u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

Koko: px
Aloita esitys sivulta:

Download "u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja"

Transkriptio

1 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti ilmaistuna: ns. Dirichlet n integraalin Du) = u dx, minimoivat funktiot toteuttavat Laplace-yhtälön u =, ja kääntäen. Täsmennetään ja rajataan tilannetta) hieman. Olkoon R n rajoitettu alue, jonka reuna on sileä niin, että voidaan soveltaa divergenssilausetta). Olkoon f : R annettu jatkuva funktio. Olkoot A f = {U C ) U = f} ja A = {U C ) U = }. Tarkoitus on löytää funktio u A f siten, että Du) = inf U A f DU). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä keskenään yhtäpitäviksi: } u A f ja { u Af ja Du) = inf DU) U A f u = Oletetaan aluksi, että minimointitehtävällä on ratkaisu u A f. Tällöin kaikille v A ja t R on u + tv A f, joten Du + tv) Du). Siis funktio t Du + tv) saavuttaa pienimmän arvonsa hetkellä t =. Lasketaan tämän funktion derivaatta: Koska Du + tv) = u + t v dx = u dx + t u v dx + t v dx = Du) + t u v dx + t Dv), niin d Du + tv) = u v dx + tdv). dt Erityisesti siis hetkellä t = on u v dx = kaikille v A. Divergenssilauseen tai ensimmäisen Greenin kaavan) nojalla u v dx = u v dx + ν u v ds. 19 Viimeksi muutettu Dirichlet n periaatteen historiasta: A. F. Monna: Dirichlet s principle. A mathematical comedy of errors and its influence on the development of analysis, Oosthoek,

2 1. DIRICHLET N PERIAATTEESTA 89 Koska v = reunalla, häviää reunaintegraali, joten u v dx = kaikille v A. Tästä on melko helppo osoittaa, että u =. Oletetaan kääntäen, että u A f ja u =. Olkoon ũ A f mielivaltainen. Tällöin funktiolle v := u ũ on v A ja ũ = u+v. Jälleen divergenssilauseen avulla u v dx = u v dx + ν u v ds = u v dx. Oletuksen mukaan u =, joten u v dx =. Kuten edellä, on Dirichlet n integraalille Dũ) = Du + v) = Du) + u v dx + Dv) = Du) + Dv) Du). Siis u minimoi Dirichlet n integraalin joukossa A f. Funktioluokka C ) on Dirichlet n integraaliin liittyen turhan suppea. Loogisemmin integraaliin liittyy joukko {U C 1 ) DU) < ja U = f}. Tarkastellaan myöhemmin tätä tapausta, kun on tason origokeskinen yksikköympyrä. 1.. Periaate II. Kirjaa [7, Ch. 4] seuraten.) Olkoot, f : R, A f ja A kuten edellä. Oletetaan, että on olemassa ϕ C ) siten, että ϕ = f. Tällöin Laplaceyhtälön epähomogeenisiin reuna-arvoihin liittyvä Dirichlet n tehtävä u A f ja u = ja Poissonin yhtälön homogeenisiin reuna-arvoihin liittyvä Dirichlet n tehtävä v A ja v = ϕ ovat keskenään yhtäpitävät tehtävät. Nimittäin, jos u A f ja u =, niin funktiolle v = u ϕ on v C ), v = u ϕ = ϕ ja v = u ϕ = f f =. Kääntäen, jos v A ja u = ϕ, niin funktiolle u = v + ϕ on u C ), u = v + ϕ = ϕ + ϕ = ja u = v + ϕ = + f = f. Poissonin yhtälöön liittyy seuraava minimointiongelma: on määrättävä funktio ) u A siten, että Du) g u dx = inf DU) g U dx. U A Tässä g : R on annettu jatkuva funktio. Huomaa, että nyt ei ole itsestään selvää, että tarkasteltava funktio on alaspäin rajoitettu. Oletetaan aluksi, että minimimointitehtävällä on ratkaisu u A. Nyt u+tv A kaikille v A ja t R, joten = d ) Du + tv) gu + tv) dx = u v dx gv dx. dt t=

3 1. DIRICHLET N PERIAATTEESTA 9 Divergenssilauseen nojalla tämä ehto voidaan kirjoittaa muotoon = u v dx gv dx = u v dx + ν u v ds = u v dx gv dx = u + g) v dx. gv dx Tästä seuraa, että u + g =. Siis u on seuraavan reuna-arvotehtävä ratkaisu { u = g :ssa, ja ux) = reunalla. Oletetaan kääntäen, että u A ja u = g. Merkitään F U) = DU) g U dx, kun U A. Nyt kaikille v A on F u + v) = Du) + u v dx + Dv) gu dx gv dx. Divergenssilauseen nojalla u v dx = Siis F u + v) = Du) = Du) + Dv) u v dx + u v dx + Dv) ν u v ds = u v dx. gu dx Du) Siis u minimoi funktionaali)n F joukossa A. Yhteenvetona: u A ja ) Du) g u dx = inf DU) g U dx U A gu dx gv dx gu dx = F u). { u A ja u = g Dirichlet n periaatteen tämän version hyvä puoli on, että tämä voidaan helposti laajentaa Sobolev-avaruuksien funktioille. Dirichlet n periaatteen ja Sobolev-avaruuksien yhteys puolestaan on se, että Sobolev-avaruuksille minimin olemassaolo on suhteellisen helppo todistaa Periaate III. Kirjaa [4,.E,.B] seuraten.) Olkoon R n rajoitettu alue, jonka reuna on riittävän sileä. Funktioille u, v C 1 ) asetetaan Du) = u dx ja Iu, v) = u v dx. Kuvaus 1, : u ) 1/ Du) + u dx

4 1. DIRICHLET N PERIAATTEESTA 91 on normi vektoriavaruudessa C 1 ). Olkoon H 1 ) vektoriavaruuden C 1 ) täydentymä tämän normin suhteen. [Avaruus H 1 ) on tavallinen Sobolevin avaruus W 1, ); reunan sileyttä tarvitaan siihen, että C 1 ) on tiheä Sobolevin avaruuden W 1, ) = H 1 ) aliavaruus.] Olkoon H) 1 aliavaruuden Cc ) sulkeuma H 1 ):ssa. Sobolevin avaruudessa Dirichlet n reuna-arvotehtävä { u = :ssa, ja ux) = fx) reunalla, voidaan tulkita esimerkiksi seuraavaksi ongelmaksi: Olkoon f H 1 ) annettu funktio. On määrättävä funktio u H 1 ) siten, että u on harmoninen :ssa ja u f H 1 ). Tässä viimeinen ehto tulkitaan reunaehdoksi u f = reunalla. Lause 1.1. Funktio u H 1 ) on harmoninen :ssa, jos ja vain jos u on kohtisuorassa aliavaruutta H 1 ) vastaan bilineaarimuodon I suhteen, t.s. Iu, v) = kaikille v H 1 ). Todistusidea). Divergenssilauseen nojalla kaikille u C 1 ) ja v Cc ) on u v dx = u v dx + ν u v ds = Iu, v). Koska yhtälön molemmat puolet ovat u:n jatkuvia lineaarimuotoja H 1 )-normin suhteen, pätee identiteetti myös kaikille u H 1 ) ja v Cc ). Siis u on harmoninen :ssa 1) u on yhtälön u = heikko ratkaisu :ssa u v dx = kaikille v Cc ) ) 3) Iu, v) = kaikille v C c ) 4) Iu, v) = kaikille v H 1 ). Perusteluja: 1) Weylin lemma seuraavana); ) heikon ratkaisun määritelmä; 3) edellä todettu divergenssilauseen seuraus; 4) kun u H 1 ) on v Iu, v) jatkuva H 1 )-normin suhteen. Väite seuraa y.o. ketjusta. Lause 1. Weylin lemma 1 ). Olkoon u L 1 loc ) yhtälön u = heikko ratkaisu, t.s. u v dx = kaikille v Cc ). Tällöin u C ) ja u =. 1 Hermann Weyl: The method of orthogonal projection in potential theory, Duke Math. J. 7, 194. Sobolevin avaruudet ovat peräisin vain paria vuotta aiemmin ilmestyneestä artikkelista Sergei) [Lvovitš)] Sobolev: Sur un théorème d analyse fonctionelle, Math. Sbornik 4 46), 1938 venäjäksi).

5 1. DIRICHLET N PERIAATTEESTA 9 Todistusidea). Konvoluutiota ja silottamista tunteville.) Valitaan ϕ Cc B, 1)) siten, että ϕx) dx = 1. R n Kaikille ε > asetetaan ϕ ε x) = ε n ϕx/ε) ja ϕ ε x) = ϕ ε x). Asetetaan vielä ε = {x R n Bx, ε) }. Nyt kaikille ψ Cc ε ) on ϕ ε ψ Cc ) ja u ϕ ε C ε ), joten u ϕ ε ) ψ dx = u ϕ ε ) ψ dx = u ϕ ε ψ)) dx = u ϕ ε ψ) dx =. Tästä seuraa, että u ϕ ε ) = joukossa ε. Keskiarvo-ominaisuuden nojalla kaikille x ε ja riittävän pienille r > on u ϕ ε )x) = 1 u ϕ ω n r n ε )x + y) dy. B,r) Koska u L 1 loc ), on kaikille :n kompakteille osajoukoille K voimassa u ϕ ε u L 1 K):ssa. Keskiarvo-ominaisuudesta seuraa, että u ϕ ε u lokaalisti tasaisesti :ssa. Keskiarvo-ominaisuuden käänteislauseen nojalla u on harmoninen. Funktiot u H 1 ), joille Du) =, ovat vakiofunktioita ja muodostavat H 1 ):n suljetun aliavaruuden. Olkoon tämän ortogonaalikomplementti E. Vaikka u Du) ei ole normi avaruudessa H 1 ), voidaan Hilbertin avaruuksien teoriaa soveltaa H 1 ):n suljettuun aliavaruuteen E. Tällöin u, v) Iu, v) on sisätulo E:ssä, ja H 1 ) E. Projektiolauseen nojalla jokainen f E voidaan esittää muodossa f = u + w, missä w H 1 ) ja u on sisätulon I mielessä kohtisuorassa aliavaruutta H 1 ) vastaan. Edellisten lauseiden nojalla u on harmoninen. Koska myös vakiofunktiot ovat harmonisia, voidaan jokainen f H 1 ) esittää muodossa f = u + w, missä w H 1 ) ja u on harmoninen. Muistettakoon, että ortogonaaliprojektio voidaan karakterisoida myös etäisyyden minimoivana vektorina: Vektorin f E ortogonaaliprojektio suljetulle aliavaruudelle H 1 ) on vektori w H 1 ), jolle etäisyys Df w) on pienin mahdollinen. Ortogonaaliprojektiolauseen tulokset voidaan siirtää seuraavaksi lauseeksi: Lause 1.3 Dirichlet n periaate). Olkoot f, u H 1 ). Tällöin seuraavat ovat yhtäpitäviä: i) u on harmoninen ja f u H 1 ); ii) Du) Dv) kaikille v H 1 ), joille f v H 1 ); iii) Df u) Dv) kaikille v H 1 ), joille f v on harmoninen. Huomautus 1.4. Ortogonaaliprojektiolauseen hienous ei ole niinkään edellisessä karakterisaatiossa, vaan siinä, että se takaa jaon f = u + w, missä w H 1 ) ja u on harmoninen, olemassaolon. Siis H 1 ) = H H 1 ), missä H = {u H 1 ) C ) u on harmoninen}. Tässä summa on ortogonaalinen ei-definiitin sisätulon Iu, v) = u v dx suhteen.

6 1. DIRICHLET N PERIAATTEESTA Yksikköympyrä. Esimerkki kirjasta [, Band I, IV.].) Olkoot B = {x, y) R x + y < 1} ja u ) u ) ) Du) = + dx dy, x y B kun u: B R on jatkuvasti derivoituva. Napakoordinaateissa r, θ) on, kun vr, θ) := ur cos θ, r sin θ), 1 π v ) 1 v ) ) Du) = Dv) = + r dr dθ. r r θ Olkoon reunalla S 1 = B annettu jatkuva funktio f, ja oletetaan, että f on esitetty Fourier n sarjana fθ) = a + a k cos kθ + b k sin kθ). Olkoon A f = {U C 1 B) CB) U S 1 = f}. Etsitään funktiota u A f, joka minimoi Dirichlet n integraalin Du) joukossa A f, t.s. u A f ja Du) = inf U A f DU). Esitetään funktio u napakoordinaattien ja Fourier n sarjojen avulla seuraavasti: Funktion vr, θ) Fourier n sarja muuttujan θ suhteen on vr, θ) = f r) + f k r) cos kθ + g k r) sin kθ), missä f k r) = 1 π π vr, θ) coskθ) dθ, g k r) = 1 π π vr, θ) sinkθ) dθ. Koska funktio θ v, θ) = u, ) on vakiofunktio, on f ) = u, ) ja f k ) = g k ) =, kun k 1. Jotta v1, θ) = fθ), pitää olla f k 1) = a k ja g k 1) = b k. Koska u on jatkuva suljetussa yksikköympyrässä B ja jatkuvasti derivoituva avoimessa ympyrässä B, ovat f k ja g k jatkuvia välillä [, 1] ja jatkuvasti derivoituvia välillä [, 1) jatkuvuus- ja derivointilemmat). Fubinin lauseen, Parsevalin kaavan ja monotonisen konvergenssin lauseen avulla saadaan Dv) = π + π 1 f r) r dr 1 f kr) ) + k r f kr) r dr + π 1 g kr) ) + k r g kr) r dr. Huomaa, että tässä voi olla Dv) =. Kaava pitää paikkansa myös tässä tapauksessa, mikä nähdään seuraavasti: Olkoon B ρ = {x, y) R x + y < ρ }, kun < ρ < 1. Koska u C 1 B) on u C 1 B ρ ), joten yllä oleva kaava pätee, kun integrointi ulotetaan välille r ρ. Kun ρ 1, saadaan yllä oleva kaava.

7 1. DIRICHLET N PERIAATTEESTA 94 Kirjoitetaan summissa esiintyvät integraalit k 1) 1 f kr) ) + k r f kr) r dr 1 = f kr) k ) 1 r f kr) r dr + k f kr)f k r) dr = = 1 1 f kr) k r f kr) ) 1 r dr + k f k r) f kr) k ) r f kr) r dr + ka Muista: f k ) = ja f k 1) = a k.) Vastaavasti 1 g kr) ) + k r g kr) r dr = 1 1 k g kr) k ) r g kr) r dr + kb Integraalille Dv) saadaan siis pienin arvo, kun 1 f r) r dr =, f kr) k ) 1 r f kr) r dr =, g kr) k kr)) r g r dr =. Nämä ehdot reunaehtojen f k 1) = a k ja g k 1) = b k kera) toteutuvat, kun f r) = vakio = a, f k r) = a k r k, g k r) = b k r k. Siis Dv) saa pienimmän arvonsa, kun ja tällöin vr, θ) = a + r k a k cos kθ + b k sin kθ), Dv) = π k a k + b k). Huomaa, että v:lle saatu sarja on sama, johon päädyttiin Poissonin integraalin yhteydessä kuinkas muuten!). Huomaa myös, että Dirichlet n integraali Dv) on äärellinen, jos reunafunktiolta f vaaditaan hieman enemmän kuin vain jatkuvuus. Jos oletetaan, että f on jatkuva, niin tällöin π f θ) dθ = π k a k + b k). Tässä käytetään apuna Parsevalin kaava, joka pätee myös kaikille L -funktioille. Ongelma: Mitä tapahtuu, jos reunafunktio f on vain jatkuva? k Esimerkiksi, olkoon a k = 1, kun k = p p, p = 1,,..., a k =, muuten, ja b k = kaikille k Z +.

8 Tällöin Kuitenkin sarja Du) = 1. DIRICHLET N PERIAATTEESTA 95 k a k + b k) = fθ) = a k cos kθ = suppenee tasaisesti, joten f on jatkuva. Alussa olleen nojalla jokaiselle u A f on Du) = Dv) = π π + π 1 f r) r dr + π 1 k a k + b k) 1 ) p =. p p=1 p=1 1 p cosp θ) 1 f kr) k kr)) r f r dr g kr) k ) r g kr) r dr + π k a k + b k) Siis DU) = kaikille U C 1 B) CB), joille U S 1 = f. Toisaalta, Dirichlet n tehtävällä { u = yksikköympyrässä B, ja ucos θ, sin θ) = fθ) ympyrän kehällä S 1, on yksikäsitteisesti määrätty ratkaisu u C B) CB) Poissonin integraalin avulla). Tässä siis Dirichlet n tehtävän ratkaisua ei loydetä Dirichlet n integraalin minimoivista funktioista. Huomautus 1.5. Edellä konstruoitu funktio on esimerkki ns. lakunaarisista Fourier n sarjoista. Kokonaislukujono λ k ) Z + on lakunaarinen, jos on olemassa vakio q > 1 siten, että λ k+1 > qλ k kaikille k Z +. Fourier n sarja α k cosλ k θ) + β k sinλ k θ)) on lakunaarinen, jos jono λ k ) on lakunaarinen. Kirjassa [1, V.1.] osoitetaan, että jos funktion f L 1, π) Fourier n sarja on lakunaarinen kosinisarja α k cosλ k θ), ja jos f on derivoituva jossakin pisteessä θ, niin α k λ k, kun k. Tästä seuraa erityisesti, että Weierstrassin funktio k cos k θ) ei ole derivoituva missään. Samoin edellä ollut reunafunktio f ei ole derivoituva missään. Huomautus 1.6. Jatkuvan funktion Fourier n sarja voi hajaantua melko isossakin joukossa. Ks. [38, II.4] esimerkki Banachin ja Steinhausin lauseen sovelluksista): Jos {θ j j N} [, π] on annettu joukko, niin on olemassa ylinumeroituva joukko P ja jatkuva, π-jaksoinen funktio f siten, että P {θ j j N} ja funktion f Fourier n sarja hajaantuu jokaisessa joukon P pisteessä. Huomautus 1.7. Yksikköympyrän kehällä määritellyt funktiot voidaan samastaa π-jaksoisten funktioiden f : R R kanssa. Jos f L S 1 ), niin f voidaan

9 1. DIRICHLET N PERIAATTEESTA 96 esittää L -normin suhteen suppenevana sarjana fθ) = a + a k cos kθ + b k sin kθ). Tällaiselle funktiolle on f = π fθ) dθ = π a + π a k + b k) <. Jos lisäksi f on absoluuttisesti jatkuva ja f L S 1 ), niin π f = f θ) dθ = π k a k + b k). Tässä f on melkein f:n Sobolev-avaruusnormi f 1, = f + f Kun s R, s, asetetaan f H = π s a + π k s a k + b k) ja H s S 1 ) = {f L S 1 ) f H s < }. Huomaa, että H S 1 ) = L S 1 ), ja kun s Z +, on f H s f s, Sobolevavaruusnormi, f s, = f + f s) ). Voidaan osoittaa, että a) Sobolevin avaruus H 1 B) on joukon C 1 B) täydentymä ympyrän B Sobolevavaruusnormin suhteen; b) kuvaus C 1 B) CS 1 ), u u S 1, voidaan jatkaa jatkuvaksi lineaarikuvaukseksi γ : H 1 B) L S 1 ); c) kuvajoukko γh 1 B)) = H 1/ S 1 ). Huomaa, että f H 1/ = π a + π k a k + b k ). Lisäksi on helppo todistaa Sobolevin upotuslauseen kaltainen tulos: Jos f H s S 1 ) ja s > 1/, niin f on jatkuva tarkemmin: f eroaa jatkuvasta funktiosta vain nollamittaisessa joukossa). Vastaavasti: Jos f H s S 1 ) ja s > k + 1/, missä k N, niin f on k kertaa jatkuvasti derivoituva. Myös avaruuksille H s S 1 ), missä s <, löytyy käyttöä duaaliavaruudelle on H s S 1 )) = H s S 1 ), kun s, ainakin isometristä isomorfismia lukuunottamatta). ) 1/

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n)

5. Fourier-sarjat. f(x) e inx dx. c n (cos(nx) + i sin(nx)), n= N. f(x) e inx dx = f(n) FUNKTIONAALIANALYYSIN PERUSKURSSI 73 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo.

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo. f ( n n 6. Sobolevin avaruudet 1 Monisteen [7, 15.4 ja määritelmä 15.26] mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä, kun normina on f f p

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π

5. Fourier-sarjat. f(x)e inx dx. c n (cos(nx) + i sin(nx)), n= N. 2π f(x)e inx dx = 1 2π. k= N. e inx, n Z. 2π f(x)e inx dx = 1 (f e n ) 2π 78 FUNKTIONAALIANALYYSIN PERUSKURSSI 5. Fourier-sarjat Fourier esitti vuonna 1822 lämmönjohtamista koskevien tutkimusten yhteydessä kuuluisan menetelmänsä esittää mielivaltainen -jaksollinen funktio kehitelmänä

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

4. Hilbertin avaruudet

4. Hilbertin avaruudet FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden

Lisätiedot

puolitasossa R 2 x e x2 /(4t). 4πt

puolitasossa R 2 x e x2 /(4t). 4πt 8. Lämmönjohtumisyhtälö II 8.1. Lämpöydin. Tarkastellaan lämmönjohtumisyhtälöä reaaliakselilla, t.s. pyritään ratkaisemaan alkuarvotehtävä u (8.1) t u 2 u puolitasossa R 2 x 2 + R (, ), u(x, ) f(x) kaikille

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Differentiaalimuodot

Differentiaalimuodot LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

7. Laplace-operaattorin ominaisarvoista

7. Laplace-operaattorin ominaisarvoista 7. Laplace-operaattorin ominaisarvoista Värähtelevän jousen ja lämmönjohtumisyhtälöiden ratkaisemisessa päädyttiin seuraavankaltaiseen reuna-arvotehtävään { V = λv välillä (a, b), ja V (a) = V (b) = 0.

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Perusidea: Jaetaan väli [a, b] osaväleihin ja muodostetaan osavälejä vastaavat suorakulmiot/palkit, joiden korkeus funktion arvot kyseisellä välillä.

Perusidea: Jaetaan väli [a, b] osaväleihin ja muodostetaan osavälejä vastaavat suorakulmiot/palkit, joiden korkeus funktion arvot kyseisellä välillä. Lähtötilanne Lähtötilanne Tavoite: Määritellään funktion f : [a, b] R integraali siten, että integraalin arvo yhtyy funktion f kuvaajan ja x-akselin väliin jäävän alueen pinta-alaan. Perusidea: Jaetaan

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Stokesin lause LUKU 5

Stokesin lause LUKU 5 LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

p-laplacen operaattorin ominaisarvo-ongelmasta

p-laplacen operaattorin ominaisarvo-ongelmasta p-laplacen operaattorin ominaisarvo-ongelmasta Jarkko Siltakoski Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 R N x alue B(x 0, r) E E E int E E U E Merkintöjä

Lisätiedot

Vektorilaskenta, tentti

Vektorilaskenta, tentti Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Kompaktisuus ja filtterit

Kompaktisuus ja filtterit Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 26. huhtikuuta 2017 Pekka Salmi Hilbertin avaruudet 26. huhtikuuta 2017 1 / 115 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L),

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot