2 j =

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "2 j ="

Transkriptio

1 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n). Lukuteorian esitykset eivät yleensä kiinnitä huomiota siihen, missä määrin tulokset ovat laskettavia tai puhtaasti teoreettisia. Esimerkiksi aritmetiikan peruslause (jokainen kokonaisluku voidaan esittää oleellisesti yksikäsitteisellä tavalla alkulukujen tulona) on puhtaasti teoreettinen tulos; suurille luvuille ei tunneta mitään tehokasta tapaa löytää k.o. luvun alkutekijöitä. Sen sijaan Eukleideen algoritmi on varsin nopea tapa määrätä kahden luvun suurin yhteinen tekijä. Jotta tämä ero ( laskettava puhtaasti teoreettinen) hieman valkenisi, selvitetään aluksi, miten tietokoneet käsittelevät lukuja; miten luvut esitetään ja miten niillä lasketaan. Tässä yhteydessä on hyvä huomata, että salausjärjestelmien kaipaamat luvut ovat suuria, tyypillisesti sadan usean sadan numeron mittaisia. Tietokoneella esitettävän tiedon perusyksikkö on bitti, jonka arvona voi olla nolla tai yksi (tai oikeammin, koska bitti kuvaa tietokoneen tilaa, arvon pitäisi olla off tai on ). Kun useampia bittejä asetetaan jonoon, on bitit tapana ryhmitellä kahdeksan bitin muodostamiksi tavuiksi. Tällaiset kahdeksan bitin jonot (b 7, b 6,..., b 1, b 0 ) voidaan tulkita luvuksi käyttämällä kaksikantaista lukujärjestelmää, (b 7, b 6,..., b 1, b 0 ) b b b b 0. Lukuna yhtä tavua vastaa siis luvut 0, 1, 2,..., = Luvuilla laskemiseen tietokoneet käyttävät yhtälailla lukujen esittämistä kaksikantaisina (yhteen- ja kertolaskutaulut ovat helppoja!). Tietokoneen prosessorit osaavat käsitellä usean tavun muodostamaa jonoa yhtenä lukuna. Esimerkiksi nykyaikaisten ns. 64-bittisten tietokoneiden suurin (etumerkitön) kokonaisluku on 63 2 j = Suuremmat kokonaisluvut esitetään taulukkoina (x n, x n 1,..., x 1, x 0 ), joissa jokaisessa taulukkopaikassa on 64-bittinen luku x j. Tällaisia taulukoituja suureita koneiden prosessorit eivät osaa suoraan käyttää, vaan niiden käsittely tapahtuu ohjelmallisesti, mikä tekee laskemisesta huomattavasti hitaampaa. Tarkastellaan seuraavaksi lukujen yhteen- ja kertolaskun toteuttamisen ideaa (vähennys- ja jakolaskusta ks. esim. [7]) Luvuilla laskemisesta. Olkoon b Z, b 2. Kokonaislukujen jakoyhtälöstä 3 seuraa, että jokainen ei-negatiivinen kokonaisluku x on esitettävissä muodossa x = x j b j, missä x j Z, 0 x j b 1. 1 Viimeksi muutettu Yhdellä tavulla voidaan siis esittää 256 erilaista merkkiä. Tietokoneen tekstin esityksessä käytetyt ns. ISO Latin -koodaukset perustuvat tähän ideaan. Uudempi Unicode-koodaus UTF-16 käyttää kahta tavua yhden merkin esittämiseen, jolloin on mahdollista esittää = eri merkkiä. 3 Kaikille x Z on olemassa yksikäsitteiset q Z ja r Z siten, että x = q b + r ja 0 r < b. 1

2 Jono (x n, x n 1,..., x 1, x 0 ) b on luvun x b-kantainen esitys. 4 Luvut x j on luvun (engl. number) x b-kantaisen esityksen numeroita (engl. digits). Vaikka tarkoitus on selvittää, miten luvuilla lasketaan 64-bittisellä tietokoneella eli kun b = 2 64, on esimerkkeinä aluksi hyvä miettiä tutun kymmenjärjestelmän ja kaksikantaisen järjestelmän lukuja. Kannattaa huomata, että tietokone osaa laskea vain numeroilla x j, ei itse summalla n x j b j. Summa n x j b j on nyt hyvä tulkita vain taulukoksi, missä kantaluvun b potenssi b j on taulukon j. paikkaan osoittava indeksi: n x j b j x n x n 1... x 1 x 0 2 Tarkastellaan kahden b-kantaisen luvun yhteenlaskua. Olkoot x = x j b j ja y = y j b j, missä x j, y j Z ja x j, y j {0,..., b 1}. Summalle on x + y = (x j + y j ) b j, mutta tässä voi olla x j + y j > b 1. Koska x j b 1 ja y j b 1, on kuitenkin x j + y j 2(b 1). Jos x j + y j > b 1, on luvulle z j := x j + y j b b 2. Siis (x j + y j ) b j = z j b j + b j+1. Tämä yhtälö merkitsee, että summan x + y j + 1. numeroon tulee summan x j+1 + y j+1 lisäksi muistinumero, jos x j + y j > b 1. Muistinumero ei kuitenkaan vaikuta merkitsevämpiin numeroihin x k + y k, k > j + 1, koska x j+1 + y j+1 b + 1 b 1. Tämä antaa seuraavan algoritmin summan laskemiseen (1) Asetetaan muistinumeroksi m 0 := 0. (2) Kun j = 0, 1,..., n, asetetaan (a) jos x j + y j + m j b 1, olkoon z j := x j + y j + m j ja m j+1 := 0, (b) muuten z j := x j + y j b + m j ja m j+1 := 1. (3) Lopuksi z n+1 := m n+1. (4) Palautetaan n+1 z j b j. Tarkastellaan kahden b-kantaisen luvun kertolaskua. Olkoot x = x j b j ja y = y k b k, missä x j, y j Z ja x j, y j {0,..., b 1}. Tulo x voidaan laskea summana x y = x y k b k, missä x y k b k = x j y k b j+k. k=0 4 b = 10: desimaalinen; b = 2: binäärinen; b = 8: oktaalinen; b = 16: heksadesimaalinen; b = 60: heksagesimaalinen. Heksadesimaaliluvut x 0 {10,..., 15} esitetään yleensä kirjaimin A,..., F. Usein b kantaisen luvun numeroita x j kutsutaan merkeiksi ja merkinnän (x n, x n 1,..., x 1, x 0 ) b sijasta käytetään tiiviimpää (x n x n 1... x 1 x 0 ) b tai vain x n x n 1... x 1 x 0. k=0

3 Nämä kaavat voidaan lukea seuraavasti: vasemman kaavan mukaan tulo x y voidaan laskea yhteenlaskulla ja oikeanpuoleisen kaavan nojalla summassa esiintyvät tulot x y k b k ovat tulojen x j y k b j+k summia. Tulot x j y k b j+k puolestaan ovat b-kantaisen järjestelmän yksinumeroisten lukujen x j ja y k tuloja siirrettynä indeksin j + k osoittamaan paikkaan. Koska x j b 1 ja y k b 1, on x j y k (b 1) 2 = b (b 2) + 1, joten tulosta x j y k syntyvä muistinumero on suurimmillaan b 2, jolloin tulosta x j y k jää indeksin j + k osoittamaan paikkaan numero yksi Suurin yhteinen tekijä. Eukleideen algoritmi on kokonaislukujen jakoyhtälöä käyttävä menetelmä, jolla voidaan määrätä kahden kokonaisluvun a, b Z suurin yhteinen tekijä d = syt(a, b). 5 Kerrattakoon määritelmiä ja eräitä merkintöjä. Määritelmä 1.1. Olkoot a, b, c ja d Z. Sanotaan, että c jakaa luvun a, jos on olemassa k Z siten, että a = k c; tällöin merkitään c a. Luku c on lukujen a ja b yhteinen tekijä, jos c a ja c b. Luku d on lukujen a ja b suurin yhteinen tekijä, jos d on lukujen a ja b yhteinen tekijä ja lisäksi pätee: jos c a ja c b, niin c d. Huomautus 1.2. Lukujen jaollisuus on järjestysrelaatio positiivisten kokonaislukujen joukossa Z + (tai yhtä hyvin kaikkien kokonaislukujen joukossa Z). Kaikkia lukupareja ei jaollisuuden perusteella voi asettaa järjestykseen (esimerkiksi 4 6 ja 6 4), mutta jaollisille luvuille jaollisuusjärjestys vastaa lukujen tavallista suuruusjärjestystä: jos a Z + ja b Z + ovat jaollisia keskenään, on a b, jos ja vain a b. Muistettakoon, että järjestysrelaatio (tarkemmin osittainen järjestys) joukossa X on on binäärinen relaatio, jolle on voimassa (i) x x kaikille x X (refleksiivisyys) (ii) jos x y ja y x, niin x = y (antisymmetrisyys) (iii) jos x y ja y z, niin x z (transitiivisuus) Järjestys on täydellinen, jos jokaiselle parille x, y X on voimassa x y tai y x (vertailtavuus). Tässä jaollisuuden avulla määritelty järjestysrelaatio on siis osittainen, mutta ei täydellinen järjestys joukossa Z. Kokonaislukujen tavallinen järjestysrelaatio määritellään seuraavasti: x y, jos on olemassa z N siten, että y = x + z. 6 Tämä on täydellinen järjestys. Suurin yhteinen tekijä on siis jaollisuusjärjestyksen mielessä yhteisistä tekijöistä suurin Eukleideen algoritmi. Olkoot r 0, r 1 N, r 1 0. Kokonaislukujen jakoyhtälön nojalla on olemassa yksikäsitteiset luvut q 1 ja r 2 N siten, että r 0 = q 1 r 1 + r 2 ja 0 r 2 < r 1. Luku q 1 on lukujen r 0 ja r 1 kokonaislukuosamäärä ja r 2 (kokonaisluku-)jakojäännös. Merkitään rem(r 0, r 1 ) := r 2. 5 Suomen kielisessä matemaattisessa tekstissä suurimmalle yhteiselle tekijälle käytetään useimmiten suomen kielistä lyhennettä syt(a, b). Englanninkielisissä teksteissä käytetään gcd(a, b), greatest common divisor, saksankielisissä ggt(a, b), gröster gemeinsamer Teiler, ja ranskankielisissä pgcd(a, b), plus grand commun diviseur. Osa vanhempaa kirjallisuutta tyytyy lyhennettyyn merkintään (a, b), mikä pitää pitää erillään järjestystä parista ja lukusuoran avoimesta välistä. Lisäsekaannusta voi aiheuttaa, että kokonaislukujen a ja b virittämälle ideaalille {s a + t b s, t Z} käytetään myös merkintää (a, b). 6 N := {x Z x 0}, Z + := {x Z x > 0}. 3

4 Otetaan käyttöön seuraavat funktiot: Jokaiselle x R asetetaan (ks. [6, 1.2.4] tai [3, 3.1] 7 ) x := suurin kokonaisluku n siten, että n x (luvun x lattia); x := pienin kokonaisluku n siten, että n x (luvun x katto). Jakoyhtälön osamäärä ja jakojäännös voidaan nyt ilmaista q 1 = r 0 /r 1, kun r 1 0, ja r 2 = rem(r 0, r 1 ) = r 0 q 1 r 1 = r 0 r 1 r 0 /r 1. Kun jakoyhtälöä toistetaan vaihtamalla jaettavan paikalle jakaja ja valitsemalla uudeksi jakajaksi saatu jakojäännös, löydetään luvut l, q i, r i N, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja r 0 = q 1 r 1 + r 2, (1.1) r 1 = q 2 r 2 + r 3,. r l 2 = q l 1 r l 1 + r l, r l 1 = q l r l + 0. Väite 1.3. Eukleideen algoritmilla (1.1) saatu luku r l, eli viimeinen nollasta eroava jakojäännös, on lukujen r 0 ja r 1 suurin yhteinen tekijä, r l = syt(r 0, r 1 ). Suurin yhteinen tekijä voidaan myös karakterisoida seuraavasti: syt(r 0, r 1 ) on joukon {s r 0 +t r 1 s, t Z} pienin positiivinen luku. Erityisesti siis on olemassa s, t Z siten, että syt(r 0, r 1 ) = s r 0 + t r 1. (Tämä yhtälö tunnetaan Bézout n yhtälönä.) 4 Todistus. Tuloksen pitäisi olla tuttu Lukuteorian alkeet -kurssilta [15]. Esimerkki 1.4. Eukleideen algoritmi luvuille 126 ja 35: 126 = , 35 = , 21 = , 14 = 2 7. Kertoimet s ja t löydetään takaperin laskemalla : syt(126, 35) = 7 = , = 21 ( ), = ( ) (35 ( )), = Tämä menetelmä kertoimien määräämiseksi ei ole kuitenkaan kovin käyttökelpoinen tietokoneella laskettaessa, päinvastoin; Eukleideen algoritmista saatavat välivaiheet pitäisi tallettaa muistiin, jotta niitä voitaisiin käyttää kertoimien s ja t määräämiseen edellisen esimerkin mukaisesti. Kertoimet s ja t voidaan kuitenkin määrätä suoraan käyttämällä ns. laajennettua Eukleideen algoritmia. 7 Vanhemmassa kirjallisuudessa luvun x lattialle käytetään merkintää [x].

5 1.4. Laajennettu Eukleideen algoritmi. Olkoot luvut l, q i ja r i kuten Eukleideen algoritmissa (1.1). Pyritään etsimään luvut s i ja t i siten, että s i r 0 + t i r 1 = r i kaikille 0 i l. Oletetaan aluksi, että tällaiset luvut ovat olemassa. Kun tätä oletusta sovelletaan indekseihin i 1, i ja i + 1, saadaan Eukleideen algoritmin avulla (1.2) r i+1 = r i 1 q i r i = (s i 1 r 0 + t i 1 r 1 ) q i (s i r 0 + t i r 1 ) = (s i 1 q i s i ) r 0 + (t i 1 q i t i ) r 1. Toisaalta r i+1 = s i+1 r 0 + t i+1 r 1. Valitaan kertoimet seuraavan palautuskaavan mukaisesti { si+1 = s i 1 q i s i, (1.3) t i+1 = t i 1 q i t i. Tällöin yhtälöstä (1.2) seuraa, että jos s k r 0 + t k r 1 = r k arvoilla k = i 1 ja k = i ja kertoimet s k ja t k on määrätty palautuskaavojen (1.3) avulla, niin yhtälö s k r 0 +t k r 1 = r k on voimassa myös, kun k = i + 1. Riittää siis löytää sopivat aloitusarvot. Tällaiset ovat s 0 = 1, t 0 = 0, s 1 = 0, t 1 = 1. Laajennetussa Eukleideen algoritmissa määrätään luvut l, q i, r i N, s i, t i Z, 1 i l, siten, että 0 r i 1 < r i, kun 1 i l, ja s 0 = 1, t 0 = 0 (1.4) s 1 = 0, t 1 = 1 r i 1 = q i r i + r i+1 s i 1 = q i s i + s i+1 t i 1 = q i t i + t i+1 Tällöin s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Lisätietoa laajennetusta Eukleideen algoritmista löytyy kirjoista [2, 3.2], [7, 4.5.2]. Esimerkki 1.5. Käydään läpi edellisen esimerkin lasku laajennetulla Eukleideen algoritmilla. Riveillä i = 0 ja i = l + 1 oleville suureille q i ei ole määritelty arvoa ja ne on merkitty viivalla: i r i q i s i t i Riviltä i = 4 saadaan r l = syt(r 0, r 1 ) = s l r 0 + t l r 1, eli 7 = syt(126, 35) = Joissakin yksinkertaistetuissa esityksissä saatetaan sanoa, että kahden luvun suurin yhteinen tekijä määrätään jakamalla luvut alkutekijöihin ja poimimalla näistä yhteiset tekijät. Käytännössä näin voi menetellä kuitenkin vain (pienen) pienten lukujen kohdalla, koska suurille luvuille ei tunneta yhtään nopeaa tekijöihinjakomenetelmää. Eukleideen algoritmi on nopea. Seuraava lause kertoo kvantitatiivisesti, kuinka nopeasti suurin yhteinen tekijä voidaan löytää. 5

6 Lause 1.6. Olkoot r 0, r 1 Z, 0 < r 1 < r 0, ja l Eukleideen algoritmin (1.1) rivien lukumäärä. Tällöin l log r 1 + 1, missä φ := log φ 2 Todistus. Voidaan olettaa, että r l = syt(r 0, r 1 ) = 1. Nimittäin, jos Eukleideen algoritmin (1.1) rivit kerrotaan puolittain positiivisella kokonaisluvulla c, nähdään että lukupariin (c r 0, c r 1 ) liittyvät Eukleideen algoritmin jakojäännökset ovat luvut c r i. Siis syt(c r 0, c r 1 ) = c syt(r 0, r 1 ) ja kummankin lukuparin, (c r 0, c r 1 ) ja (r 0, r 1 ), Eukleideen algoritmissa on täsmälleen yhtä monta riviä. Jos olisi r l > 1, voitaisiin lukuparin (r 0, r 1 ) suuurin yhteinen tekijä laskea lukuparin (r 0 /r l, r 1 /r l ) avulla niin, että Eukleideen algoritmin rivien lukumäärä ei muutu. Olkoon siis r l = 1. Osoitetaan induktiolla, että (1.5) r i φ l i, kun 0 i l. Tästä epäyhtälöstä saadaan erityisesti r 1 φ l 1, joten ottamalla puolittain logaritmit saadaan Väitetty epäyhtälö seuraa tästä. log r 1 (l 1) log φ. Epäyhtälön (1.5) todistus: Kun i = l, on r l = 1 = φ 0. Epäyhtälö (1.5) on siis voimassa ainakin, kun i = l. Ennenkuin jatketaan, todetaan että Eukleideen algoritmin (1.1) osamäärille q i on voimassa q i 1, kun 1 i l 1, ja q l 2. Nimittäin, Eukleideen algoritmin (1.1) nojalla r i 1 = q i r i + r i+1, ja koska r i+1 < r i < r i 1, on oltava q i 0. Jos olisi q l = 1, saataisiin Eukleideen algoritmin (1.1) viimeiseltä riviltä r l 1 = r l, mikä ei ole mahdollista. Siis q l 2. Koska 5 < 9, on φ < = 2, joten edellisen nojalla saadaan r l 1 = q l r l = q l 2 > φ. Olkoon nyt 0 k l 2, ja oletetaan, että väitetty epäyhtälö (1.5) on tosi kaikille indekseille i > k. Koska q k+1 1, saadaan induktio-oletuksen nojalla r k = q k+1 r k+1 + r k+2 r k+1 + r k+2 ( φ l (k+1) + φ l (k+2) = φ l (k+1) ) = φ l k. φ Siis epäyhtälö (1.5) on tosi myös indeksille i = k. Huomautuksia 1.7. a) Voidaan osoittaa, että Eukleideen algoritmille (1.1) hitain tapaus, siis sellainen jossa tarvitaan eniten rivejä, on Fibonaccin luvuista F n saatava aloitus. Asetetaan F 0 := 0, F 1 := 1 ja F n := F n 1 + F n 2, kun n 2. Tällöin luvuille r 0 := F n+2 ja r 1 := F n+1 Eukleideen algoritmissa (1.1) on l = n riviä. Ks. [7, 4.5.3, Thm. F]. b) Eukleideen algoritmi kahden luvun suurimman yhteisen tekijän määrämiseksi on nopea, koska logaritmi kasvaa hyvin hitaasti. Esimerkiksi, jos r 1 = (=googol), Eukleideen algoritmissa tarvitaan enintään 479 riviä (eli jakoyhtälöä). 6

7 1.5. Modulaariaritmetiikkaa. Olkoon n Z, n 2. Sanotaan, että luvut a Z ja b Z ja ovat kongruentteja keskenään modulo n, jos a b on jaollinen luvulla n; tällöin merkitään a b mod n. Luku n on kongruenssin moduli. 8 Lukujen kongruenssi on ekvivalenssirelaatio, t.s. kaikille kokonaisluvuille a, b, c on voimassa a) a a mod n (refleksiivisyys); b) jos a b mod n, niin b a mod n (symmetrisyys); c) jos a b mod n ja b c mod n, niin a c mod n (transitiivisuus). Ekvivalenssirelaation avulla tarkasteltavat alkiot jaetaan ekvivalenssiluokkiin. Kongruenssirelaation tapauksessa luvun a määräämä ekvivalenssiluokka on joukko [a] n := {b Z b a mod n}. Joukkoa [a] n kutsutaan (luvun a määräämäksi) jäännösluokaksi modulo n. Kaikkien jäännösluokkien modulo n joukkoa merkitään Z n tai Z/nZ. Koska b a mod n, jos ja vain jos b a = k n jollekin k Z, on [a] n = {..., a 2 n, a n, a, a + n, a + 2 n,...}. Ekvalenssirelaatioiden yleisten omaisuuksien nojalla luvuille a ja b on [a] n = [b] n, jos ja vain jos a b mod n. Kun jakoyhtälössä jakajaksi valitaan luku n, saadaan a = q n + r, missä q, r Z ja 0 r < n. Siis r = rem(a, n) ja a r mod n, joten [a] n = [r] n = [rem(a, n)] n. Jokaiselle jäännösluokalle [a] n löytyy siis yksi ja vain yksi edustaja r, jolle on voimassa 0 r < n. Kokonaislukujen kongruenssille on voimasssa seuraavat laskusäännöt: Olkoot a, a, b, b Z. Tällöin (i) jos a b mod n ja a b mod n, niin a + a b + b mod n; (ii) jos a b mod n ja a b mod n, niin a a b b mod n. Edellisen nojalla jäännösluokille voidaan määritellä yhteen- ja kertolasku asettamalla [a] n + [a ] n := [a + a ] n, [a] n [a ] n := [a a ] n. Näin määritellyille laskutoimituksille on voimasssa: (i) [a] n + [b] n = [b] n + [a] n (yhteenlaskun kommutatiivisuus) (ii) ([a] n + [b] n ) + [c] n = [a] n + ([b] n + [c] n ) (yhteenlaskun assosiatiivisuus) (iii) [a] n [b] n = [b] n [a] n (kertolaskun kommutatiivisuus) (iv) ([a] n [b] n ) [c] n = [a] n ([b] n [c] n ) (kertolaskun assosiatiivisuus) (v) ([a] n + [b] n ) [c] n = [a] n [c] n + [b] n [c] n (distribuutiivisuus) Lisäksi a) yhteenlaskulle on olemassa neutraalialkio (nolla-alkio) [0] n, jolle [a] n +[0] n = [a] n kaikille [a] n Z n ; b) yhteenlaskussa jokaisella [a] n Z n on vasta-alkio [ a] n, jolle [a] n + [ a] n = [0] n ; c) kertolaskulle on olemassa neutraalialkio (ykkösalkio) [1] n, jolle [a] n [1] n = [a] n kaikille [a] n Z n. 8 Merkinnän a b mod n sijasta kirjallisuudesta saattaa löytää myös merkinnät a b (mod n) ja a b (n). 7

8 Sen sijaan kertolaskussa kaikilla alkioilla [a] n Z n ei välttämättä ole käänteisalkiota [b] n, jolle olisi [a] n [b] n = [1] n. Esimerkiksi, jos n = 4 ja a = 2, on [2] 4 [0] 4 = [0] 4 [1] 4. [2] 4 [1] 4 = [2] 4 [1] 4. [2] 4 [2] 4 = [4] 4 = [0] 4 [1] 4 ja [2] 4 [3] 4 = [6] 4 [2] 4 [1] 4. Sanotaan, että alkio [a] n Z n on kääntyvä, jos on olemassa alkio [b] n Z n siten, että [a] n [b] n = [1] n. Jos tällainen alkio [b] n on olemassa, sitä sanotaan alkion [a] n käänteisalkioksi ja merkitään [a] 1 n. Sanotaan myös, että kokonaisluku a on kääntyvä modulo n, jos alkio [a] n Z n on kääntyvä, t.s. jos on olemassa kokonaisluku b siten, että a b 1 mod n. Laajennetun Eukleideen algoritmin avulla voidaan todistaa seuraava tärkeä Lause 1.8. Alkio [a] n Z n on kääntyvä, jos ja vain jos syt(a, n) = 1. Jos syt(a, n) = 1, alkion [a] n käänteisalkio löydetään laajennetun Eukleideen algoritmin avulla. Todistus. Oletetaan aluksi, että [a] n on kääntyvä. Tällöin on olemassa [b] n Z n siten, että [a] n [b] n = [1] n. Jäännösluokkien edustajille a ja b tämä tarkoittaa, että a b 1 mod n, joten a b = 1 + k n jollekin kokonaisluvulle k. Olkoon s := syt(a, n). Tällöin s a ja s n, joten s (a b k n). Siis s 1, joten s = 1. Oletetaan kääntäen, että syt(a, n) = 1. Sovelletaan laajennettua Eukleideen algoritmia lukuihin r 0 = n ja r 1 = a. Algoritmin avulla löydetään luvut l, r i N, s i, t i Z, 1 i l, siten, että s i r 0 + t i r 1 = r i kaikille 0 i l ja r l = syt(r 0, r 1 ). Erityisesti on s l r 0 + t l r 1 = r l = syt(r 0, r 1 ), t.s. s l n + t l a = 1. Tästä seuraa, että t l a 1 mod n, joten alkio [t l ] n on alkion [a] n käänteisalkio. 8

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä

Lisätiedot

1 Tätä dokumenttia, Ketjumurtoluvuista.pdf, saa levittää vain yhdessä lähdekoodinsa

1 Tätä dokumenttia, Ketjumurtoluvuista.pdf, saa levittää vain yhdessä lähdekoodinsa Sisältö Eukleideen algoritmi Jakoyhtälö positiivisille kokonaisluvuille 2 2 Eukleideen algoritmi 2 3 Laajennettu Eukleideen algoritmi 3 2 Ketjumurtoluvut 4 2 Irrationaalilukujen ketjumurtolukukehitelmä

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

2. Eukleideen algoritmi

2. Eukleideen algoritmi 2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d.

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d. Jakoyhtälö: Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) n = d*q + r Tässä q ja r ovat kokonaislukuja ja 0 r < d. n = d * q + r number divisor quotient residue numero

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus

Lisätiedot

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 2. Eukleideen algoritmi à 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastelemme annettujen

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

Lukualueet Matemaattiset tieteet Oulun yliopisto 2017

Lukualueet Matemaattiset tieteet Oulun yliopisto 2017 Lukualueet Matemaattiset tieteet Oulun yliopisto 2017 Sisältö 1 Johdanto 5 1.1 Joukko-opin kertausta...................... 6 1.2 Funktioiden kertausta....................... 7 1.3 Relaatioista............................

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,

Lisätiedot

4. Eulerin ja Fermat'n lauseet

4. Eulerin ja Fermat'n lauseet 4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Lukuteorian kurssi lukioon

Lukuteorian kurssi lukioon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

LUKUTEORIAN ALKEET KL 2007

LUKUTEORIAN ALKEET KL 2007 LUKUTEORIAN ALKEET KL 2007 HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 5 2.1. Jaollisuus 6 2.2. Suurin

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 LUKUTEORIAA JA MUITA TYÖKALUJA SALAUKSEEN Lukujoukot Sekalaisia merkintöjä...

pdfmark=/pages, Raw=/Rotate 90 1 LUKUTEORIAA JA MUITA TYÖKALUJA SALAUKSEEN Lukujoukot Sekalaisia merkintöjä... pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 LUKUTEORIAA JA MUITA TYÖKALUJA SALAUKSEEN 0-2 2 Merkintöjä 0-3 2.1 Lukujoukot................... 0-3 2.2 Sekalaisia merkintöjä.............. 0-4 2.3 Tärkeitä kaavoja................

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

ALKULUVUISTA (mod 6)

ALKULUVUISTA (mod 6) Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin

n (n 1) avainten vaihtoa. Miljoonalle käyttäjälle avainten vaihtoja tarvittaisiin 3. RSA Salausjärjestelmien käytön perusongelma oli pitkään seuraava: Kun Liisa ja Pentti haluavat vaihtaa salakirjoitettuja viestejä keskenään ja jos heidän käyttämänsä salausmenetelmä on symmetrinen,

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Koulumatematiikan perusteet P

Koulumatematiikan perusteet P Koulumatematiikan perusteet 800104P Matemaattisten tieteiden laitos Oulun yliopisto 2009 Ihmisen henkistä toimintaa ei voi sanoa taiteeksi ellei se perustu matemaattiseen ajatteluun ja todistukseen - Leonardo

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Algebra I. Kevät 2004 Pentti Haukkanen

Algebra I. Kevät 2004 Pentti Haukkanen Algebra I Kevät 2004 Pentti Haukkanen 1 Sisällys 1 Lukuteoriaa 4 1.1 Jaollisuus...... 4 1.2 Suurin yhteinen tekijä... 5 1.3 Jakoalgoritmi.... 6 1.4 Lineaarinen Diofantoksen yhtälö... 9 1.5 Alkuluvuista.....

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Johdatus p-adisiin lukuihin

Johdatus p-adisiin lukuihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö 1 Sisällöstä Lukuteorian kurssi on ensisijaisesti tarkoitettu opettajalinjan maisterikurssiksi. Tämä näkyy mm. siten, että perinteisesti lukuteoriaan kuuluvan materiaalin lisäksi kurssi sisältää jonkin

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

LUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut

LUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut LUKUTEORIAN ALKEET Alkusanat Tässä on Heli Tuomisen luentomonisteeseen perustuvat muistiinpanot kevään 2013 Lukuteorian alkeet -kurssista. Kurssi on suunnattu erityisesti aineenopettajiksi opiskeleville

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot