Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Koko: px
Aloita esitys sivulta:

Download "Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla"

Transkriptio

1 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa Pentille varmuuden siitä, että vain Liisa on voinut lähettää kyseisen viestin ElGamalin allekirjoitus. Tarkastellaan lyhyesti ElGamalin menetelmää digitaalista allekirjoitusta varten. Liisa valitsee satunnaisesti suuren alkuluvun p, kunnalla Z p jonkin primitiivisen alkion γ, satunnaisesti luvun a {0, 1,..., p 2} ja laskee A := γ a. Liisan julkisavain on pari (γ, A) ja salainen avain luku a. Kun Liisa haluaa allekirjoittaa viestin [x] p Z p, hän valitsee satunnaisesti luvun k {1,..., p 2}, jolle syt(k, p 1) = 1, laskee ϱ := γ k. Olkoon r Z luokan ϱ pienin ei-negatiivinen edustaja; siis r {1,..., p 1} ja [r] p = ϱ. Liisa määrää luvun s Z, jolle s k + a r x mod (p 1). Luku s on luku x a r kertaa luvun k käänteisalkio modulo p 1; ehdon syt(k, p 1) = 1 nojalla k on kääntyvä modulo p 1. Viestin x allekirjoitus on pari (r, s) Allekirjoituksen varmistaminen. Kun Pentti haluaa varmistaa Liisalta saadun viestin x allekirjoituksen (r, s) avulla, hän käyttää Liisan julkisavainta (γ, A) seuraaavasti: Ensinnäkin pitää olla 1 r p 1. Toisekseen pitää olla A r ϱ s = γ x. Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla γ k s = γ x a r (muista: primitiivisen alkion γ kertaluku on p 1), joten A r ϱ s = (γ a ) r (γ k ) s = γ a r γ k s = γ a r γ x a r = γ x. Todetaan vielä, että allekirjoitus (r, s), joka toteuttaa tarkistusehdon A r ϱ s = γ x, voidaan saada vain viestistä x ja Liisan salaisesta avaimesta a. Nimittäin, A r ϱ s = (γ a ) r (γ k ) s, missä k on alkion ϱ diskreetti γ-kantainen logaritmi. Siis A r ϱ s = γ a r+k s. Jos nyt tarkistusehto A r ϱ s = γ x toteutuu, on γ a r+k s = γ x. Koska γ on kunnan Z p primitiivinen alkio, seuraa tästä a r + k s x mod (p 1). Lukujen r ja s tulee siis toteuttaa juuri sama yhtälö, jonka avulla Liisa määräsi luvun s. Huomautus 6.1. Käytännössä allekirjoitusta ei määrätä varsinaisen viestin m avulla, vaan siitä ns. hash-funktion h avulla lasketusta suureesta x = h(m). Hashfunktio on kuvaus Σ Σ n, missä n on annettu positiivinen kokonaisluku ja Σ on käytetty aakkosto. Hash-funktio siis muuttaa mielivaltaisen pitkät viestit kiinteän pituisiksi viesteiksi. Tällainen kuvaus ei koskaan voi olla injektio. Hash-funktioon h liittyvä törmäys on pari (m, m ), jolle h(m) = h(m ). Digitaalisiin allekirjoituksiin käytettyjen hash-funktioiden toivotaan yleensä olevan törmäyksiä vastustavia (engl. 18 Viimeksi muutettu

2 collosion resistant). Tällä tarkoitetaan, että sellaisen parin (m, m ), jolle h(m) = h(m ), määräämisen pitäisi olla käytännöllisesti mahdotonta. Katso lisää [1, 10.1]. Edellä ElGamalin allekirjoitus on syytä lukea niin, että viesti x tarkoittaa varsinaisesta viestistä m laskettua hash-arvoa h(m) Allekirjoituksen toistaminen. Allekirjoitusta varten Liisa valitsee satunnaisesti luvun k {1,..., p 2} ja laskee allekirjoituksen (r, s) salaisen avaimensa a ja luvun k avulla. Liisan tulee valita uusi luku k jokaista allekirjoitusta varten, koska muuten Erkki pystyy saamaan selville Liisan salaisen avaimen a. Oletetaan, että Liisa on käyttänyt samaa lukua k kahden eri viestin [x 1 ] p, [x 2 ] p Z p, allekirjoittamiseen. Alkio ϱ = γ k on siis sama kumpaakin allekirjoitusta varten, joten myös luku r, jolle r {1,..., p 1} ja [r] p = ϱ, säilyy samana. Olkoot s 1, s 2 Z, joille Siis s 1 k + a r x 1 mod (p 1) ja s 2 k + a r x 2 mod (p 1). (s 1 s 2 ) k x 1 x 2 mod (p 1) Jos tässä s 1 s 2 on kääntyvä modulo p 1, saadaan luku k ratkaistuksi tästä yhtälöstä. Jos x 1 x 2 on kääntyvä, on myös s 1 s 2 kääntyvä, koska k on kääntyvä. Kun k saadaan selville, saadaan a ratkaistuksi yhtälöstä s 1 k + a r x 1 mod (p 1) ainakin, jos r on kääntyvä modulo p Allekirjoituksen väärentämisestä. ElGamalin allekirjoituksessa viestin allekirjoitus on lukupari (r, s). Itse viesti ei sisälly tähän allekirjoitukseen, joten se pitää välittää erikseen. Tässä tärkeätä on, että allekirjoitusta ei lasketa varsinaisesta viestistä m, vaan hash-funktion h avulla lasketusta suureesta x = h(m). Jos Liisa lähettää allekirjoitetun viestin muodossa ((m, x), (r, s)), ja viestin oikeellisuus tarkistettaisiin vain ehdolla A r ϱ s = γ x, olisi allekirjoitus väärennettävissä. Kun lisäksi tarkistetaan, että h(m) = x, ja h on törmäyksiä vastustavia, ei väärentäminen ole mahdollista. Osoitetaan, että Erkki pystyy konstruoimaan viestin x ja allekirjoituksen (r, s), joka läpäisee allekirjoituksen tarkistusehdon. Jotta Pentti uskoisi allekirjoituksen perusteella viestin x tulevan Liisalta, pitää allekirjoituksen ja viestin x toteuttaa ehto A r ϱ s = γ x, missä ϱ = [r] p. Erkki valitsee kokonaisluvut u ja v siten, että syt(v, p 1) = 1 ja määrää suureet ϱ = [r] p, s ja x, joille ϱ = γ u A v, s v r mod (p 1) ja x s u mod (p 1). Näin määrätyille suureille r ja s on A r ϱ s = A r (γ u A v ) s = A r γ u s A v s = A r γ x A r = γ x. Viestin x siis läpäisee allekirjoituksen tarkistusehdon.

3 Edeltä ei käy selville, miksi allekirjoituksen varmistamiseksi pitää myös tarkistaa, että 1 r p 1. Jos tätä ehtoa ei vaalita, voi Erkki käyttää olemassaolevan viestin x oikeata allekirjoitusta (r, s) väärentääkseen allekirjoituksen toiseen viestiin x. Oletetaan, että x on kääntyvä modulo p 1, ja että x x mod (p 1). Erkki määrää kokonaisluvut u ja s, joille x u x mod (p 1) eli [u] p 1 = [x ] p 1 [x] 1 p 1 ja s s u mod (p 1). Luvut p 1 ja p ovat keskenään jaottomat, joten kiinalaisen jäännöslauseen avulla Erkki pystyy määräämään luvun r, jolle r r u mod (p 1), r r mod p. Viestin x allekirjoitus on nyt (r, s ). Koska r r mod p, on ϱ := [r ] p = [r] p = ϱ. Allekirjoitus (r, s ) kelpaa Pentille, sillä A r (ϱ ) s = A r u ϱ s u = γ a u r+k s u = γ (a r+k s) u = γ x u = γ x. Osoitetaan, että nyt on kuitenkin r p, jos oletetaan, että r on valittu einegatiiviseksi. Koska (r, s) on oikein laadittu allekirjoitus, on luvulle r voimassa 1 r p 1. Oletuksista seuraa, että u 1 mod (p 1), joten r r u r mod (p 1). Ehdon r r mod p nojalla luku r poikkeaa luvusta r luvun p kokonaislukumonikerran verran. Ehdosta r r mod (p 1) seuraa, että r p Rabinin salain allekirjoitusmenetelmänä. Edellä esitetyn ElGamalin menetelmän lisäksi monia muita salausmenetelmiä voidaan käyttää digitaaliseen allekirjoittamiseen. Palautetaan mieleen Rabinin menetelmä. Liisa valitsee satunnaisesti kaksi keskenään erisuurta alkulukua p ja q, joille p 3 mod 4 ja q 3 mod 4. Liisa laskee tulon n := p q. Liisan julkisavain on luku n ja salainen avain pari (p, q). Allekirjoitettavien viestin joukko M on nyt kaikkien renkaan Z n neliöiden joukko eli M := {x 2 x Z n }. Muistettakoon, että kun luvun n tekijät p ja q tunnetaan, on alkioiden y M neliöjuurien laskeminen helppoa, muuten ei. Kun Liisa allekirjoittaa viestin m M, hän käyttää salaista avaintaan ja laskee alkion m neliöjuuren s, t.s. hän määrää alkion s Z n, jolle s 2 = m. Liisa lähettää Pentille allekirjoitettuna viestinä alkion s. Pentti varmistaa, että viesti on Liisalta laskemalla Liisan julkisavaimen n avulla alkion s 2 Z n ; muuta ei tarvita. 7. Autentikointi Useimmissa tietokoneiden käyttöjärjestelmissä käyttäjät tunnistetaan käyttäjätunnuksen ja salasanan avulla. Salasanat talletetaan usein salakirjoitettuna, ja tunnistautumistilanteessa käyttäjän antama salasana salakirjoitetaan ja salakirjoitettua muotoa verrataan järjestelmään talletettuun salasanaan. Vaihtoehtoisia tunnistusmenetelmiä on olemassa, ja niistä eräs typpi tunnetaan haaste-vaste -menetelmänä (engl. challenge response system). Kun tällaisessa Liisa 47

4 haluaa tunnistautua Pentille, Pentti esittää kysymyksen (haasteen), johon Liisa tulee vastata (antaa vaste). Liisa laskee vastauksen salaisen avaimensa avulla ja Pentti varmistaa vastauksen käyttäen vastaavaa julkista avainta. Tällaisesta esimerkkinä esitellään Fiatin ja Shamirin identifiointiprotokolla. Liisa valitsee satunnaisesti kaksi keskenään erisuurta alkulukua p ja q. Näistä laskettu tulo n := p q on julkinen suure. Seuraavaksi Liisa valitsee satunnaisesti luvun s {1, 2,..., n 1} ja määrää luvun v {0, 1,..., n 1}, jolle v s 2 mod n. 19 Liisan julkinen avain on pari (n, v). Luku s on yksi luvun v neliöjuurista modulo n. Koska neliöjuurien laskemista modulo n pidetään vaikeana (ellei luvun n tekijöitä tunneta), voi Pentti varmistua Liisan identiteetistä, jos Liisa pystyy jotenkin vakuuttamaan Pentin siitä, että hän tietää luvun v neliöjuuren modulo n. Tämä voidaan tehdä seuraavasti: (1) Liisa valitsee satunnaisesti luvun r {1, 2,..., n 1} ja määrää luvun x {0, 1,..., n 1}, jolle x r 2 mod n. Liisa lähettää luvun x Pentille. (2) Pentti valitsee satunnaisesti luvun e {0, 1} ja lähettää sen Liisalle. (3) Liisa määrää luvun y {0, 1,..., n 1}, jolle y r s e mod n, ja lähettää luvun y Pentille. (Siis y = r tai y r s mod n.) (4) Pentti tarkistaa, onko y 2 x v e mod n. Jos tämä ehto toteutuu, Pentti hyväksyy Liisan vastauksen; muuten vastaus hylätään. Pystyykö Erkki esiintymään Liisana, vaikka ei tietäisi Liisan salaista avainta s? Jos Erkki tietää luvut r ja r s, hän saa selville salaisen avaimen s, sillä s r s r 1 mod n. Erkki voi kuitenkin menetellä seuraavasti: Jos Erkki arvaa, että e = 0, hän valitsee luvun r satunnaisesti ja lähettää Pentille luvun x r 2 mod n. Pentti tarkistaa, että y x mod n, kuten pitääkin. Salaista avainta s ja sen neliötä v ei tässä tarvita lainkaan. Jos Erkki arvaa, että e = 1, hän valitsee luvun r satunnaisesti, lähettää Pentille ensin luvun x r 2 v 1 mod n, ja toisena luvun y r mod n. Pentti laskee y 2 r 2 mod n ja toisaalta x v r 2 v 1 v r 2 mod n. Salaista avainta s Erkki ei pysty käyttämään, mutta sen neliötä v kylläkin. Erkin pitäisi tässä tilanteessa kuitenkin arvata etukäteen, kumman luvun e Pentti tulee valitsemaan; Erkillä luvun x valinta riippuu siitä, kumpi arvo luvulla e tulee olemaan. Koska Pentin valinta on satunnainen, pitäisi Erkin onnistua siis vain todennäköisyydellä 1. Jos tätä kysy-vastaa -menetelmää toistettaisiin r kertaa, saisi Pentti 2 Erkin huijauksen selville todennäköisyydellä 1 ( 1 2 )r. Aivan suoraan tätä kysy-vastaa -menetelmää ei kuitenkaan voida toistaa. Miksi? Harjoituksiin jätetään tarkasteltavaksi yleisempi Feigen, Fiatin ja Shamirin identifiointiprotokolla, joka vastaa r-kertaa toistettua Fiatin ja Shamirin protokollaa. Fiatin ja Shamirin protokollaa vastaa salausmenetelmänä Rabinin salain: salaavuus perustuu neliöjuurten laskemisen vaikeuteen. Identifiointimenetelmät voivat kuitenkin käyttää muitakin salausmenetelmiä Luonnollista olisi vaatia, että syt(s, n) = 1, jolloin myös syt(v, n) = 1; muuten luvun n tekijät on helppo löytää. Sama pätee muihinkin väliltä {1,..., n 1} satunnaisesti valittuihin lukuihin.

5 8. Mistä kaikesta jään paitsi? 8.1. Satunnaisluvut. Monessa yhteydessä on käytetty ilmaisua valitsee satunnaisesti kokonaisluvun sen paremmin selvittämättä, miten tällainen satunnaisvalinta tehdään. Eräs yksinkertaisimmista menetelmistä on seuraava: Olkoot m, a ja b positiivisia kokonaislukuja. Jono (x j ) j=0 konstruoidaan seuraavasti: (1) valitaan x 0 {0, 1,..., m 1}; (2) kun j 1, valitaan x j {0, 1,..., m 1}, jolle x j (a x j 1 + b) mod m. Näin muodostetussa jonossa ei voi olla enempää kuin m keskenään erisuurta lukua x j. Sen sijaan on huomattavasti vaikeampi selvittää, millä ehdoilla jonossa on juuri m eri lukua. Ei ole kovin vaikea todeta, että tässä tällaisessa tilanteessa pitää olla ainakin syt(a, m) = 1. Tarkemmin ongelmaa on selvitetty kirjassa [7, 3.2]. Katso myös [2, 17.2] Alkulukutestaus. Kun luvun satunnaisvalinta ei ole itsestäänselvyys, hankalampi ongelma on, miten valitaan satunnaisesti alkuluku. Tyypillinen menetelmä voisi olla seuraavanlainen: Valitaan satunnaisesti kokonaisluku n. Testataan jollakin sopivalla menetelmällä, onko n alkuluku. Jos n ei ole alkuluku, siirrytään seuraavaan (parittomaan) lukuun ja testataan, onko se alkuluku. Tätä toistetaan, kunnes alkuluku löytyy. Tämän idean taustalla on ns. alkulukulause, jonka sanomasta voidaan heuristisesti lukuea, että annetun luvun x lähellä oleva luku on alkuluku todennäköisyydellä 1/ log n. Mutta miten testataan, onko annettu luku alkuluku? Yksinkertaisimmat menetelmät (esimerkiksi Eratosteneen seula) eivät ole riittäviä silloin, kun tarvitaan isoja alkulukuja. Fermat n pientä lausetta voi käyttää apuna, mutta ei sanomaan luku p on alkuluku, vaan sanomaan, että luku p ei ole alkuluku. Nimittäin, Fermat n pienen lauseen mukaanhan on: jos p on alkuluku ja a kokonaisluku, jolle syt(a, p) = 1, niin a p 1 1 mod p. Tätä voidaan käyttää niin, että jos p on alkulukukandidaatti, niin valitaan satunnaisesti luku a {2,..., n 1}, lasketaan a p 1 mod p (toistetulla neliöinnillä modulo p). Jos a p 1 1 mod p, niin Fermat n pienen lauseen nojalla p ei ole alkuluku. Jos taas a p 1 1 mod p, niin Fermat n pieni lause ei sano mitään. Särön Fermat n pieneen lauseeseen tuovat Carmichaelin luvut. Carmichaelin luvut ovat yhdistettyjä positiivisia kokonaislukuja n, joille on voimassa a n 1 1 mod n kaikille kokonaisluvuille a, joille syt(a, n) = 1. Särön tekee se, että tällaisia lukuja on olemassa (pienin on 561 = ), ja että tällaisia lukuja on äärettömän paljon. (Tämä todistettiin vasta 1994!). Alkutestaus on varsin tärkeä ja laaja lukuteorian osa-alue. Lukijaa kehotetaan perehtymään kirjallisuuteen, esimerkiksi [1, luku 6], [2, luku 18], [8, luku V] tai ylipäätään lukuteoriaan [5]. Alkutestauksen rinnalla kulkevat lukujen tekijöihinjakomenetelmät ([1, luku 8], [2, luku 19], [8, luku V], [8, luku VI, 4]) ja menetelmät, joilla lasketaan diskreettejä logaritmeja ([1, luku 9], [8, luku IV, 3]). 49

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin 3. RSA Salausjärjestelmien käytön perusongelma oli pitkään seuraava: Kun Liisa ja Pentti haluavat vaihtaa salakirjoitettuja viestejä keskenään ja jos heidän käyttämänsä salausmenetelmä on symmetrinen,

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Primitiiviset juuret: teoriaa ja sovelluksia

Primitiiviset juuret: teoriaa ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

Salakirjoitusmenetelmiä

Salakirjoitusmenetelmiä Salakirjoitusmenetelmiä LUKUTEORIA JA LOGIIKKA, MAA 11 Salakirjoitusten historia on tuhansia vuosia pitkä. On ollut tarve lähettää viestejä, joiden sisältö ei asianomaisen mielestä saanut tulla ulkopuolisten

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Tietoturva 811168P 5 op

Tietoturva 811168P 5 op 811168P 5 op 6. Oulun yliopisto Tietojenkäsittelytieteiden laitos Mitä se on? on viestin alkuperän luotettavaa todentamista; ja eheyden tarkastamista. Viestin eheydellä tarkoitetaan sitä, että se ei ole

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

RSA-salausmenetelmä LuK-tutkielma Tapani Sipola Op. nro Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2017

RSA-salausmenetelmä LuK-tutkielma Tapani Sipola Op. nro Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2017 RSA-salausmenetelmä LuK-tutkielma Tapani Sipola Op. nro. 1976269 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2017 Sisältö Johdanto 2 1 Salausmenetelmien yleisiä periaatteita 3 2 Määritelmiä ja

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

2 j =

2 j = 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

Kokonaisluvun kertaluvun sovelluksia

Kokonaisluvun kertaluvun sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Timo D. Talvitie Kokonaisluvun kertaluvun sovelluksia Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Enigmail-opas. Asennus. Avainten hallinta. Avainparin luominen

Enigmail-opas. Asennus. Avainten hallinta. Avainparin luominen Enigmail-opas Enigmail on Mozilla Thunderbird ja Mozilla Seamonkey -ohjelmille tehty liitännäinen GPG-salausohjelmiston käyttöä varten. Sitä käytetään etenkin Thunderbirdin kanssa sähköpostin salaamiseen

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

SALAUSMENETELMÄT. Osa 2. Etätehtävät

SALAUSMENETELMÄT. Osa 2. Etätehtävät SALAUSMENETELMÄT Osa 2 Etätehtävät A. Kysymyksiä, jotka perustuvat luentomateriaaliin 1. Määrittele, mitä tarkoitetaan tiedon eheydellä tieoturvan yhteydessä. 2. Määrittele, mitä tarkoittaa kiistämättömyys

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

Latinalaiset neliöt ja taikaneliöt

Latinalaiset neliöt ja taikaneliöt Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

RSA-salakirjoitus. Simo K. Kivelä, Apufunktioita

RSA-salakirjoitus. Simo K. Kivelä, Apufunktioita Simo K. Kivelä, 25.1.2005 RSA-salakirjoitus Ron Rivest, Adi Shamir ja Leonard Adleman esittivät vuonna 1978 salakirjoitusmenettelyn, jossa tietylle henkilölle osoitetut viestit voidaan salakirjoittaa hänen

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

Määritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki

Määritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki Alkuluvut LUKUTEORIA JA TODISTAMINEN, MAA11 Jokainen luku 0 on jaollinen ainakin itsellään, vastaluvullaan ja luvuilla ±1. Kun muita eri ole, niin kyseinen luku on alkuluku. Määritelmä, alkuluku/yhdistetty

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

RSA Julkisen avaimen salakirjoitusmenetelmä

RSA Julkisen avaimen salakirjoitusmenetelmä RSA Julkisen avaimen salakirjoitusmenetelmä Perusteet, algoritmit, hyökkäykset Matti K. Sinisalo, FL Alkuluvut Alkuluvuilla tarkoitetaan lukua 1 suurempia kokonaislukuja, jotka eivät ole tasan jaollisia

Lisätiedot

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla:

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: KERTAUSTEHTÄVIÄ Tietue Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: struct henkilotiedot char nimi [20]; int ika; char puh [10]; ; Edellä esitetty kuvaus määrittelee

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

diskreetin logaritmin laskemisen käytännössä mahdottomaksi. Olkoon γ kunnan F q primitiivinen alkio. Luku q ja alkio γ ovat julkisia suureita.

diskreetin logaritmin laskemisen käytännössä mahdottomaksi. Olkoon γ kunnan F q primitiivinen alkio. Luku q ja alkio γ ovat julkisia suureita. 6. Sovelluksia 6.1. Diffien ja Hellmanin avainten vaihto julkisavainsalauksessa. (Whitfield Diffie ja Martin E. Hellman (1976)) Oletetaan, että Liisa haluaa lähettää Pentille luottamuksellisen viestin.

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

SALAUSMENETELMÄT 801346A, 4 op

SALAUSMENETELMÄT 801346A, 4 op Luentorunko ja harjoitustehtävät SALAUSMENETELMÄT 801346A, 4 op Pohjautuu Leena Leinosen, Marko Rinta-ahon, Tapani Matala-ahon ja Keijo Väänäsen luentoihin Sisältö 1 Johdanto 2 2 Lukuteoriaa 4 2.1 Jakoyhtälö

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

IDENTITEETTIIN PERUSTUVISTA JULKISEN AVAIMEN KRYPTOSYSTEEMEISTÄ

IDENTITEETTIIN PERUSTUVISTA JULKISEN AVAIMEN KRYPTOSYSTEEMEISTÄ IDENTITEETTIIN PERUSTUVISTA JULKISEN AVAIMEN KRYPTOSYSTEEMEISTÄ Heikki Pernaa Pro gradu -tutkielma Helmikuu 2011 MATEMATIIKAN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan laitos PERNAA, HEIKKI:

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 4. Eulerin a Fermat'n lauseet à 4.1 Alkuluokka a Eulerin -funktio Yleensä olemme kiinnostuneita vain niistä äännösluokista

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Alkulukujen harmoninen sarja

Alkulukujen harmoninen sarja Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Luentorunko ja harjoitustehtävät. SALAUSMENETELMÄT (801346A) 4 op, 2 ov

Luentorunko ja harjoitustehtävät. SALAUSMENETELMÄT (801346A) 4 op, 2 ov Luentorunko ja harjoitustehtävät SALAUSMENETELMÄT (801346A) 4 op, 2 ov Keijo Väänänen I JOHDANTO Salakirjoitukset kurssilla tarkastelemme menetelmiä, jotka mahdollistavat tiedon siirtämisen tai tallentamisen

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jussi Tervaniemi Primitiiviset juuret Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Heinäkuu 2006 Sisältö Johdanto 3 1 Lukuteorian peruskäsitteitä

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Koostanut Juulia Lahdenperä ja Rami Luisto. Salakirjoituksia

Koostanut Juulia Lahdenperä ja Rami Luisto. Salakirjoituksia Salakirjoituksia Avainsanat: salakirjoitus, suoraan numeroiksi, Atblash, Caesar-salakirjoitus, ruudukkosalakirjoitus, julkisen avaimen salakirjoitus, RSA-salakirjoitus Luokkataso: 3.-5. luokka, 6.-9. luokka,

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot