B k := on tiheä G δ -joukko.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "B k := on tiheä G δ -joukko."

Transkriptio

1 f ( n) n 7. Tasaisen rajoituksen periaatteesta 7.1. Singulariteettien kondensaatioperiaate. Täydennetään luentomonisteessa [6, 19] esitettyjä tasaisen rajoituksen periaatetta ja Banacin ja Steinausin lausetta aluksi seuraavilla kadella lauseella (jotka löytyvät jo Banacin kirjasta [1]): Lause 7.1. Olkoot E Banacin avaruus, F normiavaruus, (T n ) n=1 jono rajoitettuja lineaarikuvauksia E F ja B := { x E lim sup T n x < }. Tällöin joko operaattorinormien jono ( T n ) n=1 on rajoitettu, jolloin B = E, tai B on sisäpisteetön F σ -joukko (ensimmäistä kategoriaa). 1 Tulos voidaan ilmaista myös muodossa: jos operaattorinormien jono ( T n ) n=1 ei ole rajoitettu, joukko E \ B = { x E lim sup T n x = } on tieä G δ -joukko (jolloin E \ B on toista kategoriaa). Todistus. Jokaiselle n, k Z + olkoot B n,k := {x E T n x k} B k := ja n Z + B n,k = {x E T n x k kaikille n Z + }. Koska jokainen T n on jatkuva, on jokainen joukko B n,k suljettu, joten myös joukot B k ovat suljettuja. Piste x B, jos ja vain jos jono ( T n x ) n=1 rajoitettu. Siis B = k Z + B k. Jos jokainen B k on sisäpisteetön, on B F σ -joukko ja monisteen [6] lemman 19.5 nojalla myös sisäpisteetön (tarkastele komplementteja). Oletetaan nyt, että jokin B k0 on sisäpisteellinen, B(x 0 ; δ) B k0. Olkoon nyt z E siten, että z < 1. Tällöin x 0 + δ z B(x 0 ; δ), joten kaikille n Z + on T n (x 0 + δ z) k 0, T n x 0 k 0 ja (1) T n z = 1 δ (T n(x 0 + δ z) T n x 0 ) 1 δ ( T n(x 0 + δ z) + T n x 0 ) 1 δ 2k 0. Siis T n 1 δ 2k 0 kaikille n Z +. Väite seuraa tästä. Lause 7.2 (Singulariteettien kondensaatioperiaate). Olkoot E Banacin avaruus, F normiavaruus ja T m,n : E F, m, n Z +, rajoitettuja lineaarikuvauksia E F siten, että jokaiselle m Z + on olemassa x m E, jolle lim sup T m,n x m =. Tällöin joukko B := { x E } lim sup T m,n x = kaikille m Z + on tieä G δ -joukko. 1 Muista: F σ -joukko on numeroituvan monen suljetun joukon ydiste. Vastaavasti G δ -joukko on numeroituvan monen avoimen joukon leikkaus. Saksan kielessä G Gebiet = alue avoin, δ Durcscnitt = leikkaus; ranskan kielessä F ferme = suljettu, σ somme = ydiste.

2 Todistus. Jokaiselle m Z + olkoon B m := { x E lim sup T m,n x < }. Oletuksen nojalla jokainen B m E. Edellisen lauseen nojalla jokainen B m on sisäpisteetön F σ -joukko, tai E \ B m on tieä G δ -joukko. Joukko E \ B m = {x E lim sup T m,n x = }, joten B = m Z + (E \ B m ) on myös tieä G δ -joukko monisteen [6] lemman 19.5 nojalla. Lause 7.3 (Banac ja Steinaus). Olkoot E Banacin avaruus, F normiavaruus ja (T n ) n=1 pisteittäin suppeneva jono rajoitettuja lineaarikuvauksia E F. Tällöin rajakuvaus T : E F, T x := lim T n x, on jatkuva lineaarikuvaus. Todistus. Rajakuvauksen T lineaarisuus seuraa kuvausten T n lineaarisuudesta. Raja-arvon T x = lim T n x olemassaolosta seuraa, että jono ( T n x ) n=1 on rajoitettu. Lauseen 7.1 joukko B on siis koko avaruus E. Edelleen, lauseen 7.1 todistuksen epäytälöstä (1) saadaan T n z M = vakio kaikille z B(0; 1) ja n Z +. Kun n, saadaan T z M kaikille z B(0; 1). Siis T on rajoitettu. Huomautus 7.4. Esimerkein on elppo näyttää, että lätöavaruuden E tulee olla täydellinen, t.s. epätäydellisen avaruuden E pisteittäin suppenevalle jonolle (T n ) n=1 B(E; F ) raja-kuvauksen ei tarvitse olla rajoitettu Jatkuvan funktion Fourier n sarja. Koska jatkuvat funktiot käyttäytyvät siististi, on melko luonnollista arvata: Jatkuvan -jaksoisen funktion f : R R Fourier n sarja suppenee koti funktion arvoa f(x) kaikille x R. Banacin ja Steinausin lauseen avulla voidaan kuitenkin osoittaa, että tämä otaksuma on väärä. Palautetaan aluksi mieleen, että integroituvan funktion f Fourier n sarjan osasummat voidaan esittää Diriclet n ytimen avulla muodossa s n (x) = n k= n c k e i k x = (f 1 D n)(x) = 1 f(x t) D n (t) dt, missä funktion f Fourier n kertoimet c k ja Diriclet n ydin D n ovat c k := 1 n f(x) e i k x dx ja D n (x) := e i k x = sin((n + 1) x) 2. sin(x/2) k= n Aiemmin Fourier n sarjoja tarkasteltaessa osoitettiin, että Diriclet n ytimille on L n := 1 D n (t) dt, kun n. Tarkastellaan nyt Fourier n osasummia funktion f funktiona. Kiinnitetään x R ja asetetaan S x,n (f) := 1 f(x t) D n (t) dt, Tällöin S x,n : C R on lineaarinen ja jatkuva, koska S x,n (f) 1 kun f on jatkuva ja -jaksoinen. f(x t) D n (t) dt 1 f D n 1. 2

3 Toisaalta, olkoon g funktio, jolle g(x t) = sign(d n (t)). Tällöin on olemassa jono (f k ) k=1 jatkuvia -jaksoisia funktioita, joille f k(x t) g(x t) melkein kaikille t ja lisäksi f k (x t) 1 (piirrä kuva). Tästä seuraa, että funktioita f k vastaaville Fourier n osasummille S x,n (f) on S x,n (f k ) 1 D n 1, kun k. Ydessä { saadaan S x,n = 1 D n 1. Koska nyt S x,n, on lauseen 7.1 joukko f C lim sup S x,n (f) = } tieä G δ -joukko, erityisesti se on epätyjä. Olkoon nyt (x j ) j Z+ [, π] annettu numeroituva pistejono, joka olkoon välin [, π] tieä osajoukko. Määritellään T m,n : C R, T m,n f := S xm,n(f). Edellisen nojalla jokaiselle m Z + on olemassa f m C siten, että lim sup T m,n f n =. Lauseen 7.2 nojalla olemassa tieä G δ -joukko B C siten, että lim sup T m,n f = kaikille m Z + ja f B. Tämä tarkoittaa, että jokaisen funktion f B Fourier n sarja ajaantuu jokaisessa pisteessä x m, m Z +. Tulosta voidaan terästää vielä niin, että on olemassa tieä G δ -joukko T [, π] siten, että jokaisen funktion f B Fourier n sarja ajaantuu jokaisessa pisteessä x T. Katso [3, 15.9], [8, 5.11, 5.12] tai [12, II.4]. Fourier n sarjojen istorian varaisina vuosina uskomus jaksollisen, jatkuvan funktion Fourier n sarjan suppenevuuteen oli varsin vava. Ensimmäisen esimerkin jatkuvasta, jaksollisesta funktiosta, jonka Fourier n sarja ajaantuu ydessä pistessä, esitti Paul du Bois-Reymond vasta vuonna Jatkuvan jaksollisen funktion Fourier n sarjan ajaantumiselle voimassa enemmän kuin mitä edellä osoitettiin: Jokaiselle nollamittaiselle joukolle T [, π] on olemassa jatkuva -jaksoinen funktio, jonka Fourier n sarja ajaantuu jokaisessa joukon T pisteessä. Katso [7, II.3] tai [9, s ] (kumpikaan konstruktio ei käytä Banacin ja Steinausin lausetta). Integroituville funktioille tilanne on vielä ikävämpi: Andrei Nikolajevits Kolmogorov konstruoi vuonna 1926 integroituvan funktion, jonka Fourier n sarja ajaantuu välin [, π] jokaisessa pisteessä. (Kolmea vuotta aiemmassa konstruktiossa sarja ajaantui m.k.). Tällaisen funktion rekonstruktio löytyy Katznelsonin erinomaisesta pikkukirjasta [7, II.3]. Neliöintegroituvan funktion Fourier n sarja suppenee L 2 -normin suteen (välitön seuraus Rieszin ja Fiserin lauseesta), joten tällaisen funktion Fourier n sarjalla on melkein kaikkialla suppeneva osasummien jono. Mutta osasummien jonon suppenevuuden perusteella koko sarjan suppenevuudesta ei vielä voida päätellä mitään. Fourier n sarjan suppenevuusongelma ratkesi vasta vuosina 1966 ja 1968, jolloin Lennart Carleson osoitti ensin tapauksessa p = 2 ja sitten Ricard A. Hunt (ei Etan) tapauksessa p > 1, että funktion f L p ([, π]) Fourier n sarja suppenee melkein kaikkialla. JY:n kirjastosta löytyy luentomoniste [5], jossa Carlesonin ja Huntin tulos todistetaan. Korvan taakse kannattaa kuitenkin laittaa Wikipedian mielipide tuloksesta: Carleson s original proof is exceptionally ard to read, and altoug several autors ave simplified te argument tere are still no easy proofs of is teorem. 2 Jean-Baptiste Josep Fourier n sarjat ja integraalit esittelevä teos Tórie analytique de la caleur on vuodelta

4 7.3. Ei-missään derivoituva funktio. Bairen kategorialauseen avulla voidaan osoittaa, että monenlaiset patologiat ovat itse asiassa tyypillisiä. Seuraavassa osoitetaan, että ei-missään derivoituvia funktioita on olemassa. Muita esimerkkejä löytyy vaikka kirjoista [10, 13.14] tai [3, 10.7]. Lause 7.5. On olemassa jatkuva funktio x: [0, 1] R, jolla ei ole derivaattaa missään välin [0, 1] pisteessä. Todistuksesta käy ilmi vielä enemmän: niiden jatkuvien funktioiden x: [0, 1] R joukko, joilla on derivaatta jossakin välin [0, 1] pisteessä, muodostavat ensimmäisen kategorian joukon avaruudessa (C([0, 1]; R), ). Tällaisia funktioita voidaan siis (ainakin kategoriateorian mielessä) pitää arvinaisina poikkeuksina. Todistus. Jokaiselle n Z + asetetaan { x(t + ) x(t) } O n := x C([0, 1]; R) sup > n t [0, 1]. 0< 1/n Tässä jokainen x C([0, 1]; R) jatketaan koko reaaliakselilla määritellyksi funktioksi vakiona välin [0, 1] ulkopuolelle, x(t) := x(0), kun t < 0, ja x(t) := x(1), kun t > 1. Väite seuraa, kun näytetään, että jokainen O n on avoin ja tieä. Tällöin nimittäin Bairen kategorialauseen (tark. [6, Lemma 19.5]) nojalla D := n Z + O n on avoin ja tieä. Lisäksi jokainen x D on ei-missään derivoituva. Osoitetaan, että O n on avoin. Olkoon x O n. Jokaiselle t [0, 1] valitaan δ t > 0 siten, että x(t + ) x(t) sup > n + δ t. 0< 1/n Edelleen on olemassa t siten, että 0 < 1/n ja x(t + t) x(t) > n + δt. t Koska x on jatkuva, on pisteellä t avoin ympäristö U t siten, että kaikille s U t on x(s + t) x(s) > n + δt. t Joukot U t, t [0, 1], muodostavat välin [0, 1] avoimen peitteen, joten siitä voidaan valita äärellinen osapeite U t1,...,u tr. Asetetaan δ := min{δ t1,..., δ tr } ja := min{ t1,..., tr }. Kun s U ti, on x(s + t i ) x(s) > n + δ. ti Olkoot 0 < ε < δ/2 ja y C([0, 1]; R) siten, että y x < ε. Osoitetaan, että y O n. Olkoon t [0, 1]. Tällöin on olemassa i siten, että t U ti. Tällöin y(t + t i ) y(t) x(t + ti ) x(t) y x 2 > n + δ 2ε/ > n. ti ti Siis O n on avoin. ti 4

5 Osoitetaan, että O n on tieä. Tätä varten olkoon O avoin joukko. Weierstrassin approksimointilauseen nojalla on olemassa polynomi p ja luku ε > 0 siten, että x p ε = x O. Olkoon y m saalaitafunktio [0, 1] [0, ε], jonka derivaatta on ±m niillä väleillä, joilla y m on derivoituva (kuvassa ε = 1 ja m = 16) Tällöin funktio x m := p + y m O. Kun m > n + p saadaan kaikille t [0, 1] ja 0 < 1/n x m(t + ) x m (t) y m(t + ) y m (t) p(t + ) p(t). Tässä jälkimmäinen itseisarvolauseke on väliarvolauseen nojalla enintään p. Siis sup x m(t + ) x m (t) m p > n, 0< 1/n joten x m O n, ja myös O n O. Siis O n on tieä. Huomautus 7.6. Edellinen todistus on lainattu kirjasta [11, Satz IV.1.5]. Oleellisesti sama todistus löytyy mm. kirjoista [12, II.4] ja [4, 17.8]. Ensimmäinen julkaistu esimerkki jatkuvasta funktiosta, jolla ei ole derivaattaa missään pisteessä, on peräisin Karl Weierstrassilta vuodelta Kirjassa [4, 17.7] alkuperäinen Weierstrassin funktio f(t) = k=0 bk cos(a k πt) osoitetaan ei-missään derivoituvaksi edoilla 0 < b < 1, a on pariton positiivinen kokonaisluku ja a b > 1 + 3π/2. Saman kodan alauomautus g(t) = 1 n=1 sin(n 2 πt) n 2 is nowere differentiable on kuitenkin vireellinen. Pitäisi olla: funktio g is not everywere differentiable. G. H. Hardy osoitti vuonna 1916, että g ei ole derivoituva irrationaalisissa pisteissä eikä tietyissä rationaalisissa pisteissä. Vasta vuonna 1970 Josep L. Gerver osoitti, että jos t = n/m, missä n ja m ovat parittomia kokonaislukuja, niin g on derivoituva pisteessä t, ja että muualla g ei ole derivoituva. Lisäksi än osoitti, että derivoituvuuspisteissä g (t) = 1/2. Kirjassa [9, C. 4/Example 4.8] osoitetaan, että B. L. van der Waerdenilta vuodelta 1930 peräisin oleva funktio f(x) = n=1 4 n φ(4 n x), missä φ on 4-jaksoinen funktio, jolle φ(x) = x, kun x 2, on ei-missään derivoituva. Tämä saalaitafunktioon perustuva funktio on ieman elpompi osoittaa ei-missään derivoituvaksi kuin alkuperäinen Weierstrassin funktio, vaikkakin Weierstrassin funktion ei-derivoituvuus on yllättävämpi: jokainen osasumma on differentioituva. Kirjassa [7, V.1] ei-missään derivoituva funktio etsitään Fourier-sarjojen, erityisesti lakunaaristen sarjojen avulla. Jono (λ n ) n N on lakunaarinen, jos on olemassa vakio q > 1 siten, että λ n+1 > q λ n kaikille n. Jos jono (λ n ) n on lakunaarinen ja 5

6 n=1 a n cos(λ n t) on derivoituva jossakin pisteessä, niin a n λ n 0, kun n. Erityisesti siis funktio n=1 2 n cos(2 n t) on ei-missään derivoituva. On yvä uomata, että sarja 1 n=1 sin(n 2 π t) ei ole lakunaarinen. n 2 Kirjallisuutta [1] Stefan Banac : Téorie des opérations linéaires, Monografje Matematyczne Tom I, 1932 (Celsea Publising Company 1955). [2] Haïm Brezis : Analyse fonctionelle. Téorie et applications, 2 e tirage, Matématiques appliqueés pour la maîtrise, Dunod, Première édition, Masson, Engl. käännös Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, [3] Andrew M. Bruckner, Judit B. Bruckner ja Brian S. Tomson: Real analysis, second edition, ClassicalRealAnalysis.com, [4] Edwin Hewitt ja Karl Stromberg: Real and abstract analysis. A modern treatment of te teory of functions of a real variable, kolmas painos, Graduate Texts in Matematics 25, Springer-Verlag, [5] Ole G. Jørsboe ja Leif Mejlbro: Te Carleson-Hunt teorem on Fourier series, Lecture notes in matematics 911, Springer, [6] Lauri Kaanpää: Funktionaalianalyysi. Suoraviivaista ajattelua osa II, Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, luentomoniste 51, [7] Yitzak Katznelson: An introduction to armonic analysis, Dover Publications, Inc., 1976; alunperin Jon Wiley & Sons Inc., [8] Walter Rudin: Real and complex analysis, toinen laitos, Tata McGraw-Hill, [9] Karl Stromberg: An introduction to classical real analysis, Wadswort International Matematics Series, [10] Brian S. Tomson, Judit B. Bruckner ja Andrew M. Bruckner: Elementary real analysis, second edition, ClassicalRealAnalysis.com, [11] Dirk Werner: Funktionalanalysis, 4., überarbeitete auflage, Springer, [12] Kôsaku Yosida: Functional analysis, neljäs laitos, Grundleren der matematiscen Wissenscaften in Einzeldarstellungen mit besonderer Berücksictigung der Anwendungsgebiete Band 123, Springer-Verlag, Kirjan kuudes laitos vuodelta 1980 uudelleenjulkaistu sarjassa Classics in Matematics,

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Weierstrassin funktiosta

Weierstrassin funktiosta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Riikka Tervaskangas Weierstrassin funktiosta Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö TERVASKANGAS,

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

6. Lineaariset operaattorit

6. Lineaariset operaattorit 96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja

Lisätiedot

Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen

Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen Osittaisdifferentiaaliyhtälöt, sl. 2006 Ari Lehtonen Esipuhe Tätä tekstiä kirjoitettaessa on käytetty apuna lähinnä viiteluettelossa mainittuja kirjoja [1] ja [7] sekä [4] (vähänlaisesti) ja [3] (varsin

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa f ( n) Funktionaalianalyysi n H. Hahnin ja Banachin sublineaarikuvauslause Määritelmä H.1. Olkoon E vektoriavaruus. Kuvaus p: E R on sublineaarinen, jos a) p(λx) = λp(x) kaikille λ 0, x E, b) p(x + y)

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo.

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo. f ( n n 6. Sobolevin avaruudet 1 Monisteen [7, 15.4 ja määritelmä 15.26] mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä, kun normina on f f p

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti

Lisätiedot

Funktion approksimointi

Funktion approksimointi Funktion approksimointi Päivikki Vesterinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Päivikki Vesterinen, Funktion approksimointi (engl.

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

f(k)e ikx = lim S n (f; x) kaikilla x?

f(k)e ikx = lim S n (f; x) kaikilla x? 102 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että jos f L 2, niin vastaavan Fourier-sarjan osasummat suppenevat kohti f:ää L 2 -normissa (kts. Seuraus 5.8 sivulla

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,... HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

puolitasossa R 2 x e x2 /(4t). 4πt

puolitasossa R 2 x e x2 /(4t). 4πt 8. Lämmönjohtumisyhtälö II 8.1. Lämpöydin. Tarkastellaan lämmönjohtumisyhtälöä reaaliakselilla, t.s. pyritään ratkaisemaan alkuarvotehtävä u (8.1) t u 2 u puolitasossa R 2 x 2 + R (, ), u(x, ) f(x) kaikille

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä Sisältö. Cantorin 3 -joukko 2. Cantorin funktio 2 3. Rieszin ja Sz.-Nagyn funktio 4 4. Yleistetty Cantorin joukko 5 5. Vito Volterran esimerkki 6 6. Analyysin peruslauseesta 8 Kirjallisuutta 9. Cantorin

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo. Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,

Lisätiedot

r 1 Kuva 1. Cantorin joukon ensimmäiset sukupolvet. Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä s=1

r 1 Kuva 1. Cantorin joukon ensimmäiset sukupolvet. Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä s=1 Sisältö. Cantorin 3 -joukko 2. Cantorin funktio 2 3. Rieszin ja Sz.-Nagyn funktio 5 4. Yleistetty Cantorin joukko 6 5. Vito Volterran esimerkki 7 6. Analyysin peruslauseesta 9 Kirjallisuutta. Cantorin

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

4. Martingaalit ja lokaalit martingaalit

4. Martingaalit ja lokaalit martingaalit STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 5. Olkoon f : [0, 1] R kasvava. Osoita, että joukko. {x [0, 1] f ei ole jatkuva pisteessä x} on numeroituva. [Vihje: Lause 1.2.

JYVÄSKYLÄN YLIOPISTO. 5. Olkoon f : [0, 1] R kasvava. Osoita, että joukko. {x [0, 1] f ei ole jatkuva pisteessä x} on numeroituva. [Vihje: Lause 1.2. Harjoitukset 1 16.9.25 1. Merkitään Z + = {x Z x > }. Osoita, että f : Z + Z + Z +, f(x, y) = 2 x 1 (2y 1), on bijektio. Piirrä kuva. Perinteisempi kuvaus Z + Z + Z + on (x, y) (x + y 1)(x + y)/2 (x 1).

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

Olkoot f : S R 3 pinnan S jatkuva vektorikenttä ja V U kompakti Jordanjoukko. Tällöin vektorikentän f pintaintegraali yli joukon T := ϕ(v ) S on

Olkoot f : S R 3 pinnan S jatkuva vektorikenttä ja V U kompakti Jordanjoukko. Tällöin vektorikentän f pintaintegraali yli joukon T := ϕ(v ) S on 1. Differentiaalimuodon integraalista II 1.1. ektorikentän pintaintegraali. (Ks. [2, 2.1] ja [2, 2.2.2] Olkoot S R 3 sileä alkeispinta ja ϕ: U S sen parametriesitys. Pinnan suunnistukseksi valitaan seuraavassa

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1. Harjoitus 1, 11.9.2015 1. Näytä, että joukossax on äärettömän monta alkiota jos ja vain jos on joukko X, 6= X, jokaonyhtämahtavakuinx. 2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a

Lisätiedot

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot