Tampereen yliopisto Informaatiotieteiden yksikkö
|
|
- Ritva Majanlahti
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tampereen yliopisto Informaatiotieteiden yksikkö Kevät 017 Luennot: Kerkko Luosto Muistiinpanot: Jesse Railo (013) ja Jussi Klemetti (017)
2 6 Kartioleikkaukset Vanhan ajan geometrian merkittävimpiä tuloksia oli havainto, että erilaisilla toisen asteen käyrillä on yhdistävä geometrinen ominaisuus: ne saadaan kaikki kartioleikkauksina. Tässä luvussa tasotarkastelutkin tehdään tavanomaisessa karteesisessa tasossa kompleksitason asemasta, koska kartioita tietenkin joudutaan käsittelemään kolmiulotteisessa avaruudessa. 6.1 Ellipsi, paraabeli ja hyperbeli Kartioleikkauksia ovat ympyrä, ellipsi, paraabeli ja hyperbeli, jotka pystytään muodostamaan suoran ympyräkartion ja tason leikkauksina R 3 :ssa. Kartioleikkauksien tarkastelu tehdään seuraavassa aliluvussa, kun tässä on ensin määritelty tarvittavat käyrätyypit. Määritelmä 6.1. Ellipsillä tarkoitetaan niiden tason pisteiden uraa (eli joukkoa), joille etäisyyksien summa kiinteistä pisteistä p ja q on näiden pisteiden keskinäistä etäisyyttä suurempi vakio, ts. joukko E on ellipsi, jos on olemassa sellaiset p, q R ja vakio c> p q, että E={ x R x p + x q =c}. Pisteitä p ja q kutsutaan ellipsin E polttopisteiksi. Mahdollinen erikoistapaus on p=q. Tällöin E={ x R x p =c}={ x R x p =c/}, ts. E on ympyrä. Ympyrät ovat siis ellipsejä, mutta ellipsit eivät eivät tietenkään yleisesti ole ympyröitä. Sen sijaan määritelmä kieltää mahdollisuuden p q ja c = p q, jolloin joukon E voidaan osoittaa surkastuvan janaksi. Lause 6.. Olkoon E R ellipsi, jonka polttopisteet sijaitsevat x-akselilla symmetrisesti origon suhteen. Tällöin joillakin a, b>0 pätee E={(x, y) R x a + y b= 1}. Todistus. Oletuksen mukaan ellipsin E polttopisteet ovat p =( t, 0) ja q =(t, 0) jollakin t 0. Merkitään c:llä vakiota, joka on kuten määritelmässä, ts. c> p q = ( t, 0) = t ja E={v R v p + v q =c}. 57
3 58 LUKU 6. KARTIOLEIKKAUKSET Huomataan, että(c/, 0) E, sillä ( c, 0) (t, 0) + (c, 0) ( t, 0) = c t + c + t =( c t)+(c + t)=c. Merkitään a = c/. Havaitaan, että E sisältyy a-sivuiseen neliöön: sillä kaikilla v=(x, y) R pätee E Q ={(x, y) R x a, y a}, v p + (v q = (x t, y) + (x, y) ( t, 0) = (x t, y) + (x+ t, y) max{ x, y }. Kun(x, y) Q, niin (x, y) E (x, y) (t, 0) + (x, y) ( t, 0) =a (x t) + y + (x+ t) + y = a (x t) + y = a (x+ t) + y (x t) + y = 4a 4a (x+ t) + y +(x+ t) + y x xt+ t = 4a 4a (x+ t) + y + x + xt+ t 4a (x+ t) + y = 4a + 4xt ( x t a a=a ) 0 a ((x+ t) + y )=a 4 + a xt+ x t a x + a xt+ a t + a y = a 4 + a xt+ x t (a t )x + a y = a 4 a t = a (a t ) x y a + a t= 1. Merkitään b= a t. Koska a=c/>t, niin 0<b a. Edellinen johto merkitsee, että E {(x, y) R x a +x b = 1} S ={(x, y) R x a, y b}. Erityisesti E siis sisältyy suorakaiteeseen S Q. Huomattakoon myös, että edellisessä johdossa oli vain yksi kohta( ), jossa päättelyssä oli implikaatio ekvivalenssin sijasta. Implikaatio johtui siitä, että yhtälön molemmat puolet korotettiin neliöön, jolloin yhtäpitävyys pätee vain, jos yhtälön puolet ovat samanmerkkiset. Osoitetaan nyt, että samanmerkkisyys todellakin pätee suorakaiteessa S. Kun(x, y) S, niin (x, y) ( t, 0) = (x+ t) + y ( ) (a+t) + b = a + at+ t + a t = a at a + a = a
4 6.1. ELLIPSI, PARAABELI JA HYPERBELI 59 joten a (x+ t) + y 0, mikä osoittaa, että implikaatio kohdassa( ) voidaan korvata ekvivalenssilla. Siis E={(x, y) R x y a+ b= 1}. Huomautus. Janoja origosta pisteisiin(a, 0) ja(0, b) kutsutaan ellipsin puoliakseleiksi. Puoliakselit voitaisiin tietenkin määritellä myös ellipseille, joiden polttopisteet eivät sijaitse symmetrisesti x-akselilla. Ei ole vaikeata osoittaa, että mielivaltaisella ellipsillä on symmetriakeskipiste, joka on polttopisteiden yhdysjanan keskipiste. Ellipsien symmetriaryhmät ovat isomorfisia, jos ellipsit eivät ole ympyröitä. Määritelmä 6.3. Tasokuvio on paraabeli, jos se on niiden pisteiden ura, jotka ovat yhtä kaukana kiinteästä pisteestä p ja kiinteästä suorasta l, missä oletetaan, että p l. Pistettä p kutsutaan polttopisteeksi) ja suoraa l johtosuoraksi. Lause 6.4. Jos paraabelin P johtosuora on x-akselin suuntainen, niin jollakin a, b, c, a 0, pätee P={(x, y) R ax + bx+ c= y}. Todistus. Olkoon P:n johtosuora l={(x, y) R y=t}, missä t R on vakio, ja P:n polttopiste p=(p 0, p 1 ) R, missä p 1 t. Määritelmästä saadaan missä a= (x, y) P y t = (x p 0 ) +(y p 1 ) y yt+ t =(x p 0 ) +(y p 1 ) y yt+ t = x xp 0 + p 0 + y yp 1 + p 1 y(p 1 t) = yp 1 yt= x xp 0 + p 0 + p 1 t 0 y= x xp 0 + p 0 + p 1 t (p 1 t) 1 (p 1 t), b= p 0 p 1 t ja c= p 0 + p 1 t (p 1 t). = ax + bx+ c, Määritelmä 6.5. Olkoon a ja b kaksi tason R pistettä ja 0<d< a b. Polttopisteiden a ja b sekä erotusparametrin d määräämä hyperbeli on H ={ x R x a x a =d}.
5 60 LUKU 6. KARTIOLEIKKAUKSET 6. Kartio leikkaa tasoa Määritelmä 6.6. Suora kaksivaippainen ympyräkartio on R 3 :n osajoukko K, jonka määräävät huippu p R 3, huipun kautta kulkeva suora l ja suhde k> 1. Kartio K koostuu niistä pisteistä, joilla etäisyyksien suhde huipusta p ja suorasta l on vakio k. Lause 6.7. Suoran kaksiosaisen ympyräkartion K yhtälö on. asteen polynomiyhtälö muuttujien x 0, x 1 ja x suhteen, kun(x 0, x 1, x ) K. Todistus. Olkoon K suora kaksivaippainen ympyräkartio, jonka huippu p=(p 0, p 1, p ) R 3, määräävä suora on l ja suhde on k> 0. Olkoon s=(s 0, s 1, s ) suoran l suuntavektori, jolle s =1, ts. l={ p+λs λ R}, sillä määritelmän mukaan p l. Merkitään k= 1/ sin α, missä α ]0, π [. Huomataan, että K koostuu niistä pisteistä x=(x 0, x 1, x ), joille suoran l ja janan[p, x] välinen kulma on α, ja lisäksi pisteestä p K. Siis Kun x=(x 0, x 1, x ) R 3, niin K={ x R 3 (p x) s = p x s cos α}. x K (p x) s= p x s cosα =1 (p i x i )s i =cosα (p i x i ) (Molemmat puolet epänegatiivisia) ( s i (x i p i )) = cos α (x i p i ) s i(x i p i ) + s i s j (x i p i )(x j p j )=cos α i,j {0,1,}, i j (s i cos α)(x i p i ) + i,j {0,1,}, i j s i s j (x i p i )(x j p j )=0. (x i p i ) Tämä yhtälö tunnistetaan muodoltaan polynomiyhtälöksi. Lisäksi se on toista astetta, sillä jos s i cos α= 0 jokaisella i {0, 1, }, niin s 0 = s 1 = s = 1/3, sillä s 0 + s 1 + s = 1, mistä seuraa s 0 s 1 = 1/3 0. Lause 6.8. Kun suoraa kaksivaippaista ympyräkartiota leikataan xy-tasolla, niin saadaan kartioleikkaus, jonka yhtälö on toisen asteen muotoa muuttujien x 0 ja x 1 suhteen, ts. jos L on tämä kartioleikkaus, niin missä f on toisen asteen polynomi. L={(x 0, x 1, x ) R 3 f(x 0, x 1 )=0},
6 6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 61 Todistus. Olkoon K kyseinen kartio, jota leikataan xy-tasolla{(x 0, x 1, x ) R 3 x = 0}. Käytetään kartiolle edellisessä todistuksessa johdettua yhtälöä ja sijoitetaan sinne x = 0. Tällöin saadaan missä L=K {(x 0, x 1, 0) (x 0, x 1 ) R }={(x 0, x 1, x ) R 3 f(x 0, x 1 )=0}, f(x 0, x 1 )=(s 0 cos α)(x 0 p 0 ) +(s 1 cos α)(x 1 p 1 ) +(s cos α)(0 p ) + s 0 s 1 (x 0 p 0 )(x 1 p 1 )+s 0 s (x 0 p 0 )(0 p )+s 1 s (x 1 p 1 )(0 p ), joka on korkeintaan toista astetta oleva polynomifunktio muuttujien x 0 ja x 1 suhteen. Jälleen huomataan, että polynomi f on toista astetta, sillä kaikki toisen asteen kertoimet eivät voi hävitä: Jos nimittäin olisi s 0 cos α= s 1 cos α= s 0 s 1 = 0, niin seuraisi s 0 = s 1 = cosα= 0, mikä on ristiriidassa sen kanssa, että α ]0, π/[. 6.3 Toisen asteen käyrän analysointi Määritelmä 6.9. Polynomikuvaus p R n R on k:nnen asteen muoto(k, n Z + ), jos kaikilla x R n, t R pätee p(tx)=t k p(x). Toisen asteen muotoa kutsutaan neliömuodoksi. Lemma Polynomikuvaus p R R on neliömuoto, jos ja vain jos joillakin kertoimilla a, b, c R pätee, että p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, kun(x 0, x 1 ) R. Todistus. Oletetaan ensin, että joillakin vakioilla a, b, c R pätee, että p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, kun(x 0, x 1 ) R. Tällöin kaikilla(x 0, x 1 ) R ja t R on voimassa p(t(x 0, x 1 ))=p(tx 0, tx 1 )=a(tx 0 ) + b(tx 0 )(tx 1 )+c(tx 1 ) = t ax 0 + bx 0x 1 + cx 1 = t p(x 0, x 1 ). Siis tällainen p on neliömuoto. Olkoon sitten polynomikuvaus p R R mielivaltainen neliömuoto. Oletetaan, että deg(p), ts. kun(x 0, x 1 ) R, niin p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 + dx 0+ ex 1 + f, missä a, b, c, d, e, f R ovat vakioita. Koska p on neliömuoto, niin erityisesti f= p(0, 0)=p(0 (0, 0))=0 p(0, 0)=0.
7 6 LUKU 6. KARTIOLEIKKAUKSET Edelleen joten d=0. Vastaavasti a d=p( 1, 0)=p(( 1)(1, 0))=( 1) p(1, 0)=p(1, 0)=a+d p(0, 1)=p(0, 1) c e=c+ e e=0. Siis p on haluttua muotoa. Todistetaan lopuksi, miksi tapaus deg(p) > on mahdoton. Kirjoitetaan p(x 0, x 1 )= a i,j x0 ixj 1, i,j N missä vain äärellisen moni vakioista a ij eroaa nollasta. Oletetaan vastoin väitettä, että joillakin i, j N a ij 0 ja i+j>. Merkitään Valitaan y=(y 0, y 1 ) R, jolle Merkitään Tällöin kaikilla t R on voimassa n = max{ i+j i, j N, a ij 0}>. p(ty) t n τ = k=0 n = t k k=0 n 1 = t k k=0 n 1 δt k. n k=0 τ= a i,j y i 0 yj 1 0. i,j N, i+j=n δ= a i,j y i 0 yj 1. i,j N, i+j<n i,j N, i+j=k i,j N, i+j=k a i,j (ty 0 ) i (ty 1 ) j t n τ a i,j y i 0 yj 1 tn a ij y i 0 yj 1 i,j N, i+j=k i,j N, i+j=n a ij y i 0 yj 1 Kun t 1, tästä seuraa p(ty) t n τ nδt n 1. Erityisesti kun t max{1, nδ/ τ }, niin p(ty) t n τ nδt n 1 t n τ t n τ /=t n τ / ja p(ty) t n τ +nδt n 1 3t n τ /.
8 6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 63 Mutta tästähän seuraa p(4ty) p(ty) vaikka toisaalta neliömuodolle p saadaan (4t)n τ / 3t n τ / = 4n /3, p(4ty) p(ty) = /4<4 n /3. Tämä on ristiriita, joka osoittaa mahdottomaksi, että p:ssä olisi toista astetta korkeampia termejä. Määritelmä Neliömuoto p R R on indefiniitti, jos se saa sekä positiivisia että negatiivisia arvoja. Jos p ei ole indefiniitti ja p(x) 0, kun x R {0}, niin p on definiitti. Jos p ei ole indefiniitti eikä definiitti, niin se on semidefiniitti. Lause 6.1. Neliömuoto p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, on 1) indefiniitti, jos b 4ac> 0, ) semidefiniitti, jos b 4ac= 0 ja 3) definiitti, jos b 4ac< 0. Todistus. Käsitellään ensin erikoistapaus a=c= 0, jolloin p(x 0, x 1 )=bx 0 x 1, kun(x 0, x 1 ) R. Lisäksi saadaan, että b 4ac= b 0. Jos b=0, niin b 4ac= 0 ja p on nollakuvaus, joten se on semidefiniitti. Jos taas b 0 eli b 4ac= b > 0, niin p saa selvästi sekä positiivisia että negatiivisia arvoja eli p on indefiniitti. Oletetaan sitten, että a 0 tai c 0. Tilanteen symmetrisyyden vuoksi voidaan olettaa, että a 0. Tällöin saadaan p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 = a(x 0 + b a x 0x 1 )+cx 1 = a(x 0 + b a x 0x 1 + b 4a x 1 )+cx 1 ab = a(x 0 + b a x 1) + 4ac b x1 4a ( ), 4a x 1 kun(x 0, x 1 ) R. Jaetaan nyt käsittely kolmeen tapaukseen. Oletetaan, että b 4ac< 0, jolloin 4ac b > 0. Lausekkeessa( ) summattavat ovat samanmerkkisiä tai ainakin toinen on nolla. Voidaan olettaa, että a > 0, jolloin p(x 0, x 1 )=a(x 0 + b a x 4ac b 1) + x1. 4a 0 0
9 64 LUKU 6. KARTIOLEIKKAUKSET Tästä muodosta havaitaan, että p(x 0, x 1 )=0, jos ja vain jos a(x 0 + b a x 1) = 0 4ac b x1 4a = 0 Siis tässä tapauksessa p on definiitti. Oletetaan sitten, että b 4ac=0, jolloin x 0 + b a x 1= 0 x 1 = 0 x 0 = 0 x 1 = 0. p(x 0, x 1 )=a(x 0 + b a x 1), kun(x 0, x 1 ) R. Selvästi p ei voi saada sekä positiivisia että negatiivisia arvoja. Toisaalta p(x 0, x 1 )=0 x 0 = b a x 1. Siis p on semidefiniitti. Oletetaan lopuksi, että b 4ac> 0. Edelleen kaava( ) on voimassa. Voidaan olettaa, että a>0. Tällöin kaikilla x 0 0 pätee p(x 0, 0)=ax 0 > 0 ja jos(x 0, x 1 ) R, x 1 0, toteuttaa yhtälön x 0 + b a x 1= 0, niin Siis p on idefiniitti. p(x 0, x 1 )= 4ac b x1 4a < 0. Määritelmä Olkoot A, B R. Tasokuviot A ja B ovat yhtenevät, A B, jos on olemassa yhtenevyyskuvaus f R R, jolle B= f[a]. Lause Olkoon C = g 1 {0} toisen asteen käyrä, missä g R R, g(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 + dx 0+ ex 1 + f. Merkitään p:llä vastaavaa neliömuotoa p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1. Jos p on definiitti tai indefiniitti, niin C p 1 {γ} jollakin vakiolla γ R. Todistus. Osoitetaan, että itse asiassa on olemassa sellainen siirto s t, t=(t 0, t 1 ) R, että s t C p 1 {γ}. Olkoon t=(t 0, t 1 ) R. Kun(x 0, x 1 ) R, niin (g s 1 t)(x 0, x 1 )=(g s t )(x 0, x 1 )=g(x 0 + t 0, x 1 + t 1 ) = a(x 0 + t 0 ) + b(x 0 + t 0 )(x 1 + t 1 )+c(x 1 + t 1 ) + d(x 0 + t 0 )+e(x 1 + t 1 )+f = ax 0 + bx 0x 1 + cx 1 +(at 0+ bt 1 + d)x 0 +(bt 0 + ct 1 + e)x 1 + at 0 + bt 0t 1 + ct 1 + dt 0+ et 1 + f = p(x 0, x 1 )+(at 0 + bt 1 + d)x 0 +(bt 0 + ct 1 + e)x 1 + p(t 0, t 1 ).
10 6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 65 Siirto s t halutaan valita siten, että at 0 + bt 1 + d=0 ja bt 0 + ct 1 + e=0 eli Tällä yhtälöllä on ratkaisu, koska ( a b b c )(t 0 t 1 )=( d e ). det( a b b c )=4ac b 0, sillä p on definiitti tai indefiniitti. Jos t=(t 0, t 1 ) on tämä ratkaisu, niin kaikilla x=(x 0, x 1 ) R pätee (g s 1 t)(x 0, x 1 )=p(x 0, x 1 )+γ, missä γ= p(t 0, t 1 ). Siis p 1 {γ}=s t [C] C. Lemma Neliömuodon p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 lausekkeella on esitys p(x 0, x 1 )=(x 0 x 1 )( a b/ b/ c )(x 0 x 1 ). Todistus. Todellakin (x 0 x 1 )( a b/ b/ c )(x 0 x 1 )=(x 0 x 1 )( ax 0+ bx1 bx 0 + cx ) 1 = ax0 + bx 0x 1 + bx 0x 1 + cx1 = ax0 + bx 0x 1 + cx1. on Seuraavaksi esitämme joitain aputuloksia lineaarialgebrasta. Fakta: Symmetrisellä n n-matriisilla on n lineaarisesti riippumatonta ominaisvektoria. Karakteristinen polynomi matriisille ( a b/ b/ c ) a λ b/ b det( )=(a λ)(c λ) b/ c λ 4 = λ (a+c)λ+ac b 4. Tämän polynomin diskriminantti on D=( (a+c)) 4(ac b 4 )=(a c) + b 0.
11 66 LUKU 6. KARTIOLEIKKAUKSET Huomataan, että Tällöin D= 0 a=c, b=0. ( a b/ b/ c )=(a 0 0 a )=ai, missä I on identiteettimatriisi, ja matriisilla on ominaisvektorit (1,0) ja (0,1). Fakta: Symmetrisen n n-reaalimatriisin ominaisarvot ovat reaalisia. Fakta: Symmetrisen n n-matriisin eri ominaisarvoja vastaavat ominaisvektorit ovat keskenään kohtisuorassa. Todistus. Olkoon A symmetrinen n n-matriisi, ts. A T = A. Olkoon x ja ominaisarvoa λ vastaava ominaisvektori ja vastaavasti y ominaisarvoa µ vastaava ominaisvektori. Tällöin x T Ay=x T (µy)=µ(x T y) ja Siis x t Ay=(y T Ax) T =(y T (λx)) T = λ(x T y). (µ λ)x T y=0 x T y=0 x ja y ovat kohtisuorassa. Merkitään kiertomatriisia R φ =( cosφ sin φ sin φ cosφ ). Luennoilla esitettiin seuraavien tulosten todistusten hahmotelmat. Lause Olkoon f R R toisen asteen polynomifunktio, jota vastaava neliömuoto on definiitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko ellipsi tai piste tahi tyhjä joukko. Lause Olkoon f R R toisen asteen polynomifunktiot, jota vastaava neliömuoto on indefiniitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko hyperbeli tai toisiaan leikkaava suorapari. Lause Olkoon f R R toisen asteen polynomifunktiot, jota vastaava neliömuoto on semidefiniitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko paraabeli tai suora tai yhdensuuntaisista suorista koostuva suorapari tahi tyhjä joukko.
6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Paraabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Ellipsit, hyperbelit ja paraabelit vinossa
Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia
10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
x = sinu z = sin2u sinv
9. Toisen asteen käyrät ja pinnat 9.1. Käyrän ja pinnan käsitteet 371. Piirrä seuraavat käyrät: { x = cos3t a) y = sin5t, t [0,2π], b) x = cost t y = sint t, t 0. 372. Lausu napakoordinaattikäyrät a) r
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Vektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista
Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
OMINAISARVOISTA JA OMINAISVEKTOREISTA
1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
Pythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
ANALYYTTISTA GEOMETRIAA LUKIO-OPETUKSESSA. Eeva Kuparinen. Pro gradu -tutkielma Tammikuu 2008 MATEMATIIKAN LAITOS TURUN YLIOPISTO
ANALYYTTISTA GEOMETRIAA LUKIO-OPETUKSESSA Eeva Kuparinen Pro gradu -tutkielma Tammikuu 2008 MATEMATIIKAN LAITOS TURUN YLIOPISTO Sisältö 1 Johdanto 1 2 Koordinaatisto 3 2.1 Tason suorakulmainen xy-koordinaatisto............
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Vektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Suorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
2 Konveksisuus ja ratkaisun olemassaolo
2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan
ominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
6 Geometria koordinaatistossa
64 6 Geometria koordinaatistossa Rakentamamme euklidisen tasogeometrian järjestelmä, vaikka se pyrkiikin mallintamaan havaintomaailmaa, on sinänsä abstrakti ja muusta matematiikasta irrallaan. Perusjoukko
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Taustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Paikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Algebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö