiivista palautetta kiukaistaan. Asiakkaat havaitsivat sähkölaskujensa pienentyneen,

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista.

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista. Taloudellista ja vihreää energiaa Scancool-teollisuuslämpöpumput Teollisuuslämpöpumpulla 80 % säästöt energiakustannuksista! Scancoolin teollisuuslämpöpumppu ottaa tehokkaasti talteen teollisissa prosesseissa

Lisätiedot

Recair Booster Cooler. Uuden sukupolven cooler-konesarja

Recair Booster Cooler. Uuden sukupolven cooler-konesarja Recair Booster Cooler Uuden sukupolven cooler-konesarja Mikä on Cooler? Lämmön talteenottolaite, joka sisältää jäähdytykseen tarvittavat kylmä- ja ohjauslaitteet LAUHDUTINPATTERI HÖYRYSTINPATTERI 2 Miten

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ II LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ 7. Lämpö ja työ... 70 7.2 Kaasun tekemä laajenemistyö... 7 7.3 Laajenemistyön erityistapauksia... 73 7.3. Työ isobaarisessa tilanmuutoksessa... 73 7.3.2 Työ isotermisessä

Lisätiedot

Termofysiikan perusteet

Termofysiikan perusteet Termofysiikan perusteet Ismo Napari ja Hanna Vehkamäki T 2 Q 2 C W Q 1 T 1 (< T 2 ) Helsingin yliopisto, 2013 (Päivitetty 18. joulukuuta 2013) Sisältö 1 Johdanto 1 1.1 Termofysiikan osa-alueet.......................

Lisätiedot

Toimiva ilmanvaihtojärjestelmä 7.4.2014

Toimiva ilmanvaihtojärjestelmä 7.4.2014 Energiaekspertin jatkokurssi Toimiva ilmanvaihtojärjestelmä 7.4.2014 Jarmo Kuitunen 1. ILMANVAIHTOJÄRJESTELMÄT 1.1 Painovoimainen ilmanvaihto 1.2 Koneellinen poistoilmanvaihto 1.3 Koneellinen tulo-/poistoilmanvaihto

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö 1. Selitä fysikaalisesti, miksi: a) sateessa kastuneet vaatteet tuntuvat kylmältä, b) pyykit kuivuvat myös pakkasessa, c) uunista pudonneen hehkuvan hiilenpalan

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

T-MALLISTO. ratkaisu T 0

T-MALLISTO. ratkaisu T 0 T-MALLISTO ratkaisu T 0 120 Maalämpö säästää rahaa ja luontoa! Sähkölämmitykseen verrattuna maksat vain joka neljännestä vuodesta. Lämmittämisen energiatarve Ilmanvaihdon 15 % jälkilämmitys Lämpimän käyttöveden

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin 05/2013 SCS10-15 SCS21-31 SCS40-120 SCS10-31 Scanvarm SCS-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 T 10-31 Lämpöässä T-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin. Tyypillisiä T 10-31 -mallien

Lisätiedot

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120 Ratkaisu suuriin kiinteistöihin Lämpöässä T/P T/P 60-120 T/P 60-120 Ratkaisu kahdella erillisvaraajalla T/P 60-120 -mallisto on suunniteltu suuremmille kohteille kuten maatiloille, tehtaille, päiväkodeille,

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

LÄMPÖPUMPUT. Lämpöpumpputyyppejä. Tiesitkö! Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput. Ilmalämpöpumput MIKSI TARVITAAN LÄMPÖPUMPPUJA

LÄMPÖPUMPUT. Lämpöpumpputyyppejä. Tiesitkö! Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput. Ilmalämpöpumput MIKSI TARVITAAN LÄMPÖPUMPPUJA Tiesitkö! 1.2.2013 Energiakorjaus Tekninen kortti kortti 16 LÄMPÖPUMPUT pientalot Lämpöpumpputyyppejä Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput Nykyään suosittu ilmalämpöpumppu on järkevä

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Kaikista aurinkoisin

Lisätiedot

Peruslaskutehtävät fy2 lämpöoppi kurssille

Peruslaskutehtävät fy2 lämpöoppi kurssille Peruslaskutehtävät fy2 lämpöoppi kurssille Muista että kurssissa on paljon käsitteitä ja ilmiöitä, jotka on myös syytä hallita. Selvitä itsellesi kirjaa apuna käyttäen mitä tarkoittavat seuraavat fysiikan

Lisätiedot

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako 5 Kaukolämmityksen automaatio 5.1 Kaukolämmityskiinteistön lämmönjako Kaukolämmityksen toiminta perustuu keskitettyyn lämpimän veden tuottamiseen kaukolämpölaitoksella. Sieltä lämmin vesi pumpataan kaukolämpöputkistoa

Lisätiedot

Mika Turunen JAMK Teknologia

Mika Turunen JAMK Teknologia Maidon varastointi ja energiasäästöt Mika Turunen JAMK Teknologia Maidonvarastointi ja energiasäästöt Maito jäähdytetään yleensä tunnin sisällä lypsyn loppumisesta + 4 C :een tilasäiliössä. Maito voidaan

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Ilmalämpöpumput (ILP)

Ilmalämpöpumput (ILP) Ilmalämpöpumput (ILP) 1 TOIMINTA Lämmönlähteenä ulkoilma Yleensä yksi sisäja ulkoyksikkö Lämmittää sisäilmaa huonejärjestelyn vaikutus suuri 2 1 ULKO- JA SISÄYKSIKKÖ Ulkoyksikkö kierrättää lävitseen ulkoilmaa

Lisätiedot

Maalämpöpumppu Geopro GT. Suomalaisessa maaperässä on erityistä lämpöä

Maalämpöpumppu Geopro GT. Suomalaisessa maaperässä on erityistä lämpöä Maalämpöpumppu Geopro GT Suomalaisessa maaperässä on erityistä lämpöä Ympäristöystävällinen lämmitysenergia varastoituu maaperässämme Tavalla tai toisella me kaikki elämme luonnosta. Siitä meidän tulee

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

LÄMPÖPUMPPUJÄRJESTELMÄT INTEGROIDUSSA KYLMÄ- JA LÄMPÖTEHON TUOTOSSA

LÄMPÖPUMPPUJÄRJESTELMÄT INTEGROIDUSSA KYLMÄ- JA LÄMPÖTEHON TUOTOSSA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Energiatekniikan koulutusohjelma BH10A0200 Energiatekniikan kandidaatintyö ja seminaari LÄMPÖPUMPPUJÄRJESTELMÄT INTEGROIDUSSA KYLMÄ- JA LÄMPÖTEHON

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

2013 UUTUUS- MALLI. Mitsubishi Electric Ilmalämpöpumput MSZ-FH MALLISARJA

2013 UUTUUS- MALLI. Mitsubishi Electric Ilmalämpöpumput MSZ-FH MALLISARJA 2013 UUTUUS- MALLI Mitsubishi Electric Ilmalämpöpumput MSZ-FH MALLISARJA HANKINTA- TURVATUOTE Mitsubishi Electric Inverter -ilmalämpöpumput Anna luotettavan Mitsubishi Electric -ilmalämpöpumpun lämmittää

Lisätiedot

ALFÉA EXCELLIA DUO. : 11 16 kw ( ) 190 L

ALFÉA EXCELLIA DUO. : 11 16 kw ( ) 190 L DUO : 11 16 kw ( ) COP.3 S 19 L Alféa Excellia KORKEA SUORITUSKYKY: Loistava ratkaisu lämmityssaneerauksiin Korkean suorituskyvyn omaavan AIféa Excellia avulla pystytään tuottamaan 6 C asteista käyttövettä

Lisätiedot

Lämpöopin ensimmäinen pääsääntö ja kaasuprosessit lukiossa

Lämpöopin ensimmäinen pääsääntö ja kaasuprosessit lukiossa Lämpöopin ensimmäinen pääsääntö ja kaasuprosessit lukiossa Risto Leinonen, Mervi A. Asikainen ja Pekka E. Hirvonen Fysiikan ja matematiikan laitos, Itä-Suomen yliopisto Lämpöopin ensimmäinen pääsääntö

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla Mikko Pieskä, Merinova Yleisesti lämpöpumpuista sisältö Lämpöpumppujen nykytilanne Lämpöpumppujen

Lisätiedot

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla PRO Greenair Heat Pump -laitesarja Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla Raikas sisäilma energiatehokkaalla ilmanvaihdolla PRO Greenair Heat Pump -laitesarja Sisäänrakennettu ilmalämpöpumppu

Lisätiedot

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

Veden käyttö korkean lämpötilan kylmähöyryprosessin kiertoaineena

Veden käyttö korkean lämpötilan kylmähöyryprosessin kiertoaineena Miika Kakko Veden käyttö korkean lämpötilan kylmähöyryprosessin kiertoaineena Soveltavan fysiikan (Uusiutuvan energian maisteriohjelma) pro gradu -tutkielma 3. toukokuuta 2012 JYVÄSKYLÄN YLIOPISTO FYSIIKAN

Lisätiedot

Tekniset tiedot LA 11PS

Tekniset tiedot LA 11PS Tekniset tiedot LA 11PS Laitteen tekniset tiedot LA 11PS Rakenne - Lämmönlähde Ulkoilma - Toteutus Yleisrakenne - Säätö WPM 2006 seinään asennettu - Asennuspaikka Ulkotila - Suoritustasot 1 Käyttörajat

Lisätiedot

Maalämmön täystehoiset pikkujättiläiset. Vs 6.0 Vs 8.0 Vs 10.0 Vs 12.0

Maalämmön täystehoiset pikkujättiläiset. Vs 6.0 Vs 8.0 Vs 10.0 Vs 12.0 Maalämmön täystehoiset pikkujättiläiset Vs 6.0 Vs 8.0 Vs 10.0 Vs 12.0 Maalämpöjärjestelmä hyödyntää luonnon omaa ilmaista energiaa. Lämpöä kerätään talteen maahan, lämpökaivoon tai vesistöön asennettavalla

Lisätiedot

MANTA uusi SISÄASENTEISET NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET JÄÄHDYTYSKONEET. Mikroprosessori JÄÄHDYTYS/LÄMMITYS. RCGROUP SpA C_GNR_0508

MANTA uusi SISÄASENTEISET NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET JÄÄHDYTYSKONEET. Mikroprosessori JÄÄHDYTYS/LÄMMITYS. RCGROUP SpA C_GNR_0508 MANTA MANTA SISÄASENTEISET NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET JÄÄHDYTYSKONEET JÄÄHDYTYS/LÄMMITYS Jäähdytysteho Lämmitysteho Kylmäaine Mikroprosessori 24,5 649,9 25,4 700,4 scroll R410A MP.COM T: MANTA.W

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

Tulistusmaalämpöpumppu Geopro SH. Suomalaisessa maaperässä on erityistä lämpöä

Tulistusmaalämpöpumppu Geopro SH. Suomalaisessa maaperässä on erityistä lämpöä Tulistusmaalämpöpumppu Geopro SH Suomalaisessa maaperässä on erityistä lämpöä Ympäristöystävällinen lämmitysenergia varastoituu maaperässämme Tavalla tai toisella me kaikki elämme luonnosta. Siitä meidän

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

Kuinka entropian käsitteeseen tultiin?

Kuinka entropian käsitteeseen tultiin? 1 Kuinka entropian käsitteeseen tultiin? Aluksi Tämän kirjoitelman tarkoituksena on pyrkiä kuvailemaan, kuinka termodynamiikan syntyhetkillä 1800-luvun puolivälin vaiheilla päädyttiin entropian käsitteeseen.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin.

Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin. Thermia Diplomat Optimum G3 paras valinta pohjoismaisiin olosuhteisiin. Ruotsin energiaviranomaisten maalämpöpumpputestin tulokset 2012 Tiivistelmä testituloksista: Ruotsin energiaviranomaiset testasivat

Lisätiedot

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Simo Paukkunen Pohjois-Karjalan ammattikorkeakoulu liikelaitos Biotalouden keskus simo.paukkunen@pkamk.fi, 050 9131786 Lämmitysvalinnan lähtökohtia

Lisätiedot

Ilmalämpöpumput. IVT Nordic Inverter lämmittää ja säästää. www.ivt.fi

Ilmalämpöpumput. IVT Nordic Inverter lämmittää ja säästää. www.ivt.fi Ilmalämpöpumput IVT Nordic Inverter lämmittää ja säästää. 359 001 www.ivt.fi Ilmalämpöpumpun toiminta Ilmalämpöpumpun toiminta on yksinkertaista ja ympäristöystävällistä. Tekniikka perustuu lämmön keräämiseen

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Keräimet asennetaan

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Timo Luukkainen 2009-05-04 Ympäristön ja energian säästö yhdistetään parantuneeseen

Lisätiedot

Ilmankos Energiailta. Timo Routakangas 12.10.2010

Ilmankos Energiailta. Timo Routakangas 12.10.2010 Ilmankos Energiailta Timo Routakangas 12.10.2010 C 2 H 5 OH Esittely Timo Routakangas Yrittäjä Energiamarket Tampere Oy Energiamarket Turku Oy Energiamarket Tyrvää Oy RM Lämpöasennus Oy 044 555 0077 timo.routakangas@st1energiamarket.fi

Lisätiedot

Lämpöässä Vm kaikki mitä tarvitset. Vm 9.0 Vm 11.0 Vm 14.0 Vm 17.0

Lämpöässä Vm kaikki mitä tarvitset. Vm 9.0 Vm 11.0 Vm 14.0 Vm 17.0 Lämpöässä Vm kaikki mitä tarvitset Vm 9.0 Vm 11.0 Vm 14.0 Vm 17.0 Lämpöässän Vm:n avulla lämmität, jäähdytät ja tuotat lämmintä käyttövettä helposti, edullisesti ja ekologisesti ympäri vuoden. Lämpöässä

Lisätiedot

Energiapaaluilla energiatehokkaita rakennuksia

Energiapaaluilla energiatehokkaita rakennuksia WHITE PAPER Energiapaaluilla energiatehokkaita rakennuksia www.ruukki.fi Ruukin energiapaalut yhdistävät rakennuksen perustamisen ja maalämmön keräämisen. Energiapaalut soveltuvat erityisesti toimistoihin,

Lisätiedot

, voidaan myös käyttää likimäärälauseketta

, voidaan myös käyttää likimäärälauseketta ILMAN KOSTEUS Ilma sisältää aina jonkin verran vesihöyryä. Ilman vesihöyrypitoisuudella eli kosteudella on huomattava merkitys ihmisten viihtyvyydelle ja terveydelle, erilaisten materiaalien ja esineiden

Lisätiedot

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA TOTEUTUSKUVAUS EEMONTTI - REMONTISTA Kohdekiinteistö 2: 70-luvun omakotitalo Kiinteistön lähtötilanne ennen remonttia EEMontti kohdekiinteistö 2 on vuonna 1974 rakennettu yksikerroksinen, 139 m², omakotitalokiinteistö,

Lisätiedot

Aurinkolaboratorio. ammattikorkeakoulu ENERGIA ++

Aurinkolaboratorio. ammattikorkeakoulu ENERGIA ++ SAtakunnan ammattikorkeakoulu ENERGIA ++ Aurinkolaboratorio Satakunnan ammattikorkeakoulu Energia++ Tutkimus-, kehittämis- ja innovaatiotoiminta elinkeinoelämän palveluksessa Aurinkolaboratorio Satakunnan

Lisätiedot

Lämpöpumppu omakotitalon lämmitysjärjestelmänä

Lämpöpumppu omakotitalon lämmitysjärjestelmänä i Tieto- ja sähkötekniikan tiedekunta Eeva Lehesvuori Lämpöpumppu omakotitalon lämmitysjärjestelmänä Kandidaatintyö 7.5.2009 Tarkastaja: TkT, Aki Korpela ii Sisällysluettelo 1. JOHDANTO...1 2. LÄMPÖPUMPUN

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot