W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7

Koko: px
Aloita esitys sivulta:

Download "W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7"

Transkriptio

1 ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t ) :n autokorrelaatounkto R ( τ ) penenee lneaarsest τ :n unktona välllä 0 τ 5µ s. a) määrää ja prrä R ( τ ) b) laske x ( t ) :n tehospektr. Kuvan järjestelmään kuuluu kohnalähde, suodatn ja vahvstn. Laske lähtöteho, kun tuottaa parabolsta kohnaa, jonka -puolenen tehospektr on 0 Sn ( ) =, jossa B 0 = 0 ja B = 5 M Snbg H() Hbg G = 60 db 5M 5M 3. Alla olevan kuvan järjestelmässä on kaks tlastollsest rppumatonta, valkosta ja nollakeskarvosta Gaussn kohnaa tuottavaa generaattora (G, hte Gaussan ose). Kakspuoleset tehospektrt ovat: Sx,, o ( ) = = o = 0 o = 0 Laske lähtösgnaaln teho ovat H ( ) = A rect A = 3, = k A =, = 3 k A =, = k 3 3 P, kun suodattmet ovat deaalssa alpäästösuodattma, joden srtounktot Hbg Hbg + H3bg

2 ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t ) :n autokorrelaatounkto R ( τ ) penenee lneaarsest τ :n unktona välllä 0 τ 5µ s. a) määrää ja prrä R ( τ ) b) laske x ( t ) :n tehospektr Esmerkkratkasut, tehtävä. Merktään x = σ + m, jossa σ on varanss el AC-teho, sspä σ on keskhajonta = vahtojänntteen tehollsarvo U RMS = U AC. m on keskarvon nelö el DC-teho, joten m on keskarvo = tasajännteosuus ell DC-arvo U DC x on nelökeskteho el kokonasteho Kokonasteho on autokorrelaatounkto arvolla τ = 0, el x V R ( ) = 4 + = 0 = 0 () Kun τ = 0, kerrotaan sgnaal u ( t) tsellään el saadaan ( ) u t P. t vomme prtää autokorrelaatounkton (kskkönä watt ta bg R τ V ) 0 τ 5 µs 5 µs El τ 0, τ 5µ s R ( τ ) = 5 s µ 0, τ > 5µ s () Autokorrelaatounkto on ss 0, jos x ( t ) ja x ( t + τ ) ovat rppumattoma.

3 ELEC-A700 LASKUHARJOIUS 5 Svu 3/7 Autokorrelaaton avulla vodaan hvn häröllsestä ja kohnasesta sgnaalsta lötää elämää ta stten todeta sgnaal täsn satunnaseks, jolla e normaatoarvoa ole. Korrelaatoteknkkaa kätetään mm. 3Gpäätelatteden vastaanottmssa ja puolustusvomen näkmättömssä radossa (Stelth Rado). b) ener-knchne teoreeman perusteella v { v } ( ) ( ) G = F R τ (3) τ el tehospektr saadaan Fourer-muuntamalla autokorrelaatounkto. Lasketaan kolmopulssn Fourer-muunnos dervontteoreeman avulla. bg x t t Dervotu kolmopulss on 'bg x t t Dervotu pulss vodaan lausua seuraavast t + t ' x ( t) rect rect = (4)

4 ELEC-A700 LASKUHARJOIUS 5 Svu 4/7 jonka muunnos on { ( )} = snc ( ) π snc ( ) F x t e e ' j j π jπ jπ ( ) ( e e ) = snc (5) Dervontteoreeman perusteella d x ( t F ) j π X ( ) (6) dt joten jπ jπ { ( )} = snc ( ) ( ) F x t e e jπ { ( )} = snc ( ) ( π ) = snc ( ) F x t sn π (7) (8) Sovelletaan tulosta tehtävän pulssn ja saadaan ( ) 0 5 snc ( 5 ) 00 snc ( 5 ) G = µ s µ s = µ s µ s (9) x() ehospektr kuvaa ss tehon jakautumsta er taajuukslle ja kskkönä on /.

5 ELEC-A700 LASKUHARJOIUS 5 Svu 5/7 3. Kuvan järjestelmään kuuluu kohnalähde, suodatn ja vahvstn. Laske lähtöteho, kun tuottaa parabolsta kohnaa, jonka -puolenen tehospektr on 0 Sn ( ) =, jossa B 0 0 = ja = 5 B M Snbg H() Hbg G = 60 db 5M 5M Esmerkkratkasut, tehtävä 3. Parabolsta kohnaa snt FM-vastaanottmen lmasussa, jossa taajuusmuutokset muutetaan ampltudmuutoksks (esmerkks ULA-lähetkset). Määrtetään ensn koko järjestelmän lähtötehospektr. Järjestelmän tulotehospektr ja lähtötehospektr rppuvat tosstaan seuraavast ( ) ( ) ( ) S = H S () o tot H on Suodattmen ja vahvstmen tehonsrtounkto ( ) ( ) tot g H () jossa g on vahvstmen vahvstus absoluuttarvona ja H ( ) on suodattmen srtounkto. ässä tehtävässä tulotehospektr on n tehospektr Sn ( ), joten lähtötehospektr on o ( ) ( ) ( ) S = g H S (3) n Lähtöteho saadaan lähtötehospektrstä ntegromalla P = S d (4) o ( )

6 ELEC-A700 LASKUHARJOIUS 5 Svu 6/7 Muunnetaan vahvstus desbelestä absoluuttarvoks kaavalla [ ] 0 log ( P) P db el = (5) 6 60 db 0 Stten sjotetaan tehtävässä annetut lukuarvot 5M P = 0 4 d 5 0 5M = / = = (6) 4. Alla olevan kuvan järjestelmässä on kaks tlastollsest rppumatonta, valkosta ja nollakeskarvosta Gaussn kohnaa tuottavaa generaattora (G, hte Gaussan ose). Kakspuoleset tehospektrt ovat: Sx,, o ( ) = = o = 0 o = 0 Laske lähtösgnaaln teho ovat H ( ) = A rect A = 3, = k A =, = 3 k A =, = k 3 3 Esmerkkratkasut, tehtävä 4. Koko järjestelmän lähtötehospektr on P, kun suodattmet ovat deaalssa alpäästösuodattma, joden srtounktot ( ) ( ) ( ) ( ) ( ) ( ) ( ) S = H H S + H H S () 3 x 3 x ässä ss summataan tehot hteen, koska t ovat rppumattoma. Keskmääränen lähtöteho saadaan lähtötehospektrn lausekkeesta seuraavast P = S d () ( ) Hbg Hbg Kohnageneraattorn generoma kohnateho menee seuraaven suodatusten läp + H3bg

7 ELEC-A700 LASKUHARJOIUS 5 Svu 7/7 9 Hbg H 3 bg k k joten generaattorsta tulee ulostuloon teho ( k alpäästösuodatn on domnova) P = (3) Vastaavast generaattorsta kohnateho menee seuraaven suodatusten läp 4 H () H () 3 k 3 k joten generaattorsta tulee ulostuloon teho ( k lähtösuodatn on domnova) P = Lasketaan tehot hteen ja saadaan P = P + P = 6

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA KVANTIOINTIKOHINA JA KANAVAN AWGN- KOHINA PULIKOODIMODULAATIOA Teolkenneeknkka I 5359A Kar Kärkkänen Osa 6 5 Kvansonkohna PCM-järjeselmässä PCM:ssa on kaks vrhelähdeä:. kvansonkohna,. kanavan kohnan aheuama

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot ST40 Pranalyys, osa kevät 07 /8 askharjots 8: Vahtosähköpressä esntyvät tehot Tehtävä. Määrtä komponentessa esntyvät tehot alla olevassa kvassa estetyssä prssä. 00 V, 0, 30, mh, 0,5 μf, f 5 khz. Kva. Prkaavo

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot TE40 Pranalyys, osa kevät 07 /7 askharjots 8: Vahtosähköpressä esntyvät tehot Tehtävä. Määrtä komponentessa esntyvät tehot alla olevassa kvassa estetyssä prssä. e t 50sn5000 t V, 0 k, 0 k, 4 H, 5 nf g

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä S-445 FYSIIKKA III (Sf) Sysy 4, LH Ratasut LHSf-* ohesen uvan esttämää systeemä Systeemssä on 5 huasta joden yhtenen energa on U = 6ε Kunn energatason degeneraatotejä on Olettaen, että systeem noudattaa

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä

Lisätiedot

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn

Lisätiedot

TODENNÄKÖISYYSLASKENNASTA 1

TODENNÄKÖISYYSLASKENNASTA 1 Mka Haapanen mphaapan@ccju Matemaattnen taloustede II Jväsklän lopsto TODNNÄKÖISSLASKNNASTA Satunnasmuuttuja Satunnasmuuttuja on unkto jonka arvo perustuu todennäkösksn todennäkössjakaumaan Satunnasmuuttujaa

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Luento 7. DEE Piirianalyysi Risto Mikkonen

Luento 7. DEE Piirianalyysi Risto Mikkonen DEE- Pranalyys Luento 7 Luento 6 - Recap Johdatus vahtosähköön snmuotoset suureet Tehollsarvo Passvset prkomponentt mpedanss Laskenta hetkellsarvolla Luento 7 - ssältö Osotnlaskenta Knteä tehollsarvon

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja

Lisätiedot

LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN

LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelemme fyskan tössä usen eteen tulevaa tlannetta, jossa olemme mtanneet kpl pstepareja ( X, Y

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN TURUN AMMATTIKORKEAKOULU TYÖOHJE (7) FYSIIKAN LABORATORIO V 2..2 38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN. Työn tavote 2. Teoraa Työssä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL :

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL : S-11435, Fyskka III (ES) Tentt 194 1 Setsemän tunnstettavssa olevaa hukkasta on jakautunut kahdelle energatasolle Ylem taso on degenerotumaton ja sen energa on 1, mev korkeam kun alemman tason, joka uolestaan

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

Konenäkö ja kuva-analyysi. Tuomo Rossi Jyväskylän yliopisto Tietotekniikan laitos

Konenäkö ja kuva-analyysi. Tuomo Rossi Jyväskylän yliopisto Tietotekniikan laitos Konenäkö ja kuva-analyys Tuomo Ross Jyväskylän ylopsto Tetoteknkan latos 9. syyskuuta 2008 2 Ssältö 1 Matemaattsa estetoja 5 1.1 Lneaarset suotmet ja konvoluuto................. 5 1.1.1 Konvoluuto.........................

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Kotitehtävät 1-6: Vastauksia

Kotitehtävät 1-6: Vastauksia /V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(

Lisätiedot

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri. ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov TKK / Mittaustekniikan laboratorio HUT / Metrology Research Institute S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov 7.2.2001 KL kohina.ppt 1 Elektroninen mittaussysteemi MITATTAVA

Lisätiedot

Tehtävä 1. TEL-1360 Sähkömoottorikäytöt Laskuharjoitus 4/2011

Tehtävä 1. TEL-1360 Sähkömoottorikäytöt Laskuharjoitus 4/2011 TE-1360 Sähkömoottorikäytöt askuharjoitus 4/2011 Tehtävä 1. n = 750 V ; I n = 200 A ; a = 8 mh ; R a = 0,16 Ohm ; I max = 500 A ; i max0 = 60 A ; f s = 100 Hz astart = 30 V ; = 500 750 V ; cos φ = 1 Kyseessä

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA 8 7 0 :9 0 9 :97 6 9 609: 89 9:6 97 7 :60 rp :90 80 7 6 7 8 :9 0 rp0 6 68 69 6 7 :96 rp7rp8 6 8 9 YYDÄÄN LOAKENNUS- :6 KNTESTÖ 8 :98 :09 :9 6 :9 8 90 9: 9 :0 76 8 :9.7 Kohde 0 66 9 7 rp9 0.7 rp66 :9 9.8

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite S-66. Elekronkan perskrss Leno III: vass Päöeho en perskykennä kondensaaor Vahovrran lyhenney merknäapa Vakea vahovra-analyys? analyys? Kompleksarmekka odellnen vahovra-analyys analyys alkaa asavrralla

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue

S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,

Lisätiedot

Suoran sovittaminen pistejoukkoon

Suoran sovittaminen pistejoukkoon Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe MALLIVASTAUKSET S-4.7 Fysa III (EST) (6 op). väloe 7..7. Astassa on, µmol vetyä ( ) ja, µg typpeä ( ). Seosen lämpötla on K ja pane, Pa. Lase a) astan tlavuus, b) vedyn ja typen osapaneet ja c) moleyylen

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

5. Datan käsittely lyhyt katsaus

5. Datan käsittely lyhyt katsaus 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot