( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
|
|
- Julia Hakola
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia! x = 1 rec τ Vihje: F rec = τ sinc ( f τ) x -. Esiä kuvassa anneun signaalin x() yhälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmoele ampliudispekri. 1 f xbg 1 f f 3. Laske x(), kun X ( f ) = sinc ( f τ) e sinc ( f τ) e j π f τ j π f τ 4. Laske konvoluuion avulla seuraava kääneismuunnos x() x 1 1 = F ( 1+ jω) = 1+ jω vihje: F e u 1 1, missä u() on yksikköaskel-funkio.
2 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu /11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia! x 1 rec = τ Vihje: F rec = τ sinc ( f τ) x - Esimerkkirakaisu, ehävä 1. x 1 rec = (1) ässä siis rec on suorakaidepulssi, jonka leveys on. ehävä saadaan rakaisua sien, eä pulssi derivoidaan kaheen keraan. ällöin voidaan käyää sekä suorakaidepulssin eä impulssifunkion muunnoksia. Derivoidaan pulssi keraalleen ja saadaan ' x = rec () Rec ei derivoidu, koska sen ehävänä on vain rajaa signaali haluulle aika-alueelle. x ' bg Huomaa epäjakuvuuskohda ajanhekillä ja, siis yh äkkise muuokse ampliudeissa. Derivoidaan pulssi oiseen keraan ja saadaan '' x = ( ) ( ) rec δ + + δ (3)
3 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 3/11 '' xbg Eli oinen derivaaa muodosuu kahdesa -korkuisesa impulssisa sekä - -korkuisesa suorakaidepulssisa. Impulssi muodosuva epäjakuvuuskohiin sien, eä impulssin korkeus on epäjakuvuuskohdan korkeus (eli signaalin muuos epäjakuvuuskohdassa). Epäjakuvuuskoha = signaali muuuu sen kohdassa ääreömän nopeasi arvosa oiseen. Seuraavaksi muunneaan oinen derivaaa. Impulssifunkion muunnos on F { } 1 δ = (4) Impulssifunkio siis siälää kaikkia aajuuksia arvon 1 verran. Sovelleaan aikasiiroa j f x = X f e π (5) ja saadaan ajassa siirreylle impulssille jπ f { δ ( )} 1 F = e (6) Lisäksi arvisemme suorakaidepulssin muunnoksen (löyyy kaavakokoelmasa) F rec = f sinc (7) ' ' Kaavojen (6) ja (7) peruseella voimme kirjoiaa muunnoksen signaalille x ( ) { } 4 '' jπf jπf π = + sinc ( ) cos ( π f ) = e + e F x e e f j f j π f = 4 4 cos ( f ) sinc ( f ) π (8) Lopuksi käyämme derivoinieoreemaa n d n = π n ( ) F x j f X f d (9) eli voimme kirjoiaa 4 4 cos ( πf ) sinc ( f ) = ( jπ f ) X ( f ) (1) ja saamme loppuuloksen
4 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 4/ X ( f ) = sinc ( f ) cos ( πf ) 4π f ( ) ( π ) ( π f ) sinc f cos f = (11) Kuva 1. Kaavan (11) funkio aajuusalueessa, ampliudi- ja vaihespekri. Arvoksi on aseeu =,5 ms. Kuvaaja on laskeu ja ehy Malabilla. Vaihekulma on nolla asea kaikilla aajuuden f arvoilla, koska muunnos on kokonaan reaalinen. 15 x 1-4 Ampliudi/V/Hz aajuus/hz 15 1 Vaihekulma/asea aajuus/hz. Esiä kuvassa anneun signaalin x() yhälö aika-alueessa. Laske signaalin Fourier-muunnos ja hahmoele ampliudispekri. 1 f xbg 1 f f
5 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 5/11 Esimerkkirakaisu, ehävä. Signaali x() koosuu kahdesa kosiniaallosa. Ensimmäinen kosiniaalo on voimassa kaikkialla muualla paisi 1 1 välillä f < < f, joka korvaaan kosiniaallolla, jolla on sama ampliudi mua kaksinkerainen aajuus f. Signaali voidaan kirjoiaa aika-alueessa muooon x Acos f Arec cos f Arec cos f = ( π ) ( π ) + ( 4π ) (1) missä = ja suorakaidepulssi f 1, < rec =, > Yhälön (1) ensimmäinen ermi määrielee f aajuisen kosiniaallon koko aika-alueeseen. oinen ermi vähenää :n piuisen päkän signaalia origon kohdala, jonka jälkeen signaali on välillä < <. Kolmas ermi lisää vasaavaan kohaan kosiniaallon aajuudella f. Superposiion peruseella voimme muunaa signaalin ermeiäin. Ensimmäinen ermi voidaan hajoaa eksponenimuooon eli A j ( πf j πf ) Acos π f = e + e () Ny voimme käyää Fourier-muunnoksen aajuussiiro-ominaisuua eli F jπf ( ) x e X f f (3) Vakion muunnos on vakion korkuinen impulssi nollaaajuudella, joen kaavojen () ja (3) peruseella saadaan yhälön (1) ensimmäisen ermin muunnokseksi -puoleisessa aajuusalueessa A { ( π )} = δ ( ) + δ ( + ) F Acos f f f f f (4) oinen ermi yhälössä (1) saadaan muunneua lausumalla kosiniermi jälleen eksponenimuodossa. ällöin voidaan lausua A A Arec cos f rec e rec e π π ( π ) = + j f j f (5) Suorakaidepulssin muunnos on F rec = f sinc (6)
6 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 6/11 Yhälöiden (3), (5) ja (6) peruseella saadaan yhälön (1) oinen ermi muunneuksi A F A rec cos ( π f ) = sinc ( f f ) + sinc ( f + f ) (7) Samalla meneelmällä saadaan myös yhälön (1) kolmas ermi muunneua A F A rec cos ( 4π f) = sinc ( f f ) + sinc ( f + f ) (8) Keräään loppuulos yhälöisa (4), (7) ja (8), jolloin A A X ( f ) = ( f f ) ( f f ) sinc ( f f ) sinc ( f f ) δ + δ A + sinc ( f f ) + sinc ( f + f ) (9) Xbg f A f f f f f 3. Laske x(), kun Esimerkkirakaisu, ehävä 3. X f = sinc f τ e sinc f τ e j π f τ j π f τ ässä ehävässä käyeään hyväksi konvoluuion muunnosa F v w V ( f ) W ( f ) (1) ehävässä on anneu sinc sinc ( ) X f f e f e j π f τ j π f τ = τ τ () Viiväseyn suorakaidepulssin muunnos on F rec d = sinc f e j πfd (3)
7 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 7/11 jossa on siis yhdisey suorakaidepulssin muunnos ja aikasiiro-eoreema. Näin ollen saadaan τ 1 1 τ x rec rec v w τ τ τ τ = = (4) Eli ehävänämme on laskea kahden suorakaidepulssin konvoluuio. Konvoluuioinegraali määriellään seuraavasi (aika on korvau inegroinnin ajaksi ermillä lambda, siis ns. yhjä muuuja) v w = v w( ) d (5) Konvoluuion laskeminen liiyy simulaaioihin ieokoneella. On siis mahdollisa laskea eukäeen lähösignaalin muoo eri ulosignaaleille, kun järjeselmän ominaisuude unneaan (järjeselmän impulssivase). Konvoluuion laskemisessa kannaaa käyää apuna graafisa esiysä. Melko hyvän käsiyksen konvoluuion muodosamisesa saa osoieesa hp:// löyyvän simulaaorin avulla. Kokeile! Kaksi konvoloiavaa pulssia voidaan esiää graafisesi seuraavasi. wbg 1/ τ 1/ τ τ τ Seuraavaksi ehdään muuujanvaihdokse, ja esieään pulssi v ( ) sekä w. Jälkimmäinen pulssi muodoseaan sien, eä ensin käänneään pulssi ajassa peilaamalla se y-akselin suheen ( saranakoha on w. Lopula siirreään pulssia :n ajanhekellä = ). Sien lausuaan pulssi :n funkiona ja saadaan verran oikealle ja saadaan w ( ) = w( ). Kun arkaselemme pulsseja -alueessa eri :n arvoilla, voidaan ajaella pulssin w( ) liukuvan vasemmala oikealle. ällöin synyy 5 eri apausa.
8 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 8/11 1) Kun <, pulssi näyävä -alueessa seuraavila. wb g τ τ ällöin pulssi eivä eivä leikkaa ja v w reunassa. Konvoluuion ulos piiryy :n osoiamaan kohaan. =. Huomaa, eä ajan symboli on käänneyn pulssin oikeassa ) kun < < τ ova pulssi osiain päällekkäin alla olevan kuvan mukaisesi wb g τ ällöin konvoluuio on τ v w v w d d τ τ τ = ( ) = = (6) ulee siis arkasella, milloin pulssi ova päällekkäin. Näin saadaan inegroiniraja määrielyä. 3) Kun τ < < τ saadaan alla olevan kuvan ilanne wb g τ τ jolloin pulssi ova päällekkäin alueella < < τ, ja konvoluuiosa ulee v w v w d d τ τ τ τ = ( ) = = (7) Inegroiniulos on siis vakio ajasa riippumaa.
9 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 9/11 4) Kun τ < < 3τ, saadaan ilanne wb g ja konvoluuiosa τ τ v w v w d d τ τ τ τ τ = ( ) = = (8) τ Jälleen on huomioiava se, milloin pulssi ova päällekkäin. 5) Kun > 3τ saadaan ilanne, missä pulssi eivä ole päällekkäin wb g τ τ ja konvoluuio v w v w d = ( ) = (9) Lopuksi keräämme ulokse kohdisa 1-5, ja saamme vasauksen, < 1, < τ τ 1 x ( ) =, τ < τ τ 3, τ < 3τ τ τ, 3τ 1 τ xbg τ τ 3τ (1)
10 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 4. Laske konvoluuion avulla seuraava kääneismuunnos x() x = 1+ jω vihje: F e u = F ( 1+ jω), missä u() on yksikköaskel-funkio Esimerkkirakaisu, ehävä 4. Kysyy signaali voidaan kirjoiaa muooon x = F F = ( 1+ jω) ( 1+ jω ) ( 1+ jω ) (1) Ise asiassa kyse on kahdesa peräkkäin kykeysä RC-alipääsösuodaimesa, joiden välillä on erousvahvisin (jonka vahvisus on 1). Nimiäin RC-alipääsösuodaimen siirofunkio eli maemaainen 1 1 mallinne aajuusalueessa on H ( jπ f ) = H ( jω ) = =. ehävän apauksessa 1+ jπ f RC 1+ jπ f τ aikavakio au = 1 (s). ehävässä anneun vihjeen avulla voidaan kirjoiaa 1 1 v = F = e u ( 1+ jω) () jossa u() on yksikköaskel. Edelleen saadaan x = v v (3) Konvoluuioinegraali on muooa v w = v w( ) d (4) joen voimme kirjoiaa v v = v v ( ) d (5) Käyeään samaa meneelmää kuin edellisessä ehävässä, eli oinen pulssi käänneään ajan suheen, ja pulsseja liueaan oisensa yli. ällä keraa arkaselavia alueia on vain.
11 ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 11/11 1) Kun <, saadaan seuraava ilanne b g b g v u ubg eli pulssi eivä ole päällekkäin ja konvoluuio v v v v d = ( ) = (6) ) Kun >, saadaan ilanne ubg b g b g v u ja konvoluuioinegraalisa ulee ( ) = ( ) = (7) v v v v d e e d eli inegroidaan välillä < <, eli alueella, jossa pulssi leikkaava. Inegroimalla saadaan e x = (8) Kun vielä oeaan huomioon, eä pulssi alkaa hekellä = saadaan loppuulos x = e u (9) bg bg x = e u 1
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Tasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija
ELEC-A7 LASKUHARJOIUS Sivu /8 Hyvä opiskelija ässä opeusmoniseessa esieään kurssiin ELEC-A7 liiyviä laskuharjoiusehäviä rakaisuineen. Kaikkia ehäviä ei välämää käsiellä laskuharjoiuksissa, joen voi jouua
Luento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
Diskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
Luento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
a) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3
SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali
DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen
SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Tehtävä I. Vaihtoehtotehtävät.
Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus
Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee
6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
ELEC-A7200 Signaalit ja järjestelmät 5 op
Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
2. Systeemi- ja signaalimallit
2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia
ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET
TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL
1 Excel-sovelluksen ohje
1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen
Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.
Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
Monisilmukkainen vaihtovirtapiiri
Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin
A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!
MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)
Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:
Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
S Signaalit ja järjestelmät (5 op) Prof. Sven-Gustav Häggman
S-7.1110 Signaali ja järjeselmä (5 op) Prof. Sven-Gusav Häggman S-7.1110 Signaali ja järjeselmä (5 op) Sven-Gusav Häggman Sisällyslueelo sivu 1 Johdano 7 Signaali ja signaalien esiäminen 13.1 Signaalien
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
Kotitehtävät 1-6: Vastauksia
/V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(
2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23
LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
Mittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
a. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
järjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1
KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,
MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
Aluksi.1. Integrointia
TT/TV Iegraalimuuokse Meropolia/. Koivumäki Tässä iedosossa ova kaikki uilla esille ullee ehävä. (Tosi iha kaikkia ehäviä ei välämää ole uilla mey läpi kovi arkasi, jos ollekaa.) Esimmäisellä uilla ollee
Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.
DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,
SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTKNIIKKA JA LKTONIIKKA X-2 2017, Kimmo Silvonen Osa II, 25.9.2017 1 Muuosilmiö ja differeniaaliyhälö Tässä luvussa rajoiuaan pääasiassa asajännieläheisiin liiyviin muuosilmiöihin, vaikka samanlainen
a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)
1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015
DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarie järjeelmä Harjoiu 6, harjoiuenpiäjille arkoieu rakaiuehdouke Tää harjoiukea käiellään aplace-muunnoa ja en hyödynämiä differeniaaliyhälöiden rakaiemiea Tehävä Määrielmän mukaan funkion f
>LTI-järjestelmä. >vaihespektri. >ryhmäviive
TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic
6 Integraali ja derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 6 Inegrli j deriv 6. Inegrli ylärjns funkion. Olkoon Määriä kun () [, ], (b) ], 3]., kun [, ],, kun ], 3]. f() d, [, 3],. Osoi, eä jos funkio f on Riemnn-inegroiuv
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa
4. Integraalilaskenta
4. Inegrlilsken Joh8elev esimerkki: kun hiukksen pikk s( erivoin jn suheen, sn hiukksen nopeus: v( = s'( Kun nopeus erivoin jn suheen sn kiihyvyys ( = v'( Kääneinen ongelm: hiukksen kiihyvyys on (. Mikä
S Ä H K Ö - J A T I E T O T E K N I I K A N O S A S T O
S Ä H K Ö J A T I E T O T E K N I I K A N O S A S T O 2.0.2007 Piirieria II (Graafise laskime salliuja). Laske kuvan piirille siirfunki U u (s)/u in (s) ja piirrä nllanapakara. Laske myös Laplacekääneismuunns
ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa
Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen
Lineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
Ilmavirransäädin. Mitat
Ilmairransäädin Mia (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Tuoekuaus on ilmairasäädin pyöreälle kanaalle. Se koosuu sääöpellisä ja miaaasa oimilaieesa ja siä oidaan ohjaa huonesääimen
Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi
Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri
F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ " 1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm
: A ➎ C ➎ B D = 6mm = 9/12mm = a!? # % b &., @ $ c + ± = d * / : ; ( ) e < > [ \ ] ^ f { } ~ µ ß Ω g λ Ø ø φ " 1 / 2 h Á á É i é Í í Ó ó Ú ú j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï l ï Ö ö Ü ü ÿ Â m â Ê ê î ô
X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,
Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka
Suunnitteluharjoitus s-2016 (...k-2017)
1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen
Lorentz-muunnos L(v) on operaatio, joka voidaan esittää myös matriisina
Lorenz-muunnos L on operaaio, joka oidaan esiää myös mariisina L / / mariisi L muodosaa ryhmän: kaksi peräkkäisä Lorenz-muunnosa on myös Lorenz-muunnos, ja on olemassa myös kääneinen Lorenz- muunnos 3
KOMISSION VALMISTELUASIAKIRJA
EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:
Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:
77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen
BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd
PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa
3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
Seinämien risteyskohdat
CAE DS Painevalukappaleen suunnielu Sefan Fredriksson Seinämien riseyskohda Sefan Fredriksson SweCas Käännös: Pekka Savolainen ja Tuula Höök Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi
MUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen