Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen

Koko: px
Aloita esitys sivulta:

Download "Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen"

Transkriptio

1 Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen

2 Esipuhe Tätä tekstiä kirjoitettaessa on käytetty apuna lähinnä viiteluettelossa mainittuja kirjoja [1] ja [7] sekä [4] (vähänlaisesti) ja [3] (varsin vähän). Kurssin tarkoitus on tutustuttaa lukija osittaisdifferentiaaliyhtälöiden klassiseen teoriaan. Koska alan klassinenkin teoria on erittäin laaja ja teknisesti vaikeaa, olisi tälle suppealle kurssille sisältönsä perusteella parempi pitkänlainen nimi Satunnaisesti valittuja kohtia osittaisdifferentiaaliyhtälöiden klassisesta teoriasta. Yhtälöiden ratkaisuille on pyritty löytämään esitys sarjana tai integraalina. Sarjaesityksiä varten alussa on käyty läpi hieman Fourier n sarjojen teoriaa. Fourier n integraaleja kurssilla ei käsitelty, joten esimerkiksi reaaliakselin lämmönjohtumisyhtälöä varten perusratkaisua ei ole johdettu. Kurssille tarpeelliset esitiedot löytyvät usean muuttujan funktioiden differentiaalija integraalilaskennasta. Lisäksi tavallisten differentiaaliyhtälöiden perusteiden tunteminen ei ole haitaksi. Kurssin aikana kertynyttä materiaalia on saatavana osoitteessa lehtonen/opetus/ody2006/. 1 Viimeksi muutettu

3 Kirjallisuutta [1] Arne Broman, Introduction to partial differential equations. From Fourier series to boundaryvalue problems, Dover Publications, Inc., 1989; alunperin Addison-Wesley, [2] Richard Courant und David Hilbert, Methoden der Mathematischen Physik Band I, Dritte Auflage, Heidelberger Taschenbücher 30, Springer-Verlag, 1968; Erste Auflage, 1924; Band II, Zweite Auflage, Heidelberger Taschenbücher 31, Springer-Verlag, 1968; Erste Auflage, Kirjapari löytyy myös englanninkielisenä Methods of mathematical physics I&II ; osa I on lähinnä käännös, osa II on kirjoitettu suurelta osalta uudestaan. [3] Emmanuele DiBenedetto, Partial Differential Equations, Birkhäuser, [4] Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, [5] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001; alunperin Revised Third Printing, Grundlehren der mathematischen Wissenschaften Band 224, Springer-Verlag, [6] S. L. Sobolev, Partial differential equations of mathematical physics, Dover Publications, Inc., 1989; engl. käännös Pergamon Press, [7] S. Zaidman, Une introduction à la théorie des équations aux dérivées partielles, Université de Montréal, [8] Stephen Abbott, Understanding analysis, Undergraduate Texts in Mathematics, Springer, [9] Shmuel Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies #2, [10] Tom M. Apostol, Mathematical analysis, 2nd edition, 5th printing, Addison Wesley, 1981; ensimmäinen laitos [11] Vladimir I. Arnold, Ordinary differential equations, third edition, Springer, 1992; alkuperäinen venäjänkielinen 3. laitos [12] Martin Braun, Differential equations and their applications, Fourth edition, Springer, [13] Haïm Brezis, Analyse fonctionelle. Théorie et applications, 2 e tirage, Collection mathématiques appliqueés pour la maîtrise, Masson, [14] Richard Courant and F. John, Introduction to Calculus and Analysis, Volume I, Reprint of the 1989 Edition, Classics in Mathematics, Springer, 1999; Volume II/1, 2000; Volume II/2, [15] Jean Dieudonné, Foundations of Modern Analysis, Third (enlarged and corrected) printing, Academic Press, 1969; alunperin Fondements de l Analyse Moderne, Gauthier Villars, [16] Jean Dieudonné, Infinitesimal Calculus, Hermann, Paris 1971; alunperin Calcul infinitésimal, Hermann, Paris [17] Avner Friedman, Foundations of Modern Analysis, Dover Publications, Inc., 1982; alunperin Holt-Rinehart-Winston, [18] Werner Greub, Lineare Algebra, Heidelberger Taschenbücher Band 179, Springer-Verlag, 1976; alunperin Grundlehren der mathematischen Wissenschaften Band 97, [19] Karl E. Gustafson, Partial differential equations and Hilbert space methods, Second edition, John Wiley & Sons, [20] Edwin Hewitt and Karl Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Third printing, Graduate Texts in Mathematics 25, Springer-Verlag, iii

4 KIRJALLISUUTTA iv [21] Yitzhak Katznelson, An Introduction to Harmonic Analysis, Dover Publications, Inc., 1976; alunperin John Wiley & Sons Inc., [22] A. Langenbach, Vorlesungen zur höheren Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin [23] Louis Nirenberg, Lectures on linear partial differential equations, second printing, CBMS Regional Conference Series in Mathematics 17, American Mathematical Society, [24] Walter Rudin, Real and Complex Analysis, Second edition, Tata McGraw-Hill, 1979; alunperin McGraw-Hill, [25] Laurent Schwartz, Theorie des distributions, Nouv. éd., corr., refondue et augm., Paris, Schwartz sai Fielsin mitalin distribuutioteoriastaan [26] Laurent Schwartz, Méthodes mathématiques pour les sciences physiques, 2 e Èdition revue et corrigée. Hermann, [27] Michael Spivak, Calculus on Manifolds, Corrected printing, Addison-Wesley, [28] Karl Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Mathematics Series, [29] Mimitri Vvedensky, Partial differential equations with Mathematica, Addison-Wesley, [30] Friedrich Hirzebruch und Winfried Scharlau, Einführung in die Funktionalanalysis, Hochschultaschenbücher Band 296, Bibliographisches Institut, Mannheim, [31] Lauri Kahanpää, Funktionaalianalyysi. Suoraviivaista ajattelua osa II, Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, luentomoniste 51, [32] Tosio Kato, Perturbation theory for linear operators, Reprint of the 1980 Edition, Classics in Mathematics, Springer, 1995; alunperin Corrected printing of the Second Edition, Grundlehren der mathematischen Wissenschaften Band 132, Springer-Verlag, [33] Michael Reed and Barry Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1972; II: Fourier Analysis, Self-Adjointness, [34] Frigyes Riesz and Béla Sz.-Nagy, Functional Analysis, Dover Publications, Inc, 1990; alunperin Leçons d analyse fonctionelle, Académiai Kiadó, 1952; engl. käännös Functional Analysis, Frederick Ungar Publishing Co., [35] Walter Rudin, Functional Analysis, Tata McGraw-Hill, 1982; alunperin McGraw-Hill, [36] Laurent Schwartz, Analyse Hilbertienne, Collection Méthodes, Hermann, [37] Dirk Werner, Funktionalanalysis, Vierte, überarbeitete Auflage, Springer-Lehrbuch, Springer, [38] Kôsaku Yosida, Functional Analysis, Fourth Edition, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Band 123, Springer-Verlag, 1974.

5 MERKINTÖJÄ v Merkintöjä Merkintä Selitys N Luonnolliset luvut 0, 1, 2, 3,... Z + Positiiviset kokonaisluvut 1, 2, 3,... Ω R n :n alue (avoin ja yhtenäinen osajoukko) Q Q = Ω (0, ) tai Q = Ω (0, T ) b (f g) f(x)g(x) dx, funktioiden f ja g sisätulo a b f 2 (f f) = a f(x)2 dx, funktion f normi f sup{ f(x) x D}, funktion f : D R sup-normi supp f joukon {x Ω f(x) 0} sulkeuma, kun f : Ω R on jatkuva α α α n, kun α = (α 1,..., α n ) N n x α x α x αn n, kun x = (x 1,..., x n ) R n ja α = (α 1,..., α n ) N n D α f α 1+ +α n f/ x α x αn n, kun α = (α 1,..., α n ) N n C(Ω) jatkuvien funktioiden f : Ω R joukko C(Ω) f C(Ω), jotka voidaan laajentaa jatkuviksi sulkeumaan Ω C k (Ω) k kertaa jatkuvasti derivoituvat funktiot f : Ω R C k (Ω) f C k (Ω), joille D α f C(Ω), kun α k C b (Ω) f C(Ω), joille sup x Ω f(x) < Cb k(ω) f C(Ω), joille Dα f C b (Ω), kun α k C b (Ω) = C b (Ω) C(Ω) (= C(Ω), jos Ω on rajoitettu) Cb k(ω) f C b(ω), joille D α f C b (Ω), kun α k C c (Ω) f C(Ω), joille supp f on Ω:n kompakti osajoukko Cc k (Ω) = C c (Ω) C k (Ω) C (Ω) = k N Ck (Ω) C (Ω) = k N Ck (Ω) Cb (Ω) = k N Ck b (Ω) Cb (Ω) = k N Ck b (Ω) Cc (Ω) = k N Ck c (Ω)

6 Sisältö Esipuhe ii Kirjallisuutta iii Merkintöjä v 1. Määritelmiä 1 2. Ensimmäisen kertaluvun yhtälöistä Esimerkkejä Pintaparvi Karakteristiset käyrät I Karakteristiset käyrät II Cauchyn tehtävä Cauchyn ja Kovalevksin lause Lämmönjohtumisyhtälö I Fourier n sarjoista Lämmönjohtumisyhtälö: ratkaisun yksikäsitteisyys Ratkaisun olemassaolo Aaltoyhtälö I Ratkaisu Fourier-sarjojen avulla Muuttujanvaihto Epähomogeeninen yhtälö Energiaperiaate Energiaperiaate lämmönjohtumisyhtälölle Energiaperiaate II Laplace-operaattorin ominaisarvoista Sturmin-Liouvillen tehtävät Elliptiset operaattorit Lämmönjohtumisyhtälö II Lämpöydin Operaattoripuoliryhmä Matriisin eksponenttifunktio Ratkaisun monotonisuudesta Poissonin integraali Poissonin integraali Konjugaattifunktio Maksimiperiaate Laplace-yhtälölle Maksimiperiaate Keskiarvo-ominaisuus Harnackin epäyhtälö Poissonin yhtälö Perusratkaisu Stokesin kaava Greenin funktio 83 vi

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa f ( n) Funktionaalianalyysi n H. Hahnin ja Banachin sublineaarikuvauslause Määritelmä H.1. Olkoon E vektoriavaruus. Kuvaus p: E R on sublineaarinen, jos a) p(λx) = λp(x) kaikille λ 0, x E, b) p(x + y)

Lisätiedot

0 (Ω) ovat Hilbertin avaruuksia, joissa sisätulo on

0 (Ω) ovat Hilbertin avaruuksia, joissa sisätulo on f ( n Funktionaalianalyysi n B. Sobolevin avaruudet 1 Ks. moniste 15.4 ja määritelmä 15.26. Monisteen mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä,

Lisätiedot

Zornin lemman nojalla joukossa E on siis maksimaalinen alkio (G, g). Kun näytetään, että G = E, niin väite on todistettu (L := g kelpaa).

Zornin lemman nojalla joukossa E on siis maksimaalinen alkio (G, g). Kun näytetään, että G = E, niin väite on todistettu (L := g kelpaa). f ( n) n 9. Hahnin ja Banachin lauseista 9.1. Sublineaarikuvauslause. Seuraavassa erilaisiin Hahnin ja Banachin lauseisiin lähdetään tutustumaan puhtaasti lineaarialgebrallisesta versiosta. Määritelmä

Lisätiedot

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo.

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo. f ( n n 6. Sobolevin avaruudet 1 Monisteen [7, 15.4 ja määritelmä 15.26] mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä, kun normina on f f p

Lisätiedot

Olkoot f : S R 3 pinnan S jatkuva vektorikenttä ja V U kompakti Jordanjoukko. Tällöin vektorikentän f pintaintegraali yli joukon T := ϕ(v ) S on

Olkoot f : S R 3 pinnan S jatkuva vektorikenttä ja V U kompakti Jordanjoukko. Tällöin vektorikentän f pintaintegraali yli joukon T := ϕ(v ) S on 1. Differentiaalimuodon integraalista II 1.1. ektorikentän pintaintegraali. (Ks. [2, 2.1] ja [2, 2.2.2] Olkoot S R 3 sileä alkeispinta ja ϕ: U S sen parametriesitys. Pinnan suunnistukseksi valitaan seuraavassa

Lisätiedot

arvoja. Niiden muodostamaa joukkoa kutsutaan T resolventtijoukoksi ja merkitään

arvoja. Niiden muodostamaa joukkoa kutsutaan T resolventtijoukoksi ja merkitään f ( n) Funktionaalianalyysi n J. Kompaktien operaattorien spektri Seuraavassa käsitellään lyhyesti rajoitettujen operaattorien spektraaliteoriaa ja erityisesti Fredholmin-Rieszin-Schauderin teoriaa kompaktien

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä Sisältö. Cantorin 3 -joukko 2. Cantorin funktio 2 3. Rieszin ja Sz.-Nagyn funktio 4 4. Yleistetty Cantorin joukko 5 5. Vito Volterran esimerkki 6 6. Analyysin peruslauseesta 8 Kirjallisuutta 9. Cantorin

Lisätiedot

Tähän kirjoitelmaan on poimittu joitakin kurssiin Integraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita.

Tähän kirjoitelmaan on poimittu joitakin kurssiin Integraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. Tähän kirjoitelmaan on poimittu joitakin kurssiin ntegraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. 1. Differentiaalimuodon integraalista 1.1. Differentiaalien laskusääntöjä.

Lisätiedot

r 1 Kuva 1. Cantorin joukon ensimmäiset sukupolvet. Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä s=1

r 1 Kuva 1. Cantorin joukon ensimmäiset sukupolvet. Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä s=1 Sisältö. Cantorin 3 -joukko 2. Cantorin funktio 2 3. Rieszin ja Sz.-Nagyn funktio 5 4. Yleistetty Cantorin joukko 6 5. Vito Volterran esimerkki 7 6. Analyysin peruslauseesta 9 Kirjallisuutta. Cantorin

Lisätiedot

B k := on tiheä G δ -joukko.

B k := on tiheä G δ -joukko. f ( n) n 7. Tasaisen rajoituksen periaatteesta 7.1. Singulariteettien kondensaatioperiaate. Täydennetään luentomonisteessa [6, 19] esitettyjä tasaisen rajoituksen periaatetta ja Banacin ja Steinausin lausetta

Lisätiedot

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on 1. Jordan-joukot Yksinkertaisuuden (ja havainnollisuuden vuoksi) seuraavassa tarkastellaan vain tason osajoukkoja, vaikka päättelyt voitaisiin helposti siirtää yleiseen n-ulotteiseen euklidiseen avaruuteen

Lisätiedot

Uudet kurssit ja LPM-lista KK ON UUDET KURSSIT

Uudet kurssit ja LPM-lista KK ON UUDET KURSSIT Uudet kurssit ja LPM-lista 5.2.2007 KK ON 20.2.2007 UUDET KURSSIT Mat-1.3015 Tieteen filosofia I&II (5 op) L 48+0 (4+0) I-II Sisältö: Kurssi on kurssien Mat-1.3013 Tieteen filosofia I ja Mat-1.3014 Tieteen

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

7. Laplace-operaattorin ominaisarvoista

7. Laplace-operaattorin ominaisarvoista 7. Laplace-operaattorin ominaisarvoista Värähtelevän jousen ja lämmönjohtumisyhtälöiden ratkaisemisessa päädyttiin seuraavankaltaiseen reuna-arvotehtävään { V = λv välillä (a, b), ja V (a) = V (b) = 0.

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi

Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi . Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

Excursio Cliordin analyysiin. 13. helmikuuta 2006

Excursio Cliordin analyysiin. 13. helmikuuta 2006 Excursio Cliordin analyysiin 13. helmikuuta 2006 1 Sisältö 1 Cliordin algebra 3 2 Monogeeniset funktiot 5 3 Cauchyn integraalikaava monogeenisille funktioille 9 2 1 Cliordin algebra Tutustutaan tässä kappaleessa

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Rungen lause ja sovelluksia inversio-ongelmiin

Rungen lause ja sovelluksia inversio-ongelmiin Rungen lause ja sovelluksia inversio-ongelmiin Mikko Salo 1 Johdanto Inversio-ongelmat eli käänteiset ongelmat liittyvät usein kuvantamisongelmiin, joissa tuntemattoman kappaleen sisältä pyritään saamaan

Lisätiedot

puolitasossa R 2 x e x2 /(4t). 4πt

puolitasossa R 2 x e x2 /(4t). 4πt 8. Lämmönjohtumisyhtälö II 8.1. Lämpöydin. Tarkastellaan lämmönjohtumisyhtälöä reaaliakselilla, t.s. pyritään ratkaisemaan alkuarvotehtävä u (8.1) t u 2 u puolitasossa R 2 x 2 + R (, ), u(x, ) f(x) kaikille

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2 Differentiaaliyhtälön numeerisesta ratkaisemisesta Olkoot D R 2 alue ja r, f, g : D R jatkuvia funktioita. Differentiaaliyhtälön y r(x, y) suuntaelementtikenttä on kuvaus D R 2, (x, y) (, r(x, y)). Suuntaelementtikenttä

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

F901-P Perusopinnot P (80 op) op opetusperiodi

F901-P Perusopinnot P (80 op) op opetusperiodi Vanhan TFM kanditutkinnon kurssien korvaaminen uusilla 9.4.2013 F901-P Perusinnot P (80 ) Mat-1.1010 Matematiikka L1 10 MS-A0001 Matriisilaskenta MS-A0101 Differentiaali- ja I II integraalilaskenta 1 Mat-1.1020

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

A posteriori-virhearvio Uzawan algoritmille Stokesin yhtälön ratkaisemiseksi

A posteriori-virhearvio Uzawan algoritmille Stokesin yhtälön ratkaisemiseksi A posteriori-virhearvio Uzawan algoritmille Stokesin yhtälön ratkaisemiseksi Tommi Brander Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2010 Sisältö

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

= 0 y oleva yhtälö. Vastaavasti yhtälö. x, u

= 0 y oleva yhtälö. Vastaavasti yhtälö. x, u 1. Määritelmiä Ensimmäisen ja toisen kertaluvun ratkaisemattomassa muodossa olevat tavalliset differentiaaliyhtälöt ovat tuntemattomalle funktiolle y = y(x) muotoa F (x, y, y ) = 0 ja G(x, y, y, y ) =

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

Lectio Praecursoria: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit

Lectio Praecursoria: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit : Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit Janne Korvenpää Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Lokaali ja lineaarinen:

Lisätiedot

Tähän kirjoitelmaan on poimittu joitakin kurssiin Vektorifunktioiden analyysi 2B liittyviä, kurssin luentomonistetta [2] täydentäviä asioita.

Tähän kirjoitelmaan on poimittu joitakin kurssiin Vektorifunktioiden analyysi 2B liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. Tähän kirjoitelmaan on poimittu joitakin kurssiin Vektorifunktioiden analyysi 2B liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. 1. Differentiaalimuodon integraalista 1.1. Differentiaalien

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Mellin-muunnos ja sen sovelluksia

Mellin-muunnos ja sen sovelluksia Mellin-muunnos ja sen sovelluksia LuK-tutkielma Eetu Leinonen 25645 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 28 Sisältö Johdanto 2 Esitiedot 2 2 Mellin-muunnos 3 2. Muunnoksen perusominaisuuksia................

Lisätiedot

Poincarén epäyhtälöstä

Poincarén epäyhtälöstä Helsingin ylioisto Matematiikan ja tilastotieteen laitos Pro Gradu Poincarén eäyhtälöstä Tekijä: Anssi Tuovinen Ohjaaja: FT Ritva Hurri-Syrjänen Toinen tarkastaja: FT Antti Vähäkangas. toukokuuta 204 HELSINGIN

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

Moderni biolääketieteellinen optiikka X - Optinen mittaaminen sekä valmistusmenetelmät X X X

Moderni biolääketieteellinen optiikka X - Optinen mittaaminen sekä valmistusmenetelmät X X X Tohtoriohjelman tarjoamat opinnot tieteenaloittain: Fotoniikka Tieteen ja tutkimusalan opintoihin hyväksyttävät opintojaksot ovat: Opintojakso Koodi (op) 2018- Moderni biolääketieteellinen optiikka 3313005

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Moderni biolääketieteellinen optiikka X - Optinen mittaaminen sekä valmistusmenetelmät X X X

Moderni biolääketieteellinen optiikka X - Optinen mittaaminen sekä valmistusmenetelmät X X X Fotoniikka Opintojakso Koodi (op) 2018- - - Moderni biolääketieteellinen optiikka 3313005 4 - X - Optinen mittaaminen sekä valmistusmenetelmät 3313004 4 X X X Korkean teknologian kaupallistaminen (esimerkkinä

Lisätiedot

Lukuvuonna luennoitavat matematiikan opintojaksot

Lukuvuonna luennoitavat matematiikan opintojaksot MATEMATIIKAN JA TILASTOTIETEEN OPETUS Lukuvuonna 2006-2007 luennoitavat matematiikan opintojaksot Syyslukukausi Kevätlukukausi Johdantokurssit Johdantokurssit MATY010 Matematiikan prop. kurssi MATY020

Lisätiedot

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0. 0. Maksimiperiaate Laplace-yhtälölle 0.. Maksimiperiaate. Alueessa Ω R määritelty kaksi kertaa erivoituva fuktio u o harmoie, jos u = j= = 0. 2 u x 2 j Lause 0.. Olkoot Ω R rajoitettu alue ja u C(Ω) C

Lisätiedot

TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma. Mika Kähkönen. L'Hospitalin sääntö

TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma. Mika Kähkönen. L'Hospitalin sääntö TAMPEREEN YLIOPISTO Luonnontieteiden kandidaatin tutkielma Mika Kähkönen L'Hospitalin sääntö Matematiikan, tilastotieteen ja losoan laitos Matematiikka Lokakuu 007 Sisältö 1 Johdanto 3 1.1 Tutkielman sisältö........................

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI 007-008 POISTUVAT OPINTOJAKSOT: Ti41010 Matematiikka EnA1 op Ti41010 Matematiikka KeA1 op Ti410170 Matematiikka SäA1 op Ti410140

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 17. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Weierstrassin funktiosta

Weierstrassin funktiosta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Riikka Tervaskangas Weierstrassin funktiosta Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö TERVASKANGAS,

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

Matematiikan kirjoittamisesta

Matematiikan kirjoittamisesta Matematiikan kirjoittamisesta Asiasisältö Tärkeintä kaikessa on, että kaiken minkä kirjoitat, niin myös itse ymmärrät. Toisin sanoen asiasisällön on vastattava lukijan pohjatietoja. Tekstin täytyy olla

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

TIETOLIIKENNETEKNIIKKA I A

TIETOLIIKENNETEKNIIKKA I A TIETOLIIKENNETEKNIIKKA I 521359A KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA Dos. Kari Kärkkäinen Tietoliikennelaboratorio, huone TS439, 4. krs. kk@ee.oulu.fi, http://www.telecomlab.oulu.fi/~kk/ puh: 08

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Mikä on probabilistinen malli? Kutsumme probabilistisiksi malleiksi kaikkia

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

LUKU 6. Klassiset lauseet

LUKU 6. Klassiset lauseet LUKU 6 Klassiset lauseet Tässä luvussa näytetään, miten klassiset Stokesin lauseelle lähisukuiset tulokset, Greenin ja Gaussin lauseet, saadaan erikoistapauksena yleisestä Stokesin lauseesta. Ensin tarkastellaan

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Strict singularity of a Volterra-type integral operator on H p

Strict singularity of a Volterra-type integral operator on H p Strict singularity of a Volterra-type integral operator on H p Santeri Miihkinen, University of Helsinki IWOTA St. Louis, 18-22 July 2016 Santeri Miihkinen, University of Helsinki Volterra-type integral

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

Fysiikan matemaattiset menetelmät II

Fysiikan matemaattiset menetelmät II Fysiikan matemaattiset menetelmät II Christofer Cronström Fysikaalisten tieteiden laitos, teoreettisen fysiikan osasto Helsingin yliopisto 9. tammikuuta 2006 i Esipuhe Tämä teos perustuu useana vuonna

Lisätiedot

Tehostettu kisällioppiminen tietojenkäsittelytieteen ja matematiikan opetuksessa yliopistossa Thomas Vikberg

Tehostettu kisällioppiminen tietojenkäsittelytieteen ja matematiikan opetuksessa yliopistossa Thomas Vikberg Tehostettu kisällioppiminen tietojenkäsittelytieteen ja matematiikan opetuksessa yliopistossa Thomas Vikberg Matematiikan ja tilastotieteen laitos Tietojenkäsittelytieteen laitos Kisällioppiminen = oppipoikamestari

Lisätiedot

FyMM IIb Kertausta kurssin asioista

FyMM IIb Kertausta kurssin asioista Keskiviikko 2.5.2018 1/12 FyMM IIb Kertausta kurssin asioista 2018 Keskiviikko 2.5.2018 2/12 1 Kokeesta yleisesti 2 3 4 5 6 7 Keskiviikko 2.5.2018 3/12 Koealue jakaantuu seuraaviin pääalueesiin: 1 2 3

Lisätiedot

Matematiikan opintosuunta

Matematiikan opintosuunta Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

Tieteen ja tutkimusalan opintoihin hyväksyttävät opintojaksot ovat (taulukossa A= aineopinnot, S=syventävät opinnot, J = jatko-opinnot):

Tieteen ja tutkimusalan opintoihin hyväksyttävät opintojaksot ovat (taulukossa A= aineopinnot, S=syventävät opinnot, J = jatko-opinnot): Fotoniikka = jatkoopinnot): Opintojakso Koodi (op) A/S/J 2017 Moderni biolääketieteellinen optiikka 3313005 4 J X Optinen mittaaminen sekä valmistusmenetelmät 3313004 4 J X Korkean teknologian kaupallistaminen

Lisätiedot