R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

Koko: px
Aloita esitys sivulta:

Download "R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on"

Transkriptio

1 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset [Sala] Merkintöjä. Z: kokonaislukujen joukko Z + : = {k Z k > 0} Z : = {k Z k < 0} N: = {k Z k 0} Z n : kokonaislukujen jäännösluokkien modulo n muodostama rengas 2 A : äärellisen joukon A alkioiden lukumäärä R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on ryhmä (esimerkiksi Z = {±1}, Q = Q \ {0}) F q : kunta, jossa on q alkiota; myöhemmin tullaan osoittamaan, että jos tällainen kunta on olemassa, on se isomorfismia vaille yksikäsitteinen; erityisesti F p = Z p, kun p on alkuluku (ja F p Z p, kun p ei ole alkuluku) Lukujen suurin yhteinen tekijä. Eukleideen algoritmi on kokonaislukujen jakoyhtälöä käyttävä menetelmä, jolla voidaan määrätä kahden kokonaisluvun a, b Z suurin yhteinen tekijä d = syt(a, b). 3 Kerrattakoon määritelmiä ja eräitä merkintöjä. Määritelmä 0.1. Olkoot a, b, c ja d Z. Sanotaan, että c jakaa luvun a, jos on olemassa k Z siten, että a = k c; tällöin merkitään c a. Luku c on lukujen a ja b yhteinen tekijä, jos c a ja c b. Luku d on lukujen a ja b suurin yhteinen tekijä, jos d on lukujen a ja b yhteinen tekijä ja lisäksi pätee: jos c a ja c b, niin c d. Huomautus 0.2. Lukujen jaollisuus on järjestysrelaatio positiivisten kokonaislukujen joukossa Z + (tai yhtä hyvin kaikkien kokonaislukujen joukossa Z). Kaikkia lukupareja ei jaollisuuden perusteella voi asettaa järjestykseen (esimerkiksi 4 6 ja 6 4), mutta jaollisille luvuille jaollisuusjärjestys vastaa lukujen tavallista suuruusjärjestystä: jos a Z + ja b Z + ovat jaollisia keskenään, on a b, jos ja vain jos a b. Muistettakoon, että järjestysrelaatio (tarkemmin osittainen järjestys) joukossa X on on binäärinen relaatio, jolle on voimassa (i) x x kaikille x X (refleksiivisyys) (ii) jos x y ja y x, niin x = y (antisymmetrisyys) (iii) jos x y ja y z, niin x z (transitiivisuus) 1 Viimeksi muutettu Algebraa ja lukuteoriaa käsittelevissä kirjoissa merkintää Z p saatetaan käyttää ns. p-adisten lukujen joukolle. Tällöin kokonaislukujen jäännösluokkarenkaille modulo n käytetään merkintää Z/nZ. 3 Suomen kielisessä matemaattisessa tekstissä suurimmalle yhteiselle tekijälle käytetään useimmiten suomen kielistä lyhennettä syt(a, b). Englanninkielisissä teksteissä käytetään gcd(a, b), greatest common divisor, saksankielisissä ggt(a, b), gröster gemeinsamer Teiler, ja ranskankielisissä pgcd(a, b), plus grand commun diviseur. Osa vanhempaa kirjallisuutta tyytyy lyhennettyyn merkintään (a, b), mikä pitää pitää erillään järjestystä parista ja lukusuoran avoimesta välistä. Lisäsekaannusta voi aiheuttaa, että kokonaislukujen a ja b virittämälle ideaalille {s a + t b s, t Z} käytetään myös merkintää (a, b). 1

2 Järjestys on täydellinen, jos jokaiselle parille x, y X on voimassa x y tai y x (vertailtavuus). Tässä jaollisuuden avulla määritelty järjestysrelaatio on siis osittainen, mutta ei täydellinen järjestys joukossa Z. Kokonaislukujen tavallinen järjestysrelaatio määritellään seuraavasti: x y, jos on olemassa z N siten, että y = x + z. Tämä on täydellinen järjestys. Suurin yhteinen tekijä on siis jaollisuusjärjestyksen mielessä yhteisistä tekijöistä suurin Eukleideen algoritmi. Olkoot r 0, r 1 N, r 1 0. Kokonaislukujen jakoyhtälön nojalla on olemassa yksikäsitteiset luvut q 1 ja r 2 N siten, että r 0 = q 1 r 1 + r 2 ja 0 r 2 < r 1. Luku q 1 on lukujen r 0 ja r 1 kokonaislukuosamäärä ja r 2 (kokonaisluku-)jakojäännös. Merkitään rem(r 0, r 1 ) := r 2. Otetaan käyttöön seuraavat funktiot: Jokaiselle x R asetetaan (ks. [19, 1.2.4] tai [18, 3.1] 4 ) x := suurin kokonaisluku n siten, että n x (luvun x lattia); x := pienin kokonaisluku n siten, että n x (luvun x katto). Jakoyhtälön osamäärä ja jakojäännös voidaan nyt ilmaista q 1 = r 0 /r 1, kun r 1 0, ja r 2 = rem(r 0, r 1 ) = r 0 q 1 r 1 = r 0 r 1 r 0 /r 1. Kun jakoyhtälöä toistetaan vaihtamalla jaettavan paikalle jakaja ja valitsemalla uudeksi jakajaksi saatu jakojäännös, löydetään luvut l, q i, r i N, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja r 0 = q 1 r 1 + r 2, (0.1) r 1 = q 2 r 2 + r 3,. r l 2 = q l 1 r l 1 + r l, r l 1 = q l r l + 0. Väite 0.3. Eukleideen algoritmilla (0.1) saatu luku r l, eli viimeinen nollasta eroava jakojäännös, on lukujen r 0 ja r 1 suurin yhteinen tekijä, r l = syt(r 0, r 1 ). Suurin yhteinen tekijä voidaan myös karakterisoida seuraavasti: syt(r 0, r 1 ) on joukon {s r 0 +t r 1 s, t Z} pienin positiivinen luku. Erityisesti siis on olemassa s, t Z siten, että syt(r 0, r 1 ) = s r 0 + t r 1. (Tämä yhtälö tunnetaan Bézout n yhtälönä.) 2 Todistus. Tuloksen pitäisi olla tuttu Lukuteorian alkeet -kurssilta [LTA]. Esimerkki 0.4. Eukleideen algoritmi luvuille 126 ja 35: 126 = , 35 = , 21 = , 14 = Vanhemmassa kirjallisuudessa luvun x lattialle käytetään merkintää [x].

3 3 Kertoimet s ja t löydetään takaperin laskemalla : syt(126, 35) = 7 = , = 21 ( ), = ( ) (35 ( )), = Tämä menetelmä kertoimien määräämiseksi ei ole kuitenkaan kovin käyttökelpoinen tietokoneella laskettaessa, päinvastoin; Eukleideen algoritmista saatavat välivaiheet pitäisi tallettaa muistiin, jotta niitä voitaisiin käyttää kertoimien s ja t määräämiseen edellisen esimerkin mukaisesti. Kertoimet s ja t voidaan kuitenkin määrätä suoraan käyttämällä ns. laajennettua Eukleideen algoritmia Laajennettu Eukleideen algoritmi. Olkoot luvut l, q i ja r i kuten Eukleideen algoritmissa (0.1). Pyritään etsimään luvut s i ja t i siten, että s i r 0 + t i r 1 = r i kaikille 0 i l. Oletetaan aluksi, että tällaiset luvut ovat olemassa. Kun tätä oletusta sovelletaan indekseihin i 1, i ja i + 1, saadaan Eukleideen algoritmin avulla (0.2) r i+1 = r i 1 q i r i = (s i 1 r 0 + t i 1 r 1 ) q i (s i r 0 + t i r 1 ) = (s i 1 q i s i ) r 0 + (t i 1 q i t i ) r 1. Toisaalta r i+1 = s i+1 r 0 + t i+1 r 1. Valitaan kertoimet seuraavan palautuskaavan mukaisesti { si+1 = s i 1 q i s i, (0.3) t i+1 = t i 1 q i t i. Tällöin yhtälöstä (0.2) seuraa, että jos s k r 0 + t k r 1 = r k arvoilla k = i 1 ja k = i ja kertoimet s k ja t k on määrätty palautuskaavojen (0.3) avulla, niin yhtälö s k r 0 +t k r 1 = r k on voimassa myös, kun k = i + 1. Riittää siis löytää sopivat aloitusarvot. Tällaiset ovat s 0 = 1, t 0 = 0, s 1 = 0, t 1 = 1. Laajennetussa Eukleideen algoritmissa määrätään luvut l, q i, r i N, s i, t i Z, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja s 0 = 1, t 0 = 0 (0.4) s 1 = 0, t 1 = 1 r i 1 = q i r i + r i+1 s i 1 = q i s i + s i+1 t i 1 = q i t i + t i+1 Tällöin s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Lisätietoa laajennetusta Eukleideen algoritmista löytyy kirjoista [1, 3.2], [20, 4.5.2]. Esimerkki 0.5. Käydään läpi edellisen esimerkin lasku laajennetulla Eukleideen algoritmilla. Riveillä i = 0 ja i = l + 1 oleville suureille q i ei ole määritelty arvoa ja ne on merkitty viivalla:

4 4 i r i q i s i t i Riviltä i = 4 saadaan r l = syt(r 0, r 1 ) = s l r 0 + t l r 1, eli 7 = syt(126, 35) = Joissakin yksinkertaistetuissa esityksissä saatetaan sanoa, että kahden luvun suurin yhteinen tekijä määrätään jakamalla luvut alkutekijöihin ja poimimalla näistä yhteiset tekijät. Käytännössä näin voi menetellä kuitenkin vain (pienen) pienten lukujen kohdalla, koska suurille luvuille ei tunneta yhtään nopeaa tekijöihinjakomenetelmää. Eukleideen algoritmi on nopea. Seuraava lause kertoo kvantitatiivisesti, kuinka nopeasti suurin yhteinen tekijä voidaan löytää. Lause 0.6. Olkoot r 0, r 1 Z, 0 < r 1 < r 0, ja l Eukleideen algoritmin (0.1) rivien lukumäärä. Tällöin l log r 1 + 1, missä φ := log φ 2 Todistus. Voidaan olettaa, että r l = syt(r 0, r 1 ) = 1. Nimittäin, jos Eukleideen algoritmin (0.1) rivit kerrotaan puolittain positiivisella kokonaisluvulla c, nähdään että lukupariin (c r 0, c r 1 ) liittyvät Eukleideen algoritmin jakojäännökset ovat luvut c r i. Siis syt(c r 0, c r 1 ) = c syt(r 0, r 1 ) ja kummankin lukuparin, (c r 0, c r 1 ) ja (r 0, r 1 ), Eukleideen algoritmissa on täsmälleen yhtä monta riviä. Jos olisi r l > 1, voitaisiin lukuparin (r 0, r 1 ) suuurin yhteinen tekijä laskea lukuparin (r 0 /r l, r 1 /r l ) avulla niin, että Eukleideen algoritmin rivien lukumäärä ei muutu. Olkoon siis r l = 1. Osoitetaan induktiolla, että (0.5) r i φ l i, kun 0 i l. Tästä epäyhtälöstä saadaan erityisesti r 1 φ l 1, joten ottamalla puolittain logaritmit saadaan Väitetty epäyhtälö seuraa tästä. log r 1 (l 1) log φ. Epäyhtälön (0.5) todistus: Kun i = l, on r l = 1 = φ 0. Epäyhtälö (0.5) on siis voimassa ainakin, kun i = l. Ennenkuin jatketaan, todetaan että Eukleideen algoritmin (0.1) osamäärille q i on voimassa q i 1, kun 1 i l 1, ja q l 2. Nimittäin, Eukleideen algoritmin (0.1) nojalla r i 1 = q i r i + r i+1, ja koska r i+1 < r i < r i 1, on oltava q i 0. Jos olisi q l = 1, saataisiin Eukleideen algoritmin (0.1) viimeiseltä riviltä r l 1 = r l, mikä ei ole mahdollista. Siis q l 2. Koska 5 < 9, on φ < = 2, joten edellisen nojalla saadaan r l 1 = q l r l = q l 2 > φ. Olkoon nyt 0 k l 2, ja oletetaan, että väitetty epäyhtälö (0.5) on tosi kaikille indekseille i > k.

5 5 Koska q k+1 1, saadaan induktio-oletuksen nojalla r k = q k+1 r k+1 + r k+2 r k+1 + r k+2 ( φ l (k+1) + φ l (k+2) = φ l (k+1) ) = φ l k. φ Siis epäyhtälö (0.5) on tosi myös indeksille i = k. Huomautuksia 0.7. a) Voidaan osoittaa, että Eukleideen algoritmille (0.1) hitain tapaus, siis sellainen jossa tarvitaan eniten rivejä, on Fibonaccin luvuista F n saatava aloitus. Asetetaan F 0 := 0, F 1 := 1 ja F n := F n 1 + F n 2, kun n 2. Tällöin luvuille r 0 := F n+2 ja r 1 := F n+1 Eukleideen algoritmissa (0.1) on l = n riviä. Ks. [20, 4.5.3, Thm. F]. b) Eukleideen algoritmi kahden luvun suurimman yhteisen tekijän määrämiseksi on nopea, koska logaritmi kasvaa hyvin hitaasti. Esimerkiksi, jos r 1 = (=googol), Eukleideen algoritmissa tarvitaan enintään 479 riviä (eli jakoyhtälöä) Modulaariaritmetiikkaa. Olkoon n Z, n 2. Sanotaan, että luvut a Z ja b Z ja ovat kongruentteja keskenään modulo n, jos a b on jaollinen luvulla n; tällöin merkitään a b mod n. Luku n on kongruenssin moduli. 5 Lukujen kongruenssi on ekvivalenssirelaatio, t.s. kaikille kokonaisluvuille a, b, c on voimassa a) a a mod n (refleksiivisyys); b) jos a b mod n, niin b a mod n (symmetrisyys); c) jos a b mod n ja b c mod n, niin a c mod n (transitiivisuus). Ekvivalenssirelaation avulla tarkasteltavat alkiot jaetaan ekvivalenssiluokkiin. Kongruenssirelaation tapauksessa luvun a määräämä ekvivalenssiluokka on joukko [a] n := {b Z b a mod n}. Joukkoa [a] n kutsutaan (luvun a määräämäksi) jäännösluokaksi modulo n. Kaikkien jäännösluokkien modulo n joukkoa merkitään Z n tai Z/nZ. Koska b a mod n, jos ja vain jos b a = k n jollekin k Z, on [a] n = {..., a 2 n, a n, a, a + n, a + 2 n,...}. Ekvalenssirelaatioiden yleisten omaisuuksien nojalla luvuille a ja b on [a] n = [b] n, jos ja vain jos a b mod n. Kun jakoyhtälössä jakajaksi valitaan luku n, saadaan a = q n + r, missä q, r Z ja 0 r < n. Siis r = rem(a, n) ja a r mod n, joten [a] n = [r] n = [rem(a, n)] n. Jokaiselle jäännösluokalle [a] n löytyy siis yksi ja vain yksi edustaja r, jolle on voimassa 0 r < n. Kokonaislukujen kongruenssille on voimasssa seuraavat laskusäännöt: Olkoot a, a, b, b Z. Tällöin (i) jos a b mod n ja a b mod n, niin a + a b + b mod n; (ii) jos a b mod n ja a b mod n, niin a a b b mod n. Edellisen nojalla jäännösluokille voidaan määritellä yhteen- ja kertolasku asettamalla [a] n + [a ] n := [a + a ] n, [a] n [a ] n := [a a ] n. 5 Merkinnän a b mod n sijasta kirjallisuudesta saattaa löytää myös merkinnät a b (mod n) ja a b (n).

6 Näin määritellyille laskutoimituksille on voimasssa: (i) [a] n + [b] n = [b] n + [a] n (yhteenlaskun kommutatiivisuus) (ii) ([a] n + [b] n ) + [c] n = [a] n + ([b] n + [c] n ) (yhteenlaskun assosiatiivisuus) (iii) [a] n [b] n = [b] n [a] n (kertolaskun kommutatiivisuus) (iv) ([a] n [b] n ) [c] n = [a] n ([b] n [c] n ) (kertolaskun assosiatiivisuus) (v) ([a] n + [b] n ) [c] n = [a] n [c] n + [b] n [c] n (distribuutiivisuus) Lisäksi a) yhteenlaskulle on olemassa neutraalialkio (nolla-alkio) [0] n, jolle [a] n +[0] n = [a] n kaikille [a] n Z n ; b) yhteenlaskussa jokaisella [a] n Z n on vasta-alkio [ a] n, jolle [a] n + [ a] n = [0] n ; c) kertolaskulle on olemassa neutraalialkio (ykkösalkio) [1] n, jolle [a] n [1] n = [a] n kaikille [a] n Z n. Sen sijaan kertolaskussa kaikilla alkioilla [a] n Z n ei välttämättä ole käänteisalkiota [b] n, jolle olisi [a] n [b] n = [1] n. Esimerkiksi, jos n = 4 ja a = 2, on [2] 4 [0] 4 = [0] 4 [1] 4. [2] 4 [1] 4 = [2] 4 [1] 4. [2] 4 [2] 4 = [4] 4 = [0] 4 [1] 4 ja [2] 4 [3] 4 = [6] 4 [2] 4 [1] 4. Sanotaan, että alkio [a] n Z n on kääntyvä, jos on olemassa alkio [b] n Z n siten, että [a] n [b] n = [1] n. Jos tällainen alkio [b] n on olemassa, sitä sanotaan alkion [a] n käänteisalkioksi ja merkitään [a] 1 n. Sanotaan myös, että kokonaisluku a on kääntyvä modulo n, jos alkio [a] n Z n on kääntyvä, t.s. jos on olemassa kokonaisluku b siten, että a b 1 mod n. Laajennetun Eukleideen algoritmin avulla voidaan todistaa seuraava tärkeä Lause 0.8. Alkio [a] n Z n on kääntyvä, jos ja vain jos syt(a, n) = 1. Jos syt(a, n) = 1, alkion [a] n käänteisalkio löydetään laajennetun Eukleideen algoritmin avulla. Todistus. Oletetaan aluksi, että [a] n on kääntyvä. Tällöin on olemassa [b] n Z n siten, että [a] n [b] n = [1] n. Jäännösluokkien edustajille a ja b tämä tarkoittaa, että a b 1 mod n, joten a b = 1 + k n jollekin kokonaisluvulle k. Olkoon s := syt(a, n). Tällöin s a ja s n, joten s (a b k n). Siis s 1, joten s = 1. Oletetaan kääntäen, että syt(a, n) = 1. Sovelletaan laajennettua Eukleideen algoritmia lukuihin r 0 = n ja r 1 = a. Algoritmin avulla löydetään luvut l, r i N, s i, t i Z, 1 i l, siten, että s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Erityisesti on s l r 0 + t l r 1 = r l = syt(r 0, r 1 ), t.s. s l n + t l a = 1. Tästä seuraa, että t l a 1 mod n, joten alkio [t l ] n on alkion [a] n käänteisalkio. Huomautus 0.9. On samantekevää lasketaanko jäännösluokilla tai niiden edustajilla, kunhan jälkimmäisessä tapauksessa yhtäsuuruus korvataan kongruenttisuudella (tarpeen mukaan). Esimerkiksi [4] 7 [3] 7 = [4 3] 7 = [12] 7 = [5] 7 ja 4 3 = 12 5 mod 7 tarkoittavat molemmat samaa. Jälkimmäisessä ensimmäinen yhtäsuuruus 4 3 = 12 on yhtäsuuruus, mutta jälkimmäinen kohta ei ole 12 = 5. 6

2 j =

2 j = 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

1 Tätä dokumenttia, Ketjumurtoluvuista.pdf, saa levittää vain yhdessä lähdekoodinsa

1 Tätä dokumenttia, Ketjumurtoluvuista.pdf, saa levittää vain yhdessä lähdekoodinsa Sisältö Eukleideen algoritmi Jakoyhtälö positiivisille kokonaisluvuille 2 2 Eukleideen algoritmi 2 3 Laajennettu Eukleideen algoritmi 3 2 Ketjumurtoluvut 4 2 Irrationaalilukujen ketjumurtolukukehitelmä

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

2. Eukleideen algoritmi

2. Eukleideen algoritmi 2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen

Lisätiedot

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 2. Eukleideen algoritmi à 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastelemme annettujen

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Johdatus p-adisiin lukuihin

Johdatus p-adisiin lukuihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d.

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d. Jakoyhtälö: Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) n = d*q + r Tässä q ja r ovat kokonaislukuja ja 0 r < d. n = d * q + r number divisor quotient residue numero

Lisätiedot

Modulaarisista laskutaulukoista

Modulaarisista laskutaulukoista Modulaarisista laskutaulukoista Visa Latvala ja Pekka Smolander Matematiikan laitos, Joensuun yliopisto Johdanto Artikkelin tarkoituksena on tutustuttaa lukija modulaariseen yhteen- ja kertolaskuun. Nämä

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

ALKULUVUISTA (mod 6)

ALKULUVUISTA (mod 6) Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

4. Eulerin ja Fermat'n lauseet

4. Eulerin ja Fermat'n lauseet 4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden

Lisätiedot

Algebra I. Kevät 2004 Pentti Haukkanen

Algebra I. Kevät 2004 Pentti Haukkanen Algebra I Kevät 2004 Pentti Haukkanen 1 Sisällys 1 Lukuteoriaa 4 1.1 Jaollisuus...... 4 1.2 Suurin yhteinen tekijä... 5 1.3 Jakoalgoritmi.... 6 1.4 Lineaarinen Diofantoksen yhtälö... 9 1.5 Alkuluvuista.....

Lisätiedot

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin 3. RSA Salausjärjestelmien käytön perusongelma oli pitkään seuraava: Kun Liisa ja Pentti haluavat vaihtaa salakirjoitettuja viestejä keskenään ja jos heidän käyttämänsä salausmenetelmä on symmetrinen,

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Lukuteorian kurssi lukioon

Lukuteorian kurssi lukioon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö 1 Sisällöstä Lukuteorian kurssi on ensisijaisesti tarkoitettu opettajalinjan maisterikurssiksi. Tämä näkyy mm. siten, että perinteisesti lukuteoriaan kuuluvan materiaalin lisäksi kurssi sisältää jonkin

Lisätiedot

LUKUTEORIAN ALKEET KL 2007

LUKUTEORIAN ALKEET KL 2007 LUKUTEORIAN ALKEET KL 2007 HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 5 2.1. Jaollisuus 6 2.2. Suurin

Lisätiedot

Eräitä RSA-salauksen haavoittuvuuksia

Eräitä RSA-salauksen haavoittuvuuksia Eräitä RSA-salauksen haavoittuvuuksia Helinä Anttila Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 206 Tiivistelmä: Helinä Anttila, Eräitä RSA-salauksen haavoittuvuuksia,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

Lukuteoriaa ja salakirjoitusta, osa 1

Lukuteoriaa ja salakirjoitusta, osa 1 Solmu 3/2007 1 Lukuteoriaa ja salakirjoitusta, osa 1 Heikki Apiola Dosentti Matematiikan laitos, Teknillinen korkeakoulu Johdanto Lukuteoriaa on joskus pidetty esteettisesti kauniina, mutta käytännössä

Lisätiedot

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2 46. Väite: Luku 3 1 704 71 on jaollinen luvulla 71. Todistus: 1704 71 70 4+ 4 70 3+ 31 70 4 4 70 3 31 70 70 3 3 3 1(mod 71), 1(mod 71) 1 3 4 4 1 3 3 31 4 31 (3 ) 3 ( ) 36 40 67(mod 71) Luku 3 1 704 71

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

. Silloin 1 c. Toisaalta, koska c on lukujen a d ja b d. (a 1,a 2,..., a n )

. Silloin 1 c. Toisaalta, koska c on lukujen a d ja b d. (a 1,a 2,..., a n ) Lukuteorian alkeita Matematiikkakilpailuissa on yleensä tehtäviä, joiden aiheala on alkeellinen lukuteoria. Tässä esitellään perustellen ne lukuteorian tiedot, joihin lukuteoria-aiheisissa tehtävissä yleensä

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,

Lisätiedot

Koulumatematiikan perusteet P

Koulumatematiikan perusteet P Koulumatematiikan perusteet 800104P Matemaattisten tieteiden laitos Oulun yliopisto 2009 Ihmisen henkistä toimintaa ei voi sanoa taiteeksi ellei se perustu matemaattiseen ajatteluun ja todistukseen - Leonardo

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot