Kollektiivinen korvausvastuu



Samankaltaiset tiedostot
Jaksolliset ja toistuvat suoritukset

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Kuluttajahintojen muutokset

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Luento 6 Luotettavuus Koherentit järjestelmät

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

Monte Carlo -menetelmä

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

SU/Vakuutusmatemaattinen yksikkö (5)

6. Stokastiset prosessit (2)

Aamukatsaus

FYSA220/2 (FYS222/2) VALON POLARISAATIO

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

ABTEKNILLINEN KORKEAKOULU

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Palkanlaskennan vuodenvaihdemuistio 2014

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Tchebycheff-menetelmä ja STEM

SU/Vakuutusmatemaattinen yksikkö (6)

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

3.5 Generoivat funktiot ja momentit

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN

FDS-OHJELMAN UUSIA OMINAISUUKSIA

Työllistääkö aktivointi?

Johdatus tekoälyn taustalla olevaan matematiikkaan

Mittaustulosten käsittely

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

Moderni portfolioteoria

A250A0100 Finanssi-investoinnit Harjoitukset

Sähköstaattinen energia

3.3 Hajontaluvuista. MAB5: Tunnusluvut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

HE 174/2009 vp. määräytyisivät 6 15-vuotiaiden määrän perusteella.

3. Datan käsittely lyhyt katsaus

Yksikköoperaatiot ja teolliset prosessit

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä Palautuspäivä

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa Kartografian erikoistyö

KUVIEN LAADUN ANALYSOINTI

Yrityksen teoria ja sopimukset

Mekaniikan jatkokurssi Fys102

Ilkka Mellin (2008) 1/24

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET

Palkanlaskennan vuodenvaihdemuistio 2017

PPSS. Roolikäyttäytymisanalyysi Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN Vantaa info@mlp.

Muistio tehostamiskannustimen kahdeksan vuoden siirtymäajan vaikutuksista

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto

Saatteeksi. Vantaalla vuoden 2000 syyskuussa. Hannu Kyttälä Tietopalvelupäällikkö

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

BL20A0600 Sähkönsiirtotekniikka

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Suomen ja Ruotsin metsäteollisuuden kannattavuusvertailu v No. 47. Pekka Ylä-Anttila

Mat Lineaarinen ohjelmointi

r i m i v i = L i = vakio, (2)

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

7. Modulit Modulit ja lineaarikuvaukset.

157 TYÖTTÖMYYS- VAKUUTUS- JÄRJESTELMÄN EMU- PUSKUROINTI

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

HASSEN-WEILIN LAUSE. Kertausta

10.5 Jaksolliset suoritukset

TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto

KOHTA 1. AINEEN/SEOKSEN JA YHTIÖN/YRITYKSEN TUNNISTETIEDOT

Mat Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla

Kokonaislukuoptimointi

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Maanhintojen vikasietoisesta mallintamisesta

Kuntoilijan juoksumalli

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa

Vanhuuseläkevastuun korotuskertoimet vuodelle 2018

Korvausvastuun ennustejakauma bootstrap-menetelmän avulla

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

3 Tilayhtälöiden numeerinen integrointi

Mat Tilastollisen analyysin perusteet, kevät 2007

LAUSUNTO KIRJANPITOLAIN SOVELTAMISESTA POTILASVAHINKOVASTUUN KIR- JANPITOKÄSITTELYSSÄ

1, x < 0 tai x > 2a.

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

Transkriptio:

Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03

Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU... 5.. Vahngon selvämsprosess... 6.. Korvausvastuun arvont... 7.3 KORVAUSKOLMIO... 8.3. Vahnkoen lukumääräkolmo... 8.3. Maksettuen korvausten korvauskolmo... 0.3.3 Korvausmenokolmo....4 KORVAUSINFLAATIO... 6.5 SIJOITUSTOIMINTA JA KORVAUSVASTUUN DISKONTTAUS... 8 3 KORVAUSVASTUUN ARVIOINTIMENETELMIÄ... 9 3. DETERMINISTISET MENETELMÄT... 9 3.. Chan-ladder -menetelmä... 0 3... Vahnkoen lukumäärät... 0 3... Maksetut korvaukset... 4 3...3 Käyräsovtus a ekstrapolont... 7 3.. Bornhuetter-Ferguson -menetelmä... 9 3... Perntenen Bornhuetter-Ferguson -menetelmä... 30 3... Kokonaskorvausmenon arvont a PPCI-menetelmä... 34 3..3 Hovsen menetelmä... 36 3..3. * Hovsen menetelmän er versot... 38 3..4 Determnststen menetelmen korvausvastuden estmaatt... 39 3. STOKASTISET MALLIT... 40 3.. Ennustevrheen haonta a varmuuslsä... 4 3.. Mackn mall... 44 3... Oletukset... 44 3... Korvausvastuun odotusarvon estmont... 44 3...3 Ennustevrheen haonnan estmont... 46 3...4 Oletusten testaamnen... 50 3..3 Bornhuetter-Ferguson -menetelmä stokastsena mallna... 53 3..3. Oletukset... 53 3..3. Korvausvastuun odotusarvon estmont... 54 3..3.3 * Ennustevrheen haonnan estmont... 54 3..3.4 Stokaststen mallen vertalua... 58 3..4 Posson-mall ylhaonnalla... 59 3..5 Mackn mall ylestettynä lneaarsena mallna... 6 4 KORVAUSVASTUUN ENNUSTEJAKAUMAN MUODOSTAMINEN BOOTSTRAP- MENETELMÄN JA SIMULOINNIN AVULLA... 6 4. BOOTSTRAP-/SIMULOINTIMENETELMÄ... 63 4. ESIMERKKI... 68 5 YHTEENVETO... 7 LÄHTEET... 75

Johdanto Vakuutussopmusten perusteella vakuutusyhtölle syntyy velvollsuus korvata vahngosta aheutuvat kustannukset samalla hetkellä, kun vahnko sattuu. Yleensä kutenkn kestää onkn akaa ennen, kun vahnko lmotetaan yhtöön. Lsäks esmerkks korvausten kästtely ta se, että kustannukset yleensäkn syntyvät vasta onkn aan kuluttua vahngon sattumsesta, aheuttavat vveen korvausten maksun a vahngon sattumshetken välllä. Vve vo ossan tapauksssa, esmerkks eläkkeden maksussa, olla useta vuoskymmenä. Vakuutusyhtölle on oka tapauksessa syntynyt velvollsuus korvata vahnko, a nän ollen o sattuneden vahnkoen maksamattomat korvaukset on ssällytettävä tlnpäätöksessä yhtön velkohn rppumatta stä, onko vahnko yhtön tedossa va e. Tätä velkaa kutsutaan korvausvastuuks a se muodostaa merkttävän osan vakuutusyhtön velosta. Vakuutusyhtölan (8.7.008/5) mukaan vastuuvelan on ana oltava rttävä sten, että vakuutusyhtö kohtuudella arvoden selvytyy vakuutussopmukssta aheutuvsta velvotteestaan. Vakuutusyhtöllä on oltava turvaavat laskuperusteet, oden mukasest yhtö laskee vastuuvelan määrän, a lsäks lassa säädetään, mllaslla varolla vastuuvelka vodaan kattaa. Vakuutuksenottaen edut turvataan nän ollen varmstamalla, että vakuutusyhtö arvo korvausvastuunsa mahdollsmman okean suuruseks a että korvausten suorttamseen tarvttavat varat ovat rttävän turvallsest sotettuna. Myös yhtön vakavarasuuden arvont edellyttää, että velat on arvotu mahdollsmman oken. Koska korvausvastuu tarkottaa tuntematonta a tulevasuudessa realsotuvaa määrää, onka yhtö on velvollnen suorttamaan, on yhtön rskenhallnnan kannalta tärkeää pystyä arvomaan, kunka palon toteutuvat korvaukset vovat poketa arvodusta määrstään. Myös vakuutusyhtölan vaatmus, että yhtö selvytyy kohtuudella arvoden velvottestaan, vaat korvausvastuun rttävyyden arvomsta. Lsäks Euroopan Unonssa valmsteltavana olevassa vakavarasuusvaatmuksa koskevassa drektvssä, Solvenss II:ssa, korostetaan entsestään yhtön rskenhallntaa a rsken, muun muassa korvausvastuun rttävyyden, arvomsta. Korvausvastuun laskenta on tuleven korvausten ennustamsta, ossa apuna käytetään tedossa oleva maksettua korvauksa a muuta sattunesn vahnkohn lttyvää nformaatota. Korvausvastuulle lasketaan estmaatt, oka pyrtään saamaan maksamattomen korvausten keskmääräselle tasolle. Korvausvastuun estmaatn lsäks varataan varmuuslsä, olla varaudutaan shen, että toteutuvat korvaukset ylttävät nden estmaatn. Suorteperustesen kranptokäytännön mukaan meno krataan kokonasuudessaan sen syntymshetkellä. Korvausvastuun lsäks vastuuvelkaan ssältyy muun muassa vakuutusmaksuvastuu, olla tarkotetaan arvonthetkellä vomassa oleven vakuutussopmusten tuleven vakuutustapahtumen suortuksa (Vakuutusyhtölan 9. luku).

Korvausvastuun estmomseks on olemassa useta erlasa menetelmä. Menetelmät on aettu determnstsn menetelmn a stokastsn mallehn. Determnstsssä menetelmssä korvausvastuu arvodaan suoraan käytössä olevsta tlastosta onkn algortmn mukasest. Koska algortm e ota huomoon korvausmenon taustalla olevaa satunnasuutta, e determnstsllä menetelmllä voda arvoda menetelmän tarkkuutta a korvausvastuuseen lttyvää epävarmuutta. Stokastsssa mallessa sen saan tarkastellaan tuntematonta mekansma, oka tuottaa havatut korvaukset, a nssä satunnasuus otetaan huomoon olettaen korvausten noudattavan tettyä akaumaa. Malln a käytössä oleven tlastoen sovttamsen seurauksena saadaan estmaatt sekä korvausvastuun odotusarvolle että ennustevrheen haonnalle. Ennustevrheen haonnan avulla arvodaan malln tarkkuutta a tarvttavan varmuuslsän määrää. Koska stokastsssa mallessa vodaan estmoda korvausvastuun odotusarvon lsäks ennustevrheen haonta, saadaan nstä enemmän tetoa estmodun korvausvastuun rttävyydestä kun determnstsssä menetelmssä. Tosaalta pelkkä ennustevrheen haonnan estmont e usen rtä, vaan tarvtaan lsäks oletus korvausvastuun akaumasta, ota työssä kutsutaan ennusteakaumaks (predctve dstrbuton [6]). Ennusteakaumasta vodaan tarkastella ennustevrheen haonnan lsäks muun muassa luottamusväleä a prosenttpstetä. Ennusteakauman laskemnen analyyttsest on kutenkn usessa stokastsssa mallessa haastavaa. Tetokoneden laskentatehon a -nopeuden kasvamsen myötä on tullut mahdollseks tuottaa arvo ennusteakaumasta esmerkks bootstrap-menetelmän a smulonnn avulla lman analyyttsta laskentaa. Bootstrap-menetelmässä deana on korvata teoreettset päätelmät useast tostetulla emprsllä päätelmllä. Menetelmällä vodaan esmerkks tutka malln tuottaman estmaattorn luotettavuutta suorttamalla estmont usesta samankaltassta anestosta [8]. Smulonnssa puolestaan otetaan huomoon korvausten satunnasuuden aheuttama epävarmuus korvausvastuun estmonnssa. Knnostusta smulonnn hyödyntämseen korvausvastuun arvontn lttyven epävarmuusteköden tutkmsessa on ollut alalla o ptkään, ks. esmerkks [4]. Solvenss II:n myötä smulonnsta a ennusteakauman arvomsesta on tullut entstä aankohtasemp ahe, sllä Solvenss II mahdollstaa yhtön omen ssästen mallen käytön vakavarasuusvaatmusten laskemsessa. Ssästen mallen käyttämnen vaat korvausten mallntamsta a lsäks estmodun korvausvastuun rttävyyden luotettavaa arvomsta. Euroopan komsson teetättämssä harotuksssa 3, ossa on testattu erlasa tuleva vakavarasuusvaatmusten laskentatapoa, on vme vuosna vaadttu sellasta pääoman määrää, olla yhtö selvää 99,5 %:n todennäkösyydellä. Työssä tarkastellaan vahnkovakuutuksen korvausvastuun arvomsta er menetelmllä. Solvenss II:n näkökulmasta työssä kesktytään nän ollen korvausvastuun parhaan estmaatn laskentaan. Luvussa tarkastellaan vahnkovakuutusyhtön vahnkoen selvämstä a korvausvastuun arvomsessa käytettyä tlastoa. Alaluvussa 3. estellään ylesmpä determnstsä korvausvastuun laskentamenetelmä, kuten Chan-ladder - menetelmä a Bornhuetter-Ferguson -menetelmä, a alaluvussa 3. stokastsa mallea 3 Vmesmmät ovat vuonna 007 harotus QIS 3 (Quanttatve Impact Study 3), vuonna 008 QIS 4 a vuonna 00 QIS 5.

3 kuten Mackn [0], [] muotolemat stokastset mallt Chan-ladder a Bornhuetter- Ferguson -menetelmlle. Stokaststen mallen yhteydessä tarkastellaan mallen tarkkuuden arvomsta sekä varmuuslsän määrttämstä. Luvussa 4 kästellään korvausvastuun ennusteakauman tuottamsta bootstrap-/smulontmenetelmällä, kun korvaukset on mallnnettu Posson-akaumaan perustuvalla, alaluvussa 3..4 estellyllä stokastsella malllla. Korvausvastuuseen lttyvät kästteet vahnkovakuutuksessa. Merknnät Työssä käytetään seuraava merkntöä C vuonna sattunesta vahngosta vuonna + - maksetut korvaukset; nkrementaalset korvaukset (vuotta kutsutaan kehtysvuodeks) D vuonna sattunesta vahngosta vuoden + - loppuun mennessä maksetut korvaukset yhteensä; kumulatvset korvaukset d yksttänen kehtyskerron kehtysvuodesta - kehtysvuoteen (ks. alaluku 3..) d kehtyskerron kehtysvuodesta - kehtysvuoteen (ks. alaluku 3..) F ( ) selvämsakauman arvo. kehtysvuoden lopussa; esmerkks. kehtysvuoden loppuun mennessä maksettuen korvausten osuus kokonaskorvausmenosta U f ( ) selvämsakauman theysfunkto; esmerkks tetyn sattumsvuoden vahngosta. kehtysvuoden akana maksettuen korvausten osuus kokonaskorvausmenosta U, f( k) = F( ) å k= sattumsvuos I sattumsvuoden korvausmeno vuoden + - lopussa (ncurred clams, ks. alaluku.3.3) kehtysvuos M vuonna sattuneden a vuonna + - raportotuneden vahnkoen lukumäärä; nkrementaalnen vahnkoen lukumäärä

4 m MSE( R ˆ ) nkrementaalsten korvausten odotusarvo Posson-mallssa ylhaonnalla (ks. alaluku 3..4) kesknelövrhe (mean square error of predcton); ennustevrheen va- E R ˆ = E R ranss, kun ( ) ( ) N vuonna sattuneden a vuoden + - loppuun mennessä raportotuneden vahnkoen lukumäärä; kumulatvnen vahnkoen lukumäärä O vuonna sattuneden vahnkoen vuoden + - lopun vahnkokohtaset varaukset (ks. alaluvut. a.3.3) P q R R sattumsvuoden vakuutusmaksutuotto sattumsvuoden kokonaskorvausmeno suhteessa sattumsvuoden rskmttaan; esmerkks sattumsvuoden vahnkosuhde (ks. alaluku 3..) vuonna sattunesta vahngosta vuoden t älkeen maksettavat korvaukset; sattumsvuoden korvausvastuu vuoden t lopussa vuoden t loppuun mennessä sattunesta vahngosta vuoden t älkeen maksettavat korvaukset; korvausvastuu vuoden t lopussa N R vuonna sattuneden a vuoden t lopussa tuntemattomna oleven vahnkoen lukumäärä N R vuoden t loppuun mennessä sattuneden a vuoden t lopussa tuntemattomna oleven vahnkoen lukumäärä r s h Sd( R ˆ ) t sattumsvuoden kehtysvuoden havattuen a estmotuen arvoen erotus (äännös), mahdollsest panotettu ta muokattu (ks. mm. kaava (48) a (64)) sotustomnnan vuostuotto-odotus, kun sotusten maturteett on h vuotta kesknelövrheen nelöuur (predcton error, root mean square error); E R ˆ = E R ennustevrheen haonta, kun ( ) ( ) vuos, onka lopussa korvausvastuu arvodaan; arvontvuos (arvonthetkellä tarkotetaan vuoden t loppua)

5 U vuonna sattunesta vahngosta maksetut korvaukset, kun vahngot ovat loppuunkästeltyä; sattumsvuoden kokonaskorvausmeno ( U = DJ, kun vahngot selvävät J vuoden akana) f haontaparametr Posson-mallssa ylhaonnalla (ks. alaluku 3..4) l k korvausnflaato vuonna k. Vahngon selvämnen a korvausvastuu Vakuutusyhtön taseessa korvausvastuu akautuu varsnaseen korvausvastuuseen, yhtestakuuerään a tasotusmäärään. Yhtestakuuerä on varaus stä varten, että okn laksäätestä tapaturmavakuutusta ta lkennevakuutusta harottava vakuutusyhtö aautuu maksukyvyttömäks ekä suorudu korvausvelvottestaan. Tällön muut kysesä vakuutuslaea harottavat yhtöt vastaavat korvausten suorttamsesta yhtesest. Tasotusmäärä on puolestaan sosaal- a terveysmnsterön asetuksen mukasest laskettu määrä runsasvahnkosten vuosen varalle (Vakuutusyhtölan 9 luku 4 ). Yhtestakuuerä postunee vakuutusyhtöden tasesta vuoden 00 lopussa. Tasotusmäärää koskeva säännöksä tullaan puolestaan uudstamaan Solvenss II:n myötä. Arvot sattuneden vahnkoen velä maksamatta olevsta korvaukssta ssältyvät varsnaseen korvausvastuuseen, oka koostuu vahnkokohtassta varaukssta, kollektvsesta korvausvastuusta a vahnkoen selvttelykuluvarauksesta. Vahnkoen selvttelykuluvaraus ssältää arvon vuoden t loppuun mennessä sattuneden vahnkoen maksettavaks tuleven korvausten selvttelystä aheutuvsta kustannukssta 4. Vahnkokohtaslla varaukslla puolestaan tarkotetaan keskenerästen vahnkoen maksamattoma korvauksa, otka on arvotu erkseen okaselle vahngolle ottaen huomoon vahngon luonne, suuruus a muut vahngon ertysprteet. Kollektvnen korvausvastuu tarkottaa tetylle vahnkoen oukolle tlastollsn menetelmn yhtesest estmotua korvausvastuuta. Nän ollen, tosn kun vahnkokohtassta varaukssta, kollektvsesta korvausvastuusta e voda määrtellä, kunka suur osuus stä kohdstuu mllekn vahngolle. Kollektvseen korvausvastuuseen ssältyy arvo tuntemattomen vahnkoen kokonaskorvausmenosta, ohon vtataan usen lyhenteellä IBNR, Incurred But Not Reported. Loppuosa kollektvsesta korvausvastuusta muodostuu varmuuslsästä a tunnettuen vahnkoen sellasten maksamattomen korvausten estmaatesta, ota e ole varattu vahnkokohtasest. Tunnettuen vahnkoen kollektvsta korvausvastuuta merktään lyhenteellä RBNS, Reported But Not Settled 5. 4 Vahnkoen selvttelykuluvarausta e kästellä työssä tarkemmn. 5 Tunnettuen vahnkoen kollektvselle korvausvastuulle on olemassa myös muta lyhentetä kuten IBNER, Incurred But Not Enough Reported. Työssä on päädytty käyttämään lyhennettä RBNS, sllä se kuvaa paremmn vahnkoen kästtelyvahetta kun IBNER (ks. alaluku.. a kuva ).

6 Korvausvastuu taseessa Varsnanen korvausvastuu Yhtestakuuerä Tasotusmäärä Varsnanen korvausvastuu Vahnkokohtaset varaukset Kollektvnen korvausvastuu Vahnkoen selvttelykuluvaraus Kollektvnen korvausvastuu IBNR RBNS Varmuuslsä.. Vahngon selvämsprosess Tarkastellaan vahngon selvämstä a shen lttyvä kästtetä kuvan esmerkktapauksessa. Kuva Eräs realsaato vahngon selvämsestä sekä vahngon korvausmenon a korvausvastuun kehttymsestä. Kuvassa vahnko sattuu hetkellä t. Vuotta, onka akana vahnko on sattunut, kutsutaan sattumsvuodeks. Vahnko lmotetaan vakuutusyhtöön onkn aan kuluttua vahngon sattumsesta hetkellä t ³ t. Kulunutta akaa vahngon sattumsesta sen raportotumseen t - t kutsutaan raportotumsvveeks. Raportotumsvveen akana vahnko on tuntematon vahnko, kun taas vakuutusyhtöön lmotettu vahnko on tunnettu vahnko.

7 Kun vahnko on lmotettu yhtöön a tarvttavat selvtystyöt on tehty, suortetaan vahngosta korvaus C ( t 3 ) hetkellä t 6 3. Kakka korvauksa e välttämättä makseta samalla kertaa, vaan vahngon luonteesta rppuu, kunka monessa erässä a kunka ptkän aan kuluessa korvaukset suortetaan 7. Kuvan esmerkssä välllä ( t 3,t p ) maksetaan vahngosta useta korvauserä, kunnes hetkellä t p suortetaan vmenen korvaus. Sattumshetkestä vmesen korvauserän suorttamseen ast vahnko on keskeneränen, a vastaavast vmesen korvauserän maksamsen älkeen stä tulee loppuunkästelty/sulettu. Vahngon kokonaskorvausmenolla tarkotetaan loppuunkästellystä vahngosta maksettua korvauksa yhteensä. t,t arvodun korvausvastuun tuls ssältää vahngon kokonaskorvausmenon. Tämä ssältyy tuntemattomen vahnkoen kollektvseen korvausvastuuseen IBNR. Vahngon ollessa tunnettu mutta selvämseltään keskeneränen akavälllä [ t,t p ) vodaan vahngosta maksamatta olevat korvaukset varata vahnkokohtasena varauksena a/ta ssällyttää ne kollektvsen korvausvastuun tunnettuen vahnkoen osaan RBNS. Yleensä, os vahngosta maksamatta oleven korvausten arvodaan ylttävän etukäteen asetetun raan, varataan raan ylttävä osa vahnkokohtasena varauksena, kun taas raan alttavat korvaukset ssältyvät kollektvseen korvausvastuuseen. Hetkestä t p lähten vahnko on loppuunkästelty ekä stä ole korvausvastuuta Kuvan esmerkssä akavälllä [ ) älellä... Korvausvastuun arvont Korvausvastuu vuoden t lopussa on summa useden kuvan kaltasten vahnkoen vuoden t älkeen maksettavsta korvaukssta. Nästä okanen vahnko on selvämseltään er vaheessa osa on velä tuntemattomna, kun taas osa on lähes loppuunkästeltyä. Vahngon selvämsvaheesta, luonteesta a suuruudesta rppuu, varataanko arvodut, maksettavaks tulevat korvaukset vahnkokohtasena varauksena va ssältyvätkö ne kollektvseen korvausvastuuseen. Joka tapauksessa korvausvastuun arvontn ssältyy ana epävarmuutta, sllä vahngosta tulevasuudessa maksettava korvauksa e voda tetää tarkast etukäteen. Vahnkokohtasa varauksa tehtäessä vodaan ottaa mahdollsmman tarkalla tasolla huomoon vahngosta tedetyt sekat, otta varaus vastas mahdollsmman hyvn todellsa maksettavaks tuleva korvauksa. Kakka vahnkoa e kutenkaan kannata varata vahnkokohtasest tosaalta tehokkuussystä okasen yksttäsen vahngon varaamnen vahnkokohtasest on erttän työlästä a tosaalta, koska vahnkoen lukumäärän ollessa suur vahnkokohtasten varausten summa on usen epätarkemp estmaatt maksettavaks tulevlle korvaukslle kun kollektvnen korvausvastuu 8. Kollektvsen korvausvastuun laskenta nmttän noautuu suurten lukuen lakn mtä enemmän samanlasa vahnkoa on, stä lähempänä korvausten vahnkokohtanen keskarvo on sen odotusarvoa. Nän ollen vahngolle, otka selvävät keskmäärn saman prosessn 6 Kuvan esmerkkn lttyvllä merknnöllä tarkotetaan yhteen vahnkoon lttyvä määrä erotuksena alaluvussa. estellystä vastaavsta suuresta, ossa on kyse usean vahngon summsta. 7 Esmerkks henklövahnkoen eläkemuotosa korvauksa maksetaan kymmenä vuosa, kun taas omasuusvahngot selvävät huomattavast nopeammn. 8 ks. [9] alaluku 3.

8 mukasest a noudattavat samankaltasta suuruuden akaumaa, lasketaan yhtesest kollektvnen korvausvastuu, kun taas suuret vahngot ta muuton keskmääräsestä pokkeavat vahngot varataan vahnkokohtasest. Usen vahngot ryhmtellään vakuutuslan a/ta korvauslan perusteella kollektvsen korvausvastuun laskemseks. Kollektvsen korvausvastuun laskenta tarkottaa vahngosta maksamatta oleven korvausten odotusarvon estmonta. Odotusarvon estmaatn lsäks kollektvseen korvausvastuuseen ssällytetään varmuuslsä, otta kollektvnen korvausvastuu on vakuutusyhtölan mukasest turvaava. Varmuuslsän suuruus rppuu korvausvastuuseen lttyvästä epävarmuudesta a valtun arvontmenetelmän tarkkuudesta. Jatkossa korvausvastuulla tarkotetaan pelkästään ntä maksettavaks tuleva korvauksa, oden estmaatt ssältyvät vakuutusyhtön taseessa kollektvseen korvausvastuuseen. Tämän korvausvastuun estmomseks on olemassa useta erlasa menetelmä, ota työssä tarkastellaan. Osa menetelmstä arvo korvausvastuun suoraan rahan määräsenä kun taas osa vahnkoen lukumäärän a keskmääräsen vahngon suuruuden tulona. Usen laskenta ssältää sekä IBNR:n että RBNS:n arvomsen yhdessä. Tarkastellaan tästä lähten van yhtä vahnkoen ryhmää (esmerkks tettyä vakuutuslaa), olle korvausvastuu estmodaan yhtesest..3 Korvauskolmo Korvausvastuu arvodaan vahngosta käytössä olevan tlastoaneston avulla. Tlastonanestona ovat oko vahnkoen lukumäärät, maksetut korvaukset ta maksettuen korvausten a vahnkokohtasten varausten yhtesmäärä. Tlastoanesto estetään yleensä korvauskolmona (run-off -kolmo) el sattums- a kehtysakson mukaan taulukotuna. Sattums- a kehtysakson ptuus vo olla esmerkks kuukaus, kvartaal ta vuos. Työssä käytetään akson ptuutena yhtä vuotta a merktään sattumsvuotta ndeksllä. Vuoden k lopussa vakuutusyhtöllä on sattumsvuoden, k, vahngosta käytössään tlastoanesto vuoslta, +, +,..., k. Nätä vuosa kutsutaan kehtysvuosks,, 3 a nn edelleen. [9] Merktään kehtysvuosa ndeksllä. Kehtysvuoden, vuoden k ³ a sattumsvuoden välllä on yhteys k = + - a vastaavast = k - +. ().3. Vahnkoen lukumääräkolmo Kun korvausvastuun laskennassa käytetään tlastoanestona vahnkoen lukumäärä, kutsutaan korvauskolmota lukumääräkolmoks. Taulukossa a on estetty nkrementaalnen lukumääräkolmo a taulukossa b vastaava kumulatvnen lukumääräkolmo. Sattumsvuodet on merktty yksnkertasest luvulla,,, 7. Sattumsvuos vastaa vanhnta sattumsvuotta a 7 tuorenta havattua sattumsvuotta. Rppuen stä, mtä sattumsvuotta tarkastellaan, on slle ehtnyt arvonthetkeen, el vuoden 7 loppuun, mennessä kertyä yhdestä setsemään kehtysvuotta. Lukumäären kehtysvuos määrtellään sten, että kaavassa () k vastaa vahngon raportomsvuotta. Inkrementaalsen lukumääräkolmon solussa (, ) on nän ollen vuonna sattuneden a vuonna + - raportotuneden vahnkoen lukumäärä M. Näden vahnkoen raportotumsvve on

9 ollut -, on puolestaan vuonna sattuneden a vuoden + - loppuun mennessä raportotuneden vahnkoen lukumäärä N. Sattumsvuoden kumulatvnen vahnkoen lukumäärä saadaan vuotta. Kumulatvsen lukumääräkolmon solussa ( ) sattumsvuoden nkrementaalsten lukumäären summana a vastaavast nkrementaalnen lukumäärä saadaan sattumsvuoden peräkkästen kehtysvuosen kumulatvsten lukumäären erotuksena: å N = M k k = a M = N - N, -. () Lukumääräkolmon dagonaalssa on vuoden k akana raportotuneden sellasten vahnkoen lukumäärä, otka ovat sattuneet vuosna,..., k (kaavan () perusteella kehtysvuos on tällön = k - + ). Kehtysvuos Raportotuneet Sattumsvuos 3 4 5 6 7 teensä vahngot yh- 36 4 0 0 0 8 8 37 4 0 0 0 69 3 4 36 0 63 4 68 45 0 5 5 98 5 4 6 83 36 39 7 76 76 Taulukko a Inkrementaalnen lukumääräkolmo. Ulommassa dagonaalssa ovat sellasten vuosna -7 sattuneden vahnkoen lukumäärät, otka ovat raportotuneet vuonna 7 (kuvassa lhavodut luvut). Tyhät solut lttyvät tulevn vuosn ( k > 7 ). Summaamalla saman sattumsvuoden havannot saadaan kysesen sattumsvuoden tunnettuen vahnkoen lukumäärä vuoden 7 lopussa N, 8- (raportotuneet vahngot yhteensä). Kehtysvuos Raportotuneet Sattumsvuos 3 4 5 6 7 teensä vahngot yh- 36 78 80 8 8 8 8 8 8 65 69 69 69 69 69 3 4 60 6 63 63 63 4 68 3 5 5 5 5 98 3 4 4 6 83 39 39 7 76 76 Taulukko b Taulukko a kumulatvsessa muodossa. Tarkasteltaessa lukumääräkolmon er rveä el sattumsvuosa, saadaan kästys stä, kunka ptkä vahnkoen raportotumsvve on. Jos vahngot raportotuvat korvauskolmossa näkyven kehtysvuosen akana, tarkottaa vahnkoen lopullsen lukumäärän

0 estmont lukumääräkolmon tyhen soluen täyttämstä arvolla. Tosn sanoen, pyrtään arvomaan, kunka monta o sattunutta vahnkoa on velä tuntemattomana a mnä kehtysvuosna ne raportotuvat. Kuvassa on havannollstettu tätä estmonta, kun merktään tuorenta sattumsvuotta I a kehtysvuotta, onka loppuun mennessä kakk tetyn sattumsvuoden vahngot ovat tunnettua, J. Vuonna sattuneden a vuoden t N lopussa tuntemattomna oleven vahnkoen lukumäärän estmaatt Rˆ saadaan oko lopullsen vahnkoen lukumäärän estmaatn Nˆ J a arvonthetkeen mennessä tunnettuen vahnkoen lukumäärän N, t-+ erotuksena ta tuleven kehtysvuosen nkrementaalsten vahnkoen lukumäären estmaatten summana:, t- + = J å N Rˆ = Nˆ - N Mˆ. (3) J = t-+ Estmotu tuntemattomen vahnkoen lukumäärä yhteensä saadaan sattumsvuosttasten tuntemattomen vahnkoen lukumäären summana I å N N Rˆ = Rˆ. (4) = Sattumsvuodet 3... Kehtysvuodet 3 Havattu anesto Arvot tulevlle kehtysvuoslle Kuva. Kolmon täyttämnen tuleven kehtysvuosen arvolla..3. Maksettuen korvausten korvauskolmo Kun tlastoanestona käytetään tedossa oleva maksettua korvauksa, puhutaan ylesest korvauskolmosta ta maksettuen korvausten korvauskolmosta. Korvauskolmossa kehtysvuos määrtellään sten, että kaavassa () k vastaa korvauserän maksuvuotta. Kehtysvuos kuvaa nän ollen korvauseren maksun vvettä sattumsvuodesta. Taulukossa a a b on estetty taulukon vahnkoen nkrementaalset a kumulatvset korvaukset korvauskolmona. Inkrementaalsen korvauskolmon (taulukko a) solussa (, ) on sattumsvuoden vahngosta. kehtysvuoden (el vuoden + -) akana maksetut korvaukset, C. Kumulatvsen korvauskolmon (taulukko b) solussa ( ) on vastaavast sattumsvuoden vahngosta. kehtysvuoden loppuun mennessä

maksetut korvaukset D. Kuten vahnkoen lukumäärlle, myös maksetulle korvaukslle pätee nkrementaalsten a kumulatvsten korvausten yhteys å D = C k k = a C = D - D, -. (5) Korvauskolmon dagonaalssa on vuoden k akana vuosna,..., k sattunesta vahngosta maksetut korvaukset (kaavan () perusteella = k - + ). Kehtysvuos Maksetut korvaukset yh- Sattumsvuos 3 4 5 6 7 teensä 7 834 03 454 5 79 333 665 93 4 505 089 4 607 80 3 4 58 587 7 5 4 069 3 39 46 63 4 735 439 74 579 49 4 308 844 86 545 5 5-034 609 480 5 385 086 89 387 3 785 588 58 6 46 899 96 658 00 7 85 05 85 05 Taulukko a. Inkrementaalnen korvauskolmo taulukon vahngosta. Ulommassa dagonaalssa ovat vuosna -7 sattunesta vahngosta vuonna 7 maksetut korvaukset (kuvassa lhavodut luvut). Sattumsvuoden vahngosta maksetut korvaukset yhteensä vuoden 7 lopussa saadaan summaamalla kysesen sattumsvuoden havannot. Kehtysvuos Maksetut korvaukset yh- Sattumsvuos 3 4 5 6 7 teensä 7 834 475 88 50 07 503 350 504 05 504 947 505 089 505 089 4 607 394 730 409 58 4 845 4 97 4 069 4 069 3 39 46 554 603 576 338 578 777 579 49 579 49 4 308 844 595 389 60 54 609 480 609 480 5 385 086 574 473 588 58 588 58 6 46 899 658 00 658 00 7 85 05 85 05 Taulukko b. Kumulatvnen korvauskolmo Jos vahngot selvävät korvauskolmossa näkyven kehtysvuosen akana, tarkottaa korvausvastuun arvont korvauskolmon tyhen soluen täyttämstä arvodulla maksettavaks tulevlla korvaukslla. Pyrtään ss arvomaan, kunka palon korvauskolmossa näkyven sattumsvuosen vahngosta maksetaan velä korvauksa, kunnes vahngot ovat loppuunkästeltyä (ks. kuva ). Kun tuoren sattumsvuos on I a vahngot selvävät J kehtysvuoden akana, vuonna sattuneden vahnkoen korvausvastuun estmaatt vuoden t lopussa on

J t- + = åc ˆ, = t-+ Rˆ = Dˆ - D. (6) J Koko korvausvastuun estmaatt vuoden t lopussa saadaan sattumsvuosttasten estmaatten summana I å R = Rˆ = ˆ. (7) Nn kutsutussa ptkähäntässsä vakuutuslaessa vahnkoen selvämnen saattaa kestää pdempään, kun korvauskolmossa näkyven kehtysvuosen aan. 9 Tällön korvauskolmon täyttämstä atketaan kakken sattumsvuosen osalta kolmosta okealle, kuten kuvassa 3 on havannollstettu. Jos vmenen korvauskolmossa näkyvä kehtysvuos on J, pyrtään ss arvomaan myös kehtysvuosna J +, J +,..., J + n maksettavat korvaukset. Nästä kehtysvuossta e ole korvauskolmossa havattua maksettua korvauksa, oden perusteella kehtystä vos arvoda. Tällön estmonnssa käytetään hyväks esmerkks ekstrapolonta (ks. alaluku 3...3). täseks. Sattumsvuodet 3... Kehtysvuodet 3... Korvauskolmo; havatut korvaukset Kehtysvuodet, osta on vanhmpen sattumsvuosen osalta havantoa Kehtysvuodet, osta e ole havantoa Kuva 3. Korvausvastuun estmont, kun vahnkoen selvämnen kestää pdempään kun korvauskolmossa näkyven kehtysvuosen aan (vrt. kuva ). Jos kyseessä on nkrementaalnen korvauskolmo, korvausvastuu saadaan sävytettyen alueden estmotuen korvausten summana..3.3 Korvausmenokolmo Usen vahngosta tedetään korvausvastuun arvonthetkellä enemmän kun van maksetut korvaukset. Tämä teto ssältyy vahnkokohtasn varauksn. Kun tlastoanestona käytetään tedossa oleven maksettuen korvausten lsäks vahnkokohtasa varauksa, puhutaan korvausmenokolmosta. Sattumsvuoden kehtysvuoden (kumulatvsella) korvausmenolla I tarkotetaan kumulatvsten maksettuen korvausten D a 9 Esmerkks vakuutuslaa, ossa vahnkoen selvämnen kestää yl 0 vuotta, vodaan kutsua ptkähän-

3 sattumsvuoden vahnkoen kehtysvuoden lopun vahnkokohtasten varausten summaa O I = D + O. Sattumsvuoden kehtysvuoden nkrementaalsella korvausmenolla tarkotetaan puolestaan sattumsvuoden korvausmenon muutosta kehtysvuoden akana. Korvausmenon muutos on kehtysvuoden nkrementaalsten maksettuen korvausten a vahnkokohtasten varausten muutoksen summa ( O O ) I. - I, - = C + -. - Taulukossa 3 a a 3 b on taulukon vahnkoen vahnkokohtaset varaukset vuosttan sekä vahnkokohtasten varausten muutos kehtysvuosttan. Taulukossa 4 a a 4 b on taulukon 3 vahnkokohtassta varaukssta a taulukon maksetusta korvaukssta muodostettu nkrementaalnen a kumulatvnen korvausmenokolmo. Vuos k Sattumsvuos 3 4 5 6 7 44 903 0 0 0 0 0 0 0 303 0 0 0 0 0 3 3 79 9 79 97 97 97 4 98 38 0 0 0 5 63 396 6 498 0 768 6 95 360 8 456 7 66 907 Taulukko 3 a. Vahnkokohtaset varaukset vuosen,,7 lopussa sattumsvuosttan. Kehtysvuos Sattumsvuos 3 4 5 6 7 44 903-44 903 0 0 0 0 0 0 303-0 303 0 0 0 0 3 3 79-00 -8 80 0 0 4 98 38-98 38 0 0 5 63 396-46 898-5 730 6 95 360-66 904 7 66 907 Taulukko 3 b. Taulukon 3 a vahnkokohtasten varausten muutos kehtysvuosttan.

4 Kehtysvuos Sattumsvuos 3 4 5 6 7 yhteensä Korvausmeno 36 737 58 55 5 79 333 665 93 4 505 089 34 90 59 80 4 58 587 7 5 4 069 3 43 54 4 40 95 439 74 580 46 4 407 7 88 7 5 5-034 609 480 5 448 48 4 489 8 055 599 06 6 557 59 9 07 686 466 7 35 35 Taulukko 4 a. Inkrementaalnen korvausmenokolmo (summa taulukon a nkrementaalssta maksetusta korvaukssta a taulukon 3 b vahnkokohtasten varausten muutoksesta. Kehtysvuos Sattumsvuos 3 4 5 6 7 yhteensä Korvausmeno 36 737 475 88 50 07 503 350 504 05 504 947 505 089 505 089 34 90 394 730 409 58 4 845 4 97 4 069 4 069 3 43 54 564 394 577 309 579 748 580 46 580 46 4 407 7 595 389 60 54 609 480 609 480 5 448 48 590 97 599 06 599 06 6 557 59 686 466 686 466 7 35 35 Taulukko 4 b. Kumulatvnen korvausmenokolmo. Korvausmeno selvää usen nopeammn kun maksetut korvaukset. Kuvassa 4 on esmerkk sattumsvuoden korvausmenon a maksettuen korvausten kehtyksestä. Kuvassa kakk vahngot ovat tunnettua kehtysvuoden lopussa a vahnkokohtaset varaukset on arvotu tästä lähten täsmälleen yhtä suurks, kun vahngosta on maksamatta korvauksa. Nän ollen korvausmeno on yhtä suur kun kokonaskorvausmeno U kehtysvuodesta lähten. Vastaavast korvausmenon muutos kehtysvuosna > on nolla, koska korvauksa maksetaan yhtä palon, kun vahnkokohtaset varaukset purkautuvat. Kumulatvset maksetut korvaukset ovat sen saan selvnneet vasta kehtysvuoden J lopussa.

5 Kuva 4. Sattumsvuoden maksettuen korvausten a korvausmenon kehtys. Korvausmenon a kumulatvsten korvausten erotuksena saadaan vahnkokohtaset varaukset. Jotta maksettuen korvausten a korvausmenon erlanen selvämnen kävs lm, on vahnkokohtaset varaukset latettu kuvassa ertysen ylarvoduks. Korvausvastuu vodaan arvoda korvausmenokolmosta käyttäen samoa menetelmä kun maksettuen korvausten korvauskolmolle. Koska korvausmeno lähestyy nopeammn kokonaskorvausmenoa kun maksetut korvaukset, korvausvastuun estmomnen korvausmenokolmosta vo olla helpompaa a käytännöllsempää ertysest ptkähäntässsä vakuutuslaessa. Esmerkks kuvassa 3 havannollstetulta ekstrapolonnlta vodaan välttyä kokonaan. Tosaalta, os ykskään korvausmenokolmon sattumsvuos e ole lopullsest selvnnyt, saattaa vahnkokohtasten varausten epätarkkuus aheuttaa ylmäärästä epätarkkuutta korvausmenokolmosta estmotuun korvausvastuuseen. Korvausmenokolmosta a maksettuen korvausten korvauskolmosta estmotuen korvausvastuden tuls olla lähellä tosaan. Korvausmenokolmosta vuoden t lopussa estmotu korvausvastuu ssältää kutenkn maksettavaks tuleven korvausten lsäks arvot vahnkokohtasten varausten tulevsta muutokssta 0 I J åå = = t-+ I J I J I ( Iˆ -Iˆ - ) = åå( Cˆ + Oˆ -Oˆ,,- ) = ååc ˆ -å Rˆ = O. = = t-+ = = t -+ =,t -+ Nän ollen maksettuen korvausten korvauskolmon perusteella arvodusta korvausvastuusta on vähennettävä vuoden t lopun vahnkokohtaset varaukset ennen korvausvastuden vertalua (vertaa edellä laskettua kaavohn (6)-(7), kun oletetaan vahnkoen selvävän J vuodessa). Jatkossa tarkastellaan korvausvastuun estmomsta pelkästään vahnkoen lukumääräkolmosta a maksettuen korvausten korvauskolmosta. Maksettuen korvausten korvauskolmota kutsutaan atkossa lyhyest korvauskolmoks. 0 Muutos ssältää arvon stä, kunka palon varaus on purkautunut maksetuks korvauksks a kunka palon varausta on pävtetty uuden tedon perusteella.

6.4 Korvausnflaato Inflaatolla on merkttävä vakutus maksettavaks tuleven korvausten suuruuteen. Suomessa ylestä nflaatota mtataan kuluttaahntandeksllä, oka on kulutusosuukslla panotettu keskarvo kottalouksen ostamen tavaroden a palveluden hnnosta [0]. Inflaaton vakutus maksettavn korvauksn e ana vastaa ylesen nflaaton mukasta kustannusten kasvua, vaan vakutus rppuu tarkasteltavasta korvauslasta. Esmerkks ansotasoon sdotussa eläkekorvauksssa ylenen palkkatason muutos vakuttaa korvausten suuruuteen, kun taas okeusturvavakuutuksessa ertysest asanaokustannusten kasvu on merkttävä tekä. Tämän taka korvauksn vakuttavaa nflaatota kutsutaan korvausnflaatoks erotuksena kuluttaahntandeksllä mtattavasta ylesestä nflaatosta. Korvausnflaato aetaan yleseen nflaatoon a korvauslalle tyypllseen nflaatoon, oden summana korvausnflaato saadaan [3]. Koska korvauskolmon dagonaal kuvaa tettyä kalentervuotta, lmenee korvausnflaato korvauskolmossa dagonaalsena vakutuksena. Dagonaaln maksetut korvaukset ovat ss altstuneet samansuuruselle korvausnflaatolle rppumatta vahngon sattumsvuodesta. Vastaavast korvausnflaato näkyy vuonna sattuneden vahnkoen maksettuen korvausten kehtyksessä. Jotta saatasn selvlle sattumsvuoden korvausten kehtys lman korvausnflaaton vakutusta, muutetaan maksetut korvaukset saman vuoden rahan arvoon yleensä arvontvuoden t rahan arvoon. Olkoon vuoden k, k t, korvausnflaato l k. Tällön sattumsvuoden vahngosta vuonna + - t maksetut korvaukset vuoden t rahan arvossa ovat t Õ( + λk ) * C = C. (8) k= + Kun korvausnflaaton vakutus on elmnotu korvauskolmosta, vodaan arvoda muden teköden kuten mahdollsten ehtomuutosten, lakmuutosten sekä korvaustomnnassa tapahtuneden muutosten vakutusta maksettuen korvausten tasoon a selvämseen. Taulukossa 5 on estetty taulukon a nkrementaalnen korvauskolmo vuoden 7 rahan arvossa olettaen, että korvausnflaato λ k = % kaklla k =,..., 7. Taulukkoa b vastaava, vuoden 7 rahan arvossa oleva kumulatvnen korvauskolmo on laskettu nkrementaalssta korvaukssta kaavalla (5).

7 t- Kertomet ( ) ( + - ) + 0,0 nkrementaalslle korvaukslle kaavassa (8) Kehtysvuos Sattumsvuos 3 4 5 6 7,66,0408,0843,06,0404,000,0000,0408,0843,06,0404,000,0000 3,0843,06,0404,000,0000 4,06,0404,000,0000 5,0404,000,0000 6,000,0000 7,0000 Inkrementaalnen korvauskolmo vuoden 7 rahan arvossa Kehtysvuos Maksetut korvaukset yh- Sattumsvuos 3 4 5 6 7 teensä 306 9 4 630 7 850 476 69 95 4 56 869 36 943 94 97 5 47 69 73 5 450 49 3 43 73 73 7 63 488 74 6 67 4 37 748 98 5 48-034 640 63 5 400 643 93 75 3 785 607 603 6 47 37 96 667 48 7 85 05 85 05 Kumulatvnen korvauskolmo vuoden 7 rahan arvossa Kehtysvuos Maksetut korvaukset yh- Sattumsvuos 3 4 5 6 7 teensä 306 9 530 759 558 609 56 085 56 776 56 77 56 869 56 869 36 943 43 94 447 33 450 03 450 097 450 49 450 49 3 43 73 596 858 69 47 6 958 6 67 6 67 4 37 748 65 869 64 97 640 63 640 63 5 400 643 593 88 607 603 607 603 6 47 37 667 48 667 48 7 85 05 85 05 Taulukko 5. Taulukoden a a b korvaukset vuoden 7 rahan arvossa, kun λ k = % kaklla k =,..., 7. Korvausnflaaton kustannuksa kasvattava vakutus on otettava huomoon korvausvastuuta arvotaessa. Ertysest ptkähäntässsä vakuutuslaessa korvausnflaato vakuttaa merkttäväst maksettavaks tuleven korvausten suuruuteen mtä kauempana tulevasuudessa o sattuneen vahngon kustannukset aheutuvat, stä pdempään ne ovat altstuneet korvausnflaaton aheuttamalle kustannusten kasvulle. Korvausnflaaton vakutus otetaan huomoon korvausvastuun estmonnssa mplsttsest ta eksplsttsest alaluvussa 3... estetyllä tavalla.

8 Jossan vakuutuslaessa korvaukset maksetaan, edellä estetystä poketen, vahngon sattumsvuoden tasossa rppumatta stä, mnä vuonna korvauserän suortus tapahtuu. Tällön korvausnflaaton vakutus lmenee korvauskolmossa dagonaalen saan rvellä el sattumsvuosttan. Tällasssa vakuutuslaessa korvausnflaaton vakutus elmnodaan kaavan (8) saan kaavalla C ** = C I Õ( + λk ) k= +, kun t -..5 Sotustomnta a korvausvastuun dskonttaus Korvausnflaaton lsäks sotustomnnalla a sotustuotolla on suur merktys vakuutustomnnassa. Vakuutusmaksut pertään vakuutuksenottalta vakuutuskauden alussa ta ennen vakuutuskauden alkua, kun taas vahnko sattuu tämän älkeen vakuutuskauden akana. Korvauksa vodaan suorttaa velä usean vuoden älkeen vakuutusmaksun permsestä. Johtuen vakuutusmaksu- a korvauskassavrtoen erakasuudesta, vakuutusyhtölle kertyy sotettava varoa, olle saadaan tuottoa. Sotustomnta vakuttaa korvausvastuun laskentaan, kun päätetään korvausvastuun dskonttauksesta a snä käytettävästä tuotto-odotuksesta. Korvausvastuuta dskontattaessa estmodusta korvausvastuusta vähennetään tuotto, oka slle oletetaan saatavan snä akana, kun se on sotettuna, tosn sanoen, kunnes korvaukset on suortettu. Dskontattu korvausvastuu tarkottaa nän ollen estmotuen tulevasuudessa maksettaven korvausten kassavrran nykyarvoa (pääoma-arvo). Kun merktään vuonna t + h, h =,,... I + J -- t, maksettavaks arvotua määrä C F ˆ, t + h + h = I å CFˆ t Cˆ, (9) =, t+ h-+ on dskontattu korvausvastuu vuoden t lopussa d CFˆ Rˆ =, (0) I + J - å - t h= t + h h h ( + s ) mssä s h on h vuoden aan sotettuna oleven varoen vuostuotto-odotus. Kaavassa (0) on oletettu, että korvaukset maksetaan vuoden lopussa. Vahnkovakuutuksessa on ollut tapana dskontata anoastaan eläkemuotosten korvausten korvausvastuu, onka realsotumnen kestää useden vuosen aan. Tuottoodotuksena s h käytetään rsktöntä korkoa, otta dskontattu korvausvastuu on vakuutusyhtölan mukasest turvaavast arvotu. Usen tuotto-odotukseks valtaan vakokorko s h = s kaklla h =,,..., I + J -- t, a stä kutsutaan dskonttauskoroks. Myös muden korvauslaen kun eläkemuotosten korvausten korvausvastuu on mahdollsta dskontata, mutta tällön on noudatettava vakuutusyhtölan määräyksä stä, mllon Käytännössä usen oletetaan, että korvaukset maksetaan tasasest vuoden akana, ollon dskonttaus tapahtus puoleen väln vuotta.