R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on
|
|
- Raimo Hämäläinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset [Sala] Merkintöjä. Z: kokonaislukujen joukko Z + : = {k Z k > 0} Z : = {k Z k < 0} N: = {k Z k 0} Z n : kokonaislukujen jäännösluokkien modulo n muodostama rengas 2 A : äärellisen joukon A alkioiden lukumäärä R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on ryhmä (esimerkiksi Z = {±1}, Q = Q \ {0}) F q : kunta, jossa on q alkiota; myöhemmin tullaan osoittamaan, että jos tällainen kunta on olemassa, on se isomorfismia vaille yksikäsitteinen; erityisesti F p = Z p, kun p on alkuluku (ja F p Z p, kun p ei ole alkuluku) Lukujen suurin yhteinen tekijä. Eukleideen algoritmi on kokonaislukujen jakoyhtälöä käyttävä menetelmä, jolla voidaan määrätä kahden kokonaisluvun a, b Z suurin yhteinen tekijä d = syt(a, b). 3 Kerrattakoon määritelmiä ja eräitä merkintöjä. Määritelmä 0.1. Olkoot a, b, c ja d Z. Sanotaan, että c jakaa luvun a, jos on olemassa k Z siten, että a = k c; tällöin merkitään c a. Luku c on lukujen a ja b yhteinen tekijä, jos c a ja c b. Luku d on lukujen a ja b suurin yhteinen tekijä, jos d on lukujen a ja b yhteinen tekijä ja lisäksi pätee: jos c a ja c b, niin c d. Huomautus 0.2. Lukujen jaollisuus on järjestysrelaatio positiivisten kokonaislukujen joukossa Z + (tai yhtä hyvin kaikkien kokonaislukujen joukossa Z). Kaikkia lukupareja ei jaollisuuden perusteella voi asettaa järjestykseen (esimerkiksi 4 6 ja 6 4), mutta jaollisille luvuille jaollisuusjärjestys vastaa lukujen tavallista suuruusjärjestystä: jos a Z + ja b Z + ovat jaollisia keskenään, on a b, jos ja vain jos a b. Muistettakoon, että järjestysrelaatio (tarkemmin osittainen järjestys) joukossa X on on binäärinen relaatio, jolle on voimassa (i) x x kaikille x X (refleksiivisyys) (ii) jos x y ja y x, niin x = y (antisymmetrisyys) (iii) jos x y ja y z, niin x z (transitiivisuus) 1 Viimeksi muutettu Algebraa ja lukuteoriaa käsittelevissä kirjoissa merkintää Z p saatetaan käyttää ns. p-adisten lukujen joukolle. Tällöin kokonaislukujen jäännösluokkarenkaille modulo n käytetään merkintää Z/nZ. 3 Suomen kielisessä matemaattisessa tekstissä suurimmalle yhteiselle tekijälle käytetään useimmiten suomen kielistä lyhennettä syt(a, b). Englanninkielisissä teksteissä käytetään gcd(a, b), greatest common divisor, saksankielisissä ggt(a, b), gröster gemeinsamer Teiler, ja ranskankielisissä pgcd(a, b), plus grand commun diviseur. Osa vanhempaa kirjallisuutta tyytyy lyhennettyyn merkintään (a, b), mikä pitää pitää erillään järjestystä parista ja lukusuoran avoimesta välistä. Lisäsekaannusta voi aiheuttaa, että kokonaislukujen a ja b virittämälle ideaalille {s a + t b s, t Z} käytetään myös merkintää (a, b). 1
2 Järjestys on täydellinen, jos jokaiselle parille x, y X on voimassa x y tai y x (vertailtavuus). Tässä jaollisuuden avulla määritelty järjestysrelaatio on siis osittainen, mutta ei täydellinen järjestys joukossa Z. Kokonaislukujen tavallinen järjestysrelaatio määritellään seuraavasti: x y, jos on olemassa z N siten, että y = x + z. Tämä on täydellinen järjestys. Suurin yhteinen tekijä on siis jaollisuusjärjestyksen mielessä yhteisistä tekijöistä suurin Eukleideen algoritmi. Olkoot r 0, r 1 N, r 1 0. Kokonaislukujen jakoyhtälön nojalla on olemassa yksikäsitteiset luvut q 1 ja r 2 N siten, että r 0 = q 1 r 1 + r 2 ja 0 r 2 < r 1. Luku q 1 on lukujen r 0 ja r 1 kokonaislukuosamäärä ja r 2 (kokonaisluku-)jakojäännös. Merkitään rem(r 0, r 1 ) := r 2. Otetaan käyttöön seuraavat funktiot: Jokaiselle x R asetetaan (ks. [19, 1.2.4] tai [18, 3.1] 4 ) x := suurin kokonaisluku n siten, että n x (luvun x lattia); x := pienin kokonaisluku n siten, että n x (luvun x katto). Jakoyhtälön osamäärä ja jakojäännös voidaan nyt ilmaista q 1 = r 0 /r 1, kun r 1 0, ja r 2 = rem(r 0, r 1 ) = r 0 q 1 r 1 = r 0 r 1 r 0 /r 1. Kun jakoyhtälöä toistetaan vaihtamalla jaettavan paikalle jakaja ja valitsemalla uudeksi jakajaksi saatu jakojäännös, löydetään luvut l, q i, r i N, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja r 0 = q 1 r 1 + r 2, (0.1) r 1 = q 2 r 2 + r 3,. r l 2 = q l 1 r l 1 + r l, r l 1 = q l r l + 0. Väite 0.3. Eukleideen algoritmilla (0.1) saatu luku r l, eli viimeinen nollasta eroava jakojäännös, on lukujen r 0 ja r 1 suurin yhteinen tekijä, r l = syt(r 0, r 1 ). Suurin yhteinen tekijä voidaan myös karakterisoida seuraavasti: syt(r 0, r 1 ) on joukon {s r 0 +t r 1 s, t Z} pienin positiivinen luku. Erityisesti siis on olemassa s, t Z siten, että syt(r 0, r 1 ) = s r 0 + t r 1. (Tämä yhtälö tunnetaan Bézout n yhtälönä.) 2 Todistus. Tuloksen pitäisi olla tuttu Lukuteorian alkeet -kurssilta [LTA]. Esimerkki 0.4. Eukleideen algoritmi luvuille 126 ja 35: 126 = , 35 = , 21 = , 14 = Vanhemmassa kirjallisuudessa luvun x lattialle käytetään merkintää [x].
3 3 Kertoimet s ja t löydetään takaperin laskemalla : syt(126, 35) = 7 = , = 21 ( ), = ( ) (35 ( )), = Tämä menetelmä kertoimien määräämiseksi ei ole kuitenkaan kovin käyttökelpoinen tietokoneella laskettaessa, päinvastoin; Eukleideen algoritmista saatavat välivaiheet pitäisi tallettaa muistiin, jotta niitä voitaisiin käyttää kertoimien s ja t määräämiseen edellisen esimerkin mukaisesti. Kertoimet s ja t voidaan kuitenkin määrätä suoraan käyttämällä ns. laajennettua Eukleideen algoritmia Laajennettu Eukleideen algoritmi. Olkoot luvut l, q i ja r i kuten Eukleideen algoritmissa (0.1). Pyritään etsimään luvut s i ja t i siten, että s i r 0 + t i r 1 = r i kaikille 0 i l. Oletetaan aluksi, että tällaiset luvut ovat olemassa. Kun tätä oletusta sovelletaan indekseihin i 1, i ja i + 1, saadaan Eukleideen algoritmin avulla (0.2) r i+1 = r i 1 q i r i = (s i 1 r 0 + t i 1 r 1 ) q i (s i r 0 + t i r 1 ) = (s i 1 q i s i ) r 0 + (t i 1 q i t i ) r 1. Toisaalta r i+1 = s i+1 r 0 + t i+1 r 1. Valitaan kertoimet seuraavan palautuskaavan mukaisesti { si+1 = s i 1 q i s i, (0.3) t i+1 = t i 1 q i t i. Tällöin yhtälöstä (0.2) seuraa, että jos s k r 0 + t k r 1 = r k arvoilla k = i 1 ja k = i ja kertoimet s k ja t k on määrätty palautuskaavojen (0.3) avulla, niin yhtälö s k r 0 +t k r 1 = r k on voimassa myös, kun k = i + 1. Riittää siis löytää sopivat aloitusarvot. Tällaiset ovat s 0 = 1, t 0 = 0, s 1 = 0, t 1 = 1. Laajennetussa Eukleideen algoritmissa määrätään luvut l, q i, r i N, s i, t i Z, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja s 0 = 1, t 0 = 0 (0.4) s 1 = 0, t 1 = 1 r i 1 = q i r i + r i+1 s i 1 = q i s i + s i+1 t i 1 = q i t i + t i+1 Tällöin s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Lisätietoa laajennetusta Eukleideen algoritmista löytyy kirjoista [1, 3.2], [20, 4.5.2]. Esimerkki 0.5. Käydään läpi edellisen esimerkin lasku laajennetulla Eukleideen algoritmilla. Riveillä i = 0 ja i = l + 1 oleville suureille q i ei ole määritelty arvoa ja ne on merkitty viivalla:
4 4 i r i q i s i t i Riviltä i = 4 saadaan r l = syt(r 0, r 1 ) = s l r 0 + t l r 1, eli 7 = syt(126, 35) = Joissakin yksinkertaistetuissa esityksissä saatetaan sanoa, että kahden luvun suurin yhteinen tekijä määrätään jakamalla luvut alkutekijöihin ja poimimalla näistä yhteiset tekijät. Käytännössä näin voi menetellä kuitenkin vain (pienen) pienten lukujen kohdalla, koska suurille luvuille ei tunneta yhtään nopeaa tekijöihinjakomenetelmää. Eukleideen algoritmi on nopea. Seuraava lause kertoo kvantitatiivisesti, kuinka nopeasti suurin yhteinen tekijä voidaan löytää. Lause 0.6. Olkoot r 0, r 1 Z, 0 < r 1 < r 0, ja l Eukleideen algoritmin (0.1) rivien lukumäärä. Tällöin l log r 1 + 1, missä φ := log φ 2 Todistus. Voidaan olettaa, että r l = syt(r 0, r 1 ) = 1. Nimittäin, jos Eukleideen algoritmin (0.1) rivit kerrotaan puolittain positiivisella kokonaisluvulla c, nähdään että lukupariin (c r 0, c r 1 ) liittyvät Eukleideen algoritmin jakojäännökset ovat luvut c r i. Siis syt(c r 0, c r 1 ) = c syt(r 0, r 1 ) ja kummankin lukuparin, (c r 0, c r 1 ) ja (r 0, r 1 ), Eukleideen algoritmissa on täsmälleen yhtä monta riviä. Jos olisi r l > 1, voitaisiin lukuparin (r 0, r 1 ) suuurin yhteinen tekijä laskea lukuparin (r 0 /r l, r 1 /r l ) avulla niin, että Eukleideen algoritmin rivien lukumäärä ei muutu. Olkoon siis r l = 1. Osoitetaan induktiolla, että (0.5) r i φ l i, kun 0 i l. Tästä epäyhtälöstä saadaan erityisesti r 1 φ l 1, joten ottamalla puolittain logaritmit saadaan Väitetty epäyhtälö seuraa tästä. log r 1 (l 1) log φ. Epäyhtälön (0.5) todistus: Kun i = l, on r l = 1 = φ 0. Epäyhtälö (0.5) on siis voimassa ainakin, kun i = l. Ennenkuin jatketaan, todetaan että Eukleideen algoritmin (0.1) osamäärille q i on voimassa q i 1, kun 1 i l 1, ja q l 2. Nimittäin, Eukleideen algoritmin (0.1) nojalla r i 1 = q i r i + r i+1, ja koska r i+1 < r i < r i 1, on oltava q i 0. Jos olisi q l = 1, saataisiin Eukleideen algoritmin (0.1) viimeiseltä riviltä r l 1 = r l, mikä ei ole mahdollista. Siis q l 2. Koska 5 < 9, on φ < = 2, joten edellisen nojalla saadaan r l 1 = q l r l = q l 2 > φ. Olkoon nyt 0 k l 2, ja oletetaan, että väitetty epäyhtälö (0.5) on tosi kaikille indekseille i > k.
5 5 Koska q k+1 1, saadaan induktio-oletuksen nojalla r k = q k+1 r k+1 + r k+2 r k+1 + r k+2 ( φ l (k+1) + φ l (k+2) = φ l (k+1) ) = φ l k. φ Siis epäyhtälö (0.5) on tosi myös indeksille i = k. Huomautuksia 0.7. a) Voidaan osoittaa, että Eukleideen algoritmille (0.1) hitain tapaus, siis sellainen jossa tarvitaan eniten rivejä, on Fibonaccin luvuista F n saatava aloitus. Asetetaan F 0 := 0, F 1 := 1 ja F n := F n 1 + F n 2, kun n 2. Tällöin luvuille r 0 := F n+2 ja r 1 := F n+1 Eukleideen algoritmissa (0.1) on l = n riviä. Ks. [20, 4.5.3, Thm. F]. b) Eukleideen algoritmi kahden luvun suurimman yhteisen tekijän määrämiseksi on nopea, koska logaritmi kasvaa hyvin hitaasti. Esimerkiksi, jos r 1 = (=googol), Eukleideen algoritmissa tarvitaan enintään 479 riviä (eli jakoyhtälöä) Modulaariaritmetiikkaa. Olkoon n Z, n 2. Sanotaan, että luvut a Z ja b Z ja ovat kongruentteja keskenään modulo n, jos a b on jaollinen luvulla n; tällöin merkitään a b mod n. Luku n on kongruenssin moduli. 5 Lukujen kongruenssi on ekvivalenssirelaatio, t.s. kaikille kokonaisluvuille a, b, c on voimassa a) a a mod n (refleksiivisyys); b) jos a b mod n, niin b a mod n (symmetrisyys); c) jos a b mod n ja b c mod n, niin a c mod n (transitiivisuus). Ekvivalenssirelaation avulla tarkasteltavat alkiot jaetaan ekvivalenssiluokkiin. Kongruenssirelaation tapauksessa luvun a määräämä ekvivalenssiluokka on joukko [a] n := {b Z b a mod n}. Joukkoa [a] n kutsutaan (luvun a määräämäksi) jäännösluokaksi modulo n. Kaikkien jäännösluokkien modulo n joukkoa merkitään Z n tai Z/nZ. Koska b a mod n, jos ja vain jos b a = k n jollekin k Z, on [a] n = {..., a 2 n, a n, a, a + n, a + 2 n,...}. Ekvalenssirelaatioiden yleisten omaisuuksien nojalla luvuille a ja b on [a] n = [b] n, jos ja vain jos a b mod n. Kun jakoyhtälössä jakajaksi valitaan luku n, saadaan a = q n + r, missä q, r Z ja 0 r < n. Siis r = rem(a, n) ja a r mod n, joten [a] n = [r] n = [rem(a, n)] n. Jokaiselle jäännösluokalle [a] n löytyy siis yksi ja vain yksi edustaja r, jolle on voimassa 0 r < n. Kokonaislukujen kongruenssille on voimasssa seuraavat laskusäännöt: Olkoot a, a, b, b Z. Tällöin (i) jos a b mod n ja a b mod n, niin a + a b + b mod n; (ii) jos a b mod n ja a b mod n, niin a a b b mod n. Edellisen nojalla jäännösluokille voidaan määritellä yhteen- ja kertolasku asettamalla [a] n + [a ] n := [a + a ] n, [a] n [a ] n := [a a ] n. 5 Merkinnän a b mod n sijasta kirjallisuudesta saattaa löytää myös merkinnät a b (mod n) ja a b (n).
6 Näin määritellyille laskutoimituksille on voimasssa: (i) [a] n + [b] n = [b] n + [a] n (yhteenlaskun kommutatiivisuus) (ii) ([a] n + [b] n ) + [c] n = [a] n + ([b] n + [c] n ) (yhteenlaskun assosiatiivisuus) (iii) [a] n [b] n = [b] n [a] n (kertolaskun kommutatiivisuus) (iv) ([a] n [b] n ) [c] n = [a] n ([b] n [c] n ) (kertolaskun assosiatiivisuus) (v) ([a] n + [b] n ) [c] n = [a] n [c] n + [b] n [c] n (distribuutiivisuus) Lisäksi a) yhteenlaskulle on olemassa neutraalialkio (nolla-alkio) [0] n, jolle [a] n +[0] n = [a] n kaikille [a] n Z n ; b) yhteenlaskussa jokaisella [a] n Z n on vasta-alkio [ a] n, jolle [a] n + [ a] n = [0] n ; c) kertolaskulle on olemassa neutraalialkio (ykkösalkio) [1] n, jolle [a] n [1] n = [a] n kaikille [a] n Z n. Sen sijaan kertolaskussa kaikilla alkioilla [a] n Z n ei välttämättä ole käänteisalkiota [b] n, jolle olisi [a] n [b] n = [1] n. Esimerkiksi, jos n = 4 ja a = 2, on [2] 4 [0] 4 = [0] 4 [1] 4. [2] 4 [1] 4 = [2] 4 [1] 4. [2] 4 [2] 4 = [4] 4 = [0] 4 [1] 4 ja [2] 4 [3] 4 = [6] 4 [2] 4 [1] 4. Sanotaan, että alkio [a] n Z n on kääntyvä, jos on olemassa alkio [b] n Z n siten, että [a] n [b] n = [1] n. Jos tällainen alkio [b] n on olemassa, sitä sanotaan alkion [a] n käänteisalkioksi ja merkitään [a] 1 n. Sanotaan myös, että kokonaisluku a on kääntyvä modulo n, jos alkio [a] n Z n on kääntyvä, t.s. jos on olemassa kokonaisluku b siten, että a b 1 mod n. Laajennetun Eukleideen algoritmin avulla voidaan todistaa seuraava tärkeä Lause 0.8. Alkio [a] n Z n on kääntyvä, jos ja vain jos syt(a, n) = 1. Jos syt(a, n) = 1, alkion [a] n käänteisalkio löydetään laajennetun Eukleideen algoritmin avulla. Todistus. Oletetaan aluksi, että [a] n on kääntyvä. Tällöin on olemassa [b] n Z n siten, että [a] n [b] n = [1] n. Jäännösluokkien edustajille a ja b tämä tarkoittaa, että a b 1 mod n, joten a b = 1 + k n jollekin kokonaisluvulle k. Olkoon s := syt(a, n). Tällöin s a ja s n, joten s (a b k n). Siis s 1, joten s = 1. Oletetaan kääntäen, että syt(a, n) = 1. Sovelletaan laajennettua Eukleideen algoritmia lukuihin r 0 = n ja r 1 = a. Algoritmin avulla löydetään luvut l, r i N, s i, t i Z, 1 i l, siten, että s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Erityisesti on s l r 0 + t l r 1 = r l = syt(r 0, r 1 ), t.s. s l n + t l a = 1. Tästä seuraa, että t l a 1 mod n, joten alkio [t l ] n on alkion [a] n käänteisalkio. Huomautus 0.9. On samantekevää lasketaanko jäännösluokilla tai niiden edustajilla, kunhan jälkimmäisessä tapauksessa yhtäsuuruus korvataan kongruenttisuudella (tarpeen mukaan). Esimerkiksi [4] 7 [3] 7 = [4 3] 7 = [12] 7 = [5] 7 ja 4 3 = 12 5 mod 7 tarkoittavat molemmat samaa. Jälkimmäisessä ensimmäinen yhtäsuuruus 4 3 = 12 on yhtäsuuruus, mutta jälkimmäinen kohta ei ole 12 = 5. 6
2 j =
1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).
LisätiedotLukuteorian kertausta
Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +
LisätiedotR 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...
Lisätiedot1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Lisätiedoton Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
LisätiedotSalausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Lisätiedotja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
Lisätiedot3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotLiite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
LisätiedotLUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
Lisätiedot1 Tätä dokumenttia, Ketjumurtoluvuista.pdf, saa levittää vain yhdessä lähdekoodinsa
Sisältö Eukleideen algoritmi Jakoyhtälö positiivisille kokonaisluvuille 2 2 Eukleideen algoritmi 2 3 Laajennettu Eukleideen algoritmi 3 2 Ketjumurtoluvut 4 2 Irrationaalilukujen ketjumurtolukukehitelmä
LisätiedotTekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
Lisätiedot2. Eukleideen algoritmi
2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
LisätiedotTestaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
LisätiedotJäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan
Jäännösluokat LUKUTEORIA JA TODIS- TAMINEN, MAA Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan lukujoukkoja 3k k Z =, 6, 3, 0, 3, 6, 3k + k Z =,,,,, 7, 3k + k Z =,,,,, 8, Osoita,
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotSalausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus
Lisätiedotd Z + 17 Viimeksi muutettu
5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
Lisätiedot7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
LisätiedotValitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.
MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi
Lisätiedota ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
Lisätiedota b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
LisätiedotRationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedotrm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 2. Eukleideen algoritmi à 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastelemme annettujen
LisätiedotAlgebran perusteet. 44 ϕ(105) = (105). Näin ollen
Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman
LisätiedotMitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
LisätiedotLUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
LisätiedotLUKUTEORIAN ALKEET HELI TUOMINEN
LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 LUKUTEORIAA JA MUITA TYÖKALUJA SALAUKSEEN Lukujoukot Sekalaisia merkintöjä...
pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 LUKUTEORIAA JA MUITA TYÖKALUJA SALAUKSEEN 0-2 2 Merkintöjä 0-3 2.1 Lukujoukot................... 0-3 2.2 Sekalaisia merkintöjä.............. 0-4 2.3 Tärkeitä kaavoja................
Lisätiedot6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
Lisätiedot802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä
802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian
Lisätiedot802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotH = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedot802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
Lisätiedotk=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
LisätiedotJokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d.
Jakoyhtälö: Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) n = d*q + r Tässä q ja r ovat kokonaislukuja ja 0 r < d. n = d * q + r number divisor quotient residue numero
LisätiedotJohdatus p-adisiin lukuihin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
Lisätiedotkoska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
LisätiedotSuurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.)
Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.) LUKUTEORIA JA TODISTAMINEN, MAA11 Määritelmä, yhteinen tekijä ja suurin yhteinen tekijä: Annettujen lukujen a ja b yhteinen tekijä
LisätiedotModulaarisista laskutaulukoista
Modulaarisista laskutaulukoista Visa Latvala ja Pekka Smolander Matematiikan laitos, Joensuun yliopisto Johdanto Artikkelin tarkoituksena on tutustuttaa lukija modulaariseen yhteen- ja kertolaskuun. Nämä
LisätiedotPolynomien suurin yhteinen tekijä ja kongruenssi
Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................
LisätiedotLukualueet Matemaattiset tieteet Oulun yliopisto 2017
Lukualueet Matemaattiset tieteet Oulun yliopisto 2017 Sisältö 1 Johdanto 5 1.1 Joukko-opin kertausta...................... 6 1.2 Funktioiden kertausta....................... 7 1.3 Relaatioista............................
LisätiedotMatematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
LisätiedotALKULUVUISTA (mod 6)
Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
LisätiedotFermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma
Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut
LisätiedotLiite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
Lisätiedota 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.
Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a
LisätiedotShorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
LisätiedotRenkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit
Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen
Lisätiedot4. Eulerin ja Fermat'n lauseet
4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden
Lisätiedotj(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)
MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Lisätiedot6 Relaatiot. 6.1 Relaation määritelmä
6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.
LisätiedotAlgebra I. Kevät 2004 Pentti Haukkanen
Algebra I Kevät 2004 Pentti Haukkanen 1 Sisällys 1 Lukuteoriaa 4 1.1 Jaollisuus...... 4 1.2 Suurin yhteinen tekijä... 5 1.3 Jakoalgoritmi.... 6 1.4 Lineaarinen Diofantoksen yhtälö... 9 1.5 Alkuluvuista.....
LisätiedotEsimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
LisätiedotTeema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32
1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Lisätiedotn (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin
3. RSA Salausjärjestelmien käytön perusongelma oli pitkään seuraava: Kun Liisa ja Pentti haluavat vaihtaa salakirjoitettuja viestejä keskenään ja jos heidän käyttämänsä salausmenetelmä on symmetrinen,
Lisätiedot(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)
1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotNimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla
6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa
LisätiedotEsko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II
802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään
LisätiedotMatematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
Lisätiedot800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä
800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka
Lisätiedot1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
LisätiedotValitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
LisätiedotLukuteorian kurssi lukioon
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian
Lisätiedot2 ALGEBRA I. Sisällysluettelo
ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin
Lisätiedot