Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA

Koko: px
Aloita esitys sivulta:

Download "Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA"

Transkriptio

1 Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 7 ENTROPIA Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tavoitteet Soveltaa termodynamiikan toista pääsääntöä prosesseihin. Määritellään uusi ominaisuus entropia toisen pääsäännön vaikutusten kvantitatiiviseen mittaukseen. Esitetään entropian kasvun periaate. Lasketaan entropian muutokset jotka tapahtuvat prosesseissa puhtaille väliaineille, kokooonpuristumattomille väliaineille ja ideaalikaasuille. Tutkitaan ideaalisten prosessien erikoistapauksen, isentrooppisten prosessien toimintaa ja johdetaan suureiden välisiä riippuvuuksia näissä prosesseissa. Johdetaan palautuvan ajasta riippumattoman työn yhtälöt. Johdetaan isentrooppiset hyötysuhteet eri ajasta riippumattomille laitteille. Esitellään ja sovelletaan entropiatasetta joillekkin systeemeille. 2 1

2 ENTROPIA Clausiuksen epäyhtälö Entropian määritelmä Clausiuksen epäyhtälön johtamiseen käytetty järjestelmä. Yhtäsuuruus Clausiuksen epäyhtälössä pätee täysin tai vain sisäisesti palautuville kiertoprosesseilla ja epäyhtälö palautumattomille prosesseille. 3 Entropian muutos kahden tilan välillä on sama olipa prosessi palautuva tai palautumaton. Erikoistapaus: Sisäisesti palautuvat isotermiset lämmönsiirtoprosessit Ominaisuus: Suure, jonka viivaintegraali on nolla (esim., kuten suure tilavuus) Entropia on systeemin ekstensiivinen ominaisuus. Kiertoprosessin netto tilavuuden muutos (ominaisuus) on aina nolla. Tämä yhtälö on erityisen hyödyllinen energiavarastojen entropian muutosten määrittämisessä. 4 2

3 Esimerkkejä: 7-1a Mäntä-sylinterilaite sisältä vettä neste-höyry seoksen a 300 K. Vakio paine prosessissa 750 kj lämpöä siirretään veteen. Lopputuloksena osa vedestä höyrystyy. Laske veden entropian muutos tässä prosessissa! 7-1b Voimalaitoksessa lämmöntuonti ja luovutus tapahtuvat vakio lämpötilassa ja muualla prosessissa ei tapahdu lämmönsiirtoa. Lämpöä tuodaan 3150 kj T=440 o C ja luovutetaan 1950 kj T=20 o C. Onko Clausiuksen epäyhtälö voimassa ja onko prosessi reversiibeli vai irreversiibeli? 7-1c Voimalaitoksessa lämmöntuonti ja luovutus tapahtuvat vakio lämpötilassa ja muualla prosessissa ei tapahdu lämmönsiirtoa. Lämpöä tuodaan 3150 kj T=440 o C ja luovutetaan 1294,46 kj T=20 o C. Onko Clausiuksen epäyhtälö voimassa ja onko prosessi reversiibeli vai irreversiibeli? Laske myös nettotyö ja prosessin hyötysuhde! 5 ENTROPIAN KASVUN PERIAATE Kiertoprosessi, joka koostuu palautuvasta ja palutumattomasta prosessita. Yhtäsuuruus pätee sisäisesti palautuville prosesseille ja epäyhtälö palautumattomille prosesseille. Jonkinverran entropiaa kehitetään tai syntyy palautumattomassa prosessissa ja tämä kehittyminen johtuu ainoastaan palautumattomuuksien olemassa olosta. Entropian syntyminen: S gen on aina positiivinen suure tai nolla. Voiko systeemin entropia pienentyä prosessin aikana? 6 3

4 Eristetyn systeemin entropian muutos on sen komponenttien entropian muutosten summa ja se ei ole koskaan pienempi kuin nolla. Systeemi ja sen ympäristö muodostavat eristetyn systeemin. Entropian kasvun periaate 7 Muutamia huomoita entropiasta Systeemin entropian muutos voi olla negatiivinen, mutta entropian syntyminen ei voi olla sitä. 1. Prosessit voivat tapahtua vain tiettyyn suuntaan, ei mihin tahansa suuntaan. Prosessin täytyy edetä suuntaan joka noudattaa entropian kasvun periaatetta, siis, S gen 0. Prosessi, joka on tätä periaatetta vastaan, on mahdoton. 2. Entropia on säilymätön ominaisuus ja ei ole olemassa entropian säilymisen periaatetta. Entropia säilyy vain ideaalisessa palautuvassa prosessa ja kasvaa kaikissa todellisissa prosesseissa. 3. Teknisten systeemien tehokkuus heikkenee palautumattomuuksien olemassa olon vuoksi ja entropian syntyminen kuvaa palautumattomuuksien suuruutta prosessissa. Sitä käytetään järjestelmien tehokkuuden arvioinnin kriteerinä. 8 4

5 Esimerkki 7-2 Lämmönlähde 800 K menettää 2000 kj lämpöä nieluun a) 500 K ja b) 750 K asteessa. Laske kumpi lämmönsiirtoprosessi on palautumattomampi! 800 K 800 K 2000 kj 500 K 750 K 9 PUHTAIDEN AINEIDEN ENTROPIAN MUUTOS Entropia on ominaisuus ja systeemin entropian arvo on kiinnitetty heti, kun systeemin tila on kiinnitetty. Veden T-s käyrästö. Puhtaan aineen entropian arvot ovat taulukoitu (kuten muutkin ominaisuudet). Entropian muutos 10 5

6 Mollier-piirros 11 Esimerkki 7-3 Jäykkä säiliö sisältää 5 kg kylmäainetta R134a 20 C ja 140 kpa. Kylmäainetta jäähdytetään samalla sekoittaen kunnes sen paine laskee 100 kpa. Laske kylmäaineen entropian muutos tässä prosessissa! 12 6

7 ISENTROOPPINEN PROSESSI Prosessi a, jonka aikana entropia pysyy vakiona, kutsutaan isentrooppiseksi prosessiksi. Sisäisesti palautuvassa, adiabaattisessa (isentrooppisessa) prosessissa entropia pysyy vakiona. T-s kaaviossa isentrooppinen prosessi on pystysuora viiva. 13 ENTROPIAN SISÄLTÄVÄT OMINAISUUSKAAVIOT T-S kaaviossa, prosessikäyrän alle jäävä pintaala edustaa sisäisesti palautuvien prosessien lämmönsiirtoa. Adiabaattisille stationaareille koneille, pystysuora etäisyys h h-s kaaviossa on tehdyn työn mitta ja vaakasuora etäisyys s on palautumattomuuksien mitta. Mollierin piirros: h-s kaavio 14 7

8 MITÄ ENTROPIA ON? Boltzmannin yhtälö Puhdas kiteinen väliaine absoluuttisessa nollapisteessä on täydellisesti järjestäytynyt ja sen entropia on nolla (termodynamiikan kolmas pääsääntö). Väliaineen molekyylien epäjärjestyksen taso (entropia) kasvaa kun se sulaa tai höyrystyy. Epäjärjestyksessä oleva energia ei tuota paljoakaan hyötyä, riippumatta siitä kuinka suurta se on. 15 Potkurin tekemä työ lisää kaasun epäjärjestyksen tasoa (entropiaa) ja siksi energian arvo alenee prosessissa. Painon nostaminen kitkattoman pyörivän akselin avulla ei tuota epäjärjestystä (entropiaa) ja siten energian arvo ei alene tässä prosessissa. Netto entropia kasvaa lämmönsiirtoprosessissa. (kylmän kappaleen entropia kasvaa enemmän kuin kuuman kappaleen entropia laskee.) 16 8

9 Tds RIIPPUVUUDET Ensimmäinen T ds, tai Gibbsin yhtälö T ds riippuvuudet pätevät sekä palautuville ja palautumattomille prosesseille sekä suljetuille ja avoimille systeemeille. Toinen T ds yhtälö Entropian differentiaaliset muutokset muiden ominaisuuksien avulla 17 NESTEIDEN JA KIINTEIDEN AINEIDEN ENTROPIAN MUUTOKSET Koska aineille nesteille ja kiinteille Nesteitä ja kiinteitä aineita voidaan approksimoida kokoonpuristumattomina väliaineina koska niiden ominaistilavuudet pysyvät miltei vakioina prosessin aikana. Kokoonpuristumattoman väliaineen adiabaattiselle ja isentrooppiselle prosessille 18 9

10 Esimerkki 7-7 Nestemäistä metaania käytetään eri kryogeenisissä sovelluksissa. Metaanin kriittinen lämpötila on 191 K (tai -82 C), joten metaanin täytyy olla alle 191 K pysyäkseen nesteenä. Laske metaanin entropian muutos kun se käy prosessin tilasta110 K 1 MPa tilaan 120 K 5 Mpa. a) Käyttäen taulukoituja arvoja, b) Approksimoiden metaania kokonpuristumattomana aineena. Kuinka suuri virhe syntyy jälkimmäisellä tavalla? 19 IDEAALIKAASUN ENTROPIAN MUUTOS Ensimmäisestä T ds riippuvuudesta ToisestaT ds riippuvuudesta Ideaalikaasulle 20 10

11 Vakio-ominaislämpöapproksimaatio Ideaalikaasun entropian muutos moolia kohden Oletettaessa ominaislämpö vakioksi ominaislämmöllä oletetaan olevan vakio keskimääräinen arvo keskilämpötilassa. 21 Muuttuvat ominaislämmöt (tarkka analyysi) Absoluuttinen nollapiste valitaan referenssilämpötilaksi ja funktio s on Massayksikköä kohden Mooliyksikköä kohden Ideaalikaasun entropia riippuu sekä T ja P. s 0 -funktio edustaa vain lämpötilasta riippuvaa entropian osuutta

12 ESIMERKKI 7-9 Ilma puristetaan alkutilasta 100 kpa ja 17 C lopputilaan 600 kpa ja 57 C. Laske ilman entropian muutos a) Käyttäen ilman taulukoituja arvoja, b) Käyttäen omonaislämmön keskiarvoa. 23 Ideaalikaasujen isentrooppiset prosessit Vakio-ominaislämmöt (approksimatiivinen analyysi) Asettamalla tämä yhtälö nollaksi, saamme Ideaalikaasujen isentrooppiset riippuvuudet pätevät vain ideaalikaasujen isentrooppisille prosesseille

13 Ideaalikaasujen isentrooppiset prosessit Muuttuvat ominaislämmöt (tarkka analyysi) Suhteellinen paine ja suhteellinen ominaistilavuus exp(s /R) on suhteellinen paine P r. Isentrooppisen prosessin loppulämpötilan laskenta suhteellisen paineen P r avulla. T/P r on suhteellinen ominaistilavuus v r. Isentrooppisen prosessin loppulämpötilan laskenta suhteellisen ominaistilavuuden v r avulla. 25 ESIMERKKI 7-10 Ilma puristetaan auton moottorissa 22 C ja 95 kpa palautuvasti ja adiabaattisesti. Jos moottorin puristussuhde V 1 /V 2 on 8, niin laske ilman loppulämpötila! 26 13

14 PALAUTUVA VAKIOVIRTAAMATYÖ Kun kineettinen ja potentiaalienergia ovat mitättömiä Nesteen vakiovirtaaman, johon ei liity työtä, laitteen läpi (kuten putken osan), työ termi on nolla (Bernoullin yhtälö): Mitä suurempi ominaistilavuus, sitä suurempi on tuotettu (tai kulutettu) työ vakio virtaama laitteessa. Palautuvan työn yhtälöt vakiovirtaama- ja suljetulle systeemille. 27 ESIMERKKI 7-12 Laske kompressorissa tarvittava työ höyryn puristamiseen isentrooppisesti 100 MPa :sta 1MPa:iin, olettaen höyry on a) Kylläistä nestettä b) Kylläistä höyryä Kompressorin sisäänmenossa

15 Todistus sille, että vakiovirtaamalaitteet tuottavat eniten ja kuluttavat vähiten työtä, kun prosessi on palautuva Pidetään lämmöntuontia ja tehtyä työtä positivisina: Todellinen Palautuva Työtä tuottavat laitteet, kuten turbiinit tuottavat enemmän työtä ja työtä kuluttavat laiteet, kuten pumput ja kompressorit, vaativat vähemmän työtä, jos ne toimivat palautuvina. Palautuva turbiini tuottaa enemmän työtä kuin palautumaton jos molemmat toimivat samojen alku- ja lopputilojen välillä. 29 PURISTUSTYÖN MINIMOINTI Kun kineettinen ja potentiaalienergia ovat mitättömiä Isentrooppinen (Pv k = vakio): Polytrooppinen (Pv n = vakio): Isoterminen (Pv = vakio): Adiabaattinen puristus (Pv k = constant) vaatii maksimi työn ja isoterminen puristus (T = vakio) vaatii minimin. Miksi? P-v kaaviot isentrooppiselle, polytrooppiselle ja isotermiselle puristusprosessille samojen paineiden välillä

16 Moniportainen puristusprosessi välijäähdytyksellä Kaasu kokoonpuristetaan vaiheittain ja jäähdytetään vaiheiden välillä johtamalla se välijäähdyttimen läpi. Kaksivaiheisen jatkuvan puristusprosessin P-v ja T-s kaaviot. Puristustyön minimoimiseksi kaksivaiheisessa puristuksessa, molempien vaiheiden puristussuhteiden tulee olla samat. 31 ISENTROOPPISEN HYÖTYSUHDE JATKUVATOIMISILLE KONEILLE Isentrooppinen prosessi ei sisällä palautumatomuuksia ja on ideaalinen prosessi adiabaattisille koneille. Turbiinin isentrooppinen hyötysuhde Adiabaattisen turbiinin todellinen ja isentrooppinen h-s piirros 32 16

17 Kompressorien ja pumppujen isentroopiset hyötysuhteet Kun kineettinen ja potentiaalienergia ovat mitättömiä Isoterminen hyötysuhde Pumpulle Adiabaattisen kompressorin todellisen ja isentrooppisen puristusprosessin h-s -piirros. Kompressoreita jäähdytetään tarkoituksellisesti toisinaan tarvittavan työn minimoimiseksi. Voidaanko ei-adiabaattiselle kompressorille käyttää isentrooppista hyötysuhdetta? Voidaanko isoterminen hyötysuhde määrittää adiabaattiselle kompressorille? 33 Suuttimien isentrooppinen hyötysuhde Jos nesteen sisääntulonopeus on pieni ulostulonopeuteen verrattuna niin energiatase on Josta, Adiabaattisen suuttimen todellisen ja isentrooppisen prosessin h-spiirros. Todellisesta suuttimesta väliaine poistuu korkeammassa lämpötilassa (alhaisempi nopeus) kitkan vuoksi

18 ENTROPIATASE Systeemin entropian muutos, S system Jos systeemin ominaisuudet eivät ole vakioita Systeemin energia- ja entropiataseet. 35 Entropian siirron mekanismit, S in ja S out 1 Lämmönsiirto Entropian siirtyminen lämmönsiirrossa: Entropian siirto työnä: Lämmönsiirtymiseen liittyy aina entropian siirto määrällä Q/T, jossa T on systeemin reunan lämpötila. Systeemin reunan ylittävään entropiaan ei liity työtä. Mutta entropiaa voi syntyä systeemissä, kun työtä dissipoituu energian vähemmän hyödylliseen muotoon

19 Entropian siirron mekanismit, S in ja S out 2 Massavirta Entropian siirto massana Kun massan ominaisuudet muuttuvat prosessin aikana Massa sisältää entropiaa samoin kuin energia ja siten massan virtaukseen systeemiin tai ulos siitä sisältyy aina energian ja entropian siirto. 37 Entropian syntyminen, S gen Entropian syntyminen systeemin ulkopuolella voidaan arvioida kirjoittamalla entropiatase laajennetulle systeemille, johon kuuluu systeemi ja sen välitön ympäristö. Entropian siirtomekanismi yleiselle systeemille

20 Suljetut systeemit Suljetun järjestelmän entropian muutos prosessissa on yhtä suuri kuin netto entropian siirtyminen systeemin rajojen läpi lämmönsiirtona ja entropian synty systeemin sisällä. Suljetun systeemin entropian muutos prosessissa on yhtäsuuri kuin netto entropian siirtyminen systeemin reunan yli lämmönsiirtona ja systeemin sisällä syntyneen entropian kasvun summa. 39 Kontrollitilavuudet Väliaineen entropia kasvaa aina (tai säilyy vakiona palautuvassa prosessissa) kun se virtaa läpi yhden ainevirran, adiabaattisen, jatkuvan tilan koneen. Kontrollitilavuuden entropia muuttuu yhtä hyvin massavirran kuin lämmönsiirron vuoksi

21 ESIMERKKEJÄ Seinämän läpäisevän lämmönsiirron entropian tase Kuristusprosessin entropiatase 41 Entropian synty lämmönsiirtoprosessissa Entropian synty äärellisen lämpötilaeron yli tapahtuvassa lämmönsiirrossa

22 Yhteenveto Entropia Entropian kasvun periaate Muutamia huomioita entropiasta Puhtaiden aineiden entropian muutos Isentrooppiset prosessessit Entropian sisältävät tilapiirrokset Mitä entropia on? T ds riippuvuudet Nesteiden ja kiinteiden entropian muutos Ideaalikaasujen entropian muutos Palautuva jatkuva työ (steady state) Puristustyön minimointi Jatkuvatoimisten koneiden isentrooppiset hyötysuhteet Entropiatase 43 22

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

Luku 13 KAASUSEOKSET

Luku 13 KAASUSEOKSET Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2010 Luku 13 KAASUSEOKSET Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1): 1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus

Lisätiedot

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1 DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT

Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT Copyright TUT&The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI

Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI Copyright The McGraw-Hill Companies,

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / 14.11.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Vielä vähän entropiasta... Termodynamiikan 2. pääsääntö Entropian rooli 2. pääsäännön yhteydessä

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT

LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?

Lisätiedot

1 Clausiuksen epäyhtälö

1 Clausiuksen epäyhtälö 1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Luku 11 JÄÄHDYTYSPROSESSIT

Luku 11 JÄÄHDYTYSPROSESSIT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 11 JÄÄHDYTYSPROSESSIT Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun

Lisätiedot

Ch 19-1&2 Lämpö ja sisäenergia

Ch 19-1&2 Lämpö ja sisäenergia Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit

Lisätiedot

f) p, v -piirros 2. V3likoe klo

f) p, v -piirros 2. V3likoe klo i L TKK / Energia- ja ympiiristotekniikan osasto 040301000 /040302000 TEKNILLINEN TERMODYNAMIIKKA, prof. Pert ti Sarkomaa 2. V3likoe 11.12.2002 klo 16.15-19.15 TEORIAOSA (yht. max 42 pistett3) Teoriakysymyksiin

Lisätiedot

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Pentti Saarenrinne Copyright TUT and The McGraw-Hill Companies,

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 28.9.2015 / T. Paloposki / v. 01 Tämän päivän ohjelma: Tilanyhtälöt (kertaus) Termodynamiikan 1. pääsääntö (energian häviämättömyyden laki)

Lisätiedot

Luku 15 KEMIALLISET REAKTIOT

Luku 15 KEMIALLISET REAKTIOT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 15 KEMIALLISET REAKTIOT Copyright The McGraw-Hill Companies, Inc. Permission required for

Lisätiedot

Termodynaamiset syklit Todelliset tehosyklit

Termodynaamiset syklit Todelliset tehosyklit ermodynaamiset syklit odelliset tehosyklit Luennointi: k Kati Miettunen Esitysmateriaali: k Mikko Mikkola HYS-A00 ermodynamiikka (FM) 09..05 Syklien tyypit Sisältö Kaasusyklit s. höyrysyklit Suljetut syklit

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 14.11. ja tiistai 15.11. Kurssin aiheet 1. Lämpötila ja lämpö

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö Lämpöopin pääsäännöt 0. pääsääntö Jos systeemit A ja C sekä B ja C ovat termisessä tasapainossa, niin silloin myös A ja B ovat tasapainossa. Eristetyssä systeemissä eri lämpöiset kappaleet asettuvat lopulta

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3 PHYS-A0120 Termodynamiikka, syksy 2017 Kotitentti Vastaa tehtäviin 1, 2/3, 4/5, 6/7, 8 (yhteensä viisi vastausta). Tehtävissä 1 ja 7 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla sekä

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics)

Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics) e1 3 Termodynamiikan toinen pääsääntö (Second Law of Thermodynamics) Tärkeä käsite termodynamiikassa on termodynaamisen prosessin suunta. Kaikki prosessit ovat oikeasti irreversiibelejä (irreversible),

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Luku 3 Puhtaiden aineiden ominaisuudet

Luku 3 Puhtaiden aineiden ominaisuudet Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 3 Puhtaiden aineiden ominaisuudet Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / Kommentti kotilaskuun 2 Termodynamiikan 1. pääsääntö 9/26/2016

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / Kommentti kotilaskuun 2 Termodynamiikan 1. pääsääntö 9/26/2016 ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / 26.9.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Kommentti kotilaskuun 2 Termodynamiikan 1. pääsääntö 1 Kotilasku 2 Kotilasku 2 2 Termodynamiikan

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt

energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt 14 2 Ensimmäinen pääsääntö 2-1 Lämpömäärä ja työ Termodynaaminen systeemi on jokin maailmankaikkeuden osa, jota rajoittaa todellinen tai kuviteltu rajapinta (engl. boundary). Systeemi voi olla esimerkiksi

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

LUKU 17 KOKOONPURISTUVA VIRTAUS

LUKU 17 KOKOONPURISTUVA VIRTAUS Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 17 KOKOONPURISTUVA VIRTAUS Copyright The McGraw-Hill Companies, Inc. Permission required for

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

DEE Kryogeniikka

DEE Kryogeniikka DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold tip tirling aim com mod.jpg Introduced about

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Luku Pääsääntö (The Second Law)

Luku Pääsääntö (The Second Law) Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

6-1 Hyötysuhde ja tehokerroin

6-1 Hyötysuhde ja tehokerroin 67 6 Lämpövoimakoneet ja jäähdyttimet 6-1 Hyötysuhde ja tehokerroin Lämpövoimakone (engl. heat engine) on laite, joka muuttaa lämpöenergiaa työksi. Tavallisesti laitteessa tapahtuu kiertoprosessi, jonka

Lisätiedot

PHYS-A0120 Termodynamiikka. Emppu Salonen

PHYS-A0120 Termodynamiikka. Emppu Salonen PHYS-A0120 ermodynamiikka Emppu Salonen 1. joulukuuta 2016 ermodynamiikka 1 1 Lämpötila ja lämpö 1.1 ilanyhtälö arkastellaan kolmea yksinkertaista fluidisysteemiä 1, jotka koostuvat kukin vain yhdentyyppisistä

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Valitse seuraavista joko tehtävä 1 tai 2

Valitse seuraavista joko tehtävä 1 tai 2 PHYS-A0120 Termodynamiikka, syksy 2016 Kotitentti Vastaa tehtäviin 1/2, 3, 4/5, 6/7, 8 ja 9 (yhteensä kuusi vastausta). Tehtävissä 1 ja 2 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

2. Termodynamiikan perusteet

2. Termodynamiikan perusteet Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI

Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia. Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön: S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

LUKU 16 KEMIALLINEN JA FAASITASAPAINO

LUKU 16 KEMIALLINEN JA FAASITASAPAINO Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot