811120P Diskreetit rakenteet

Koko: px
Aloita esitys sivulta:

Download "811120P Diskreetit rakenteet"

Transkriptio

1 811120P Diskreetit rakenteet Alkeislukuteoria

2 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut IN + = {1,2,3,... } Kokonaisluvut Z = {...,-3,-2,-1,0,1,2,3,...} Jaollisuuden perusominaisuus: Olkoot a, b Z, a 0. Tällöin b voidaan esittää yksikäsitteisesti muodossa b = q a + r missä q Z ja r {0,1,2,, a -1} P Diskreetit rakenteet, Alkeislukuteoria 2

3 6.1 Jaollisuus (2) Edellisessä diassa a on jakaja, b on jaettava ja r on jakojäännös. Merkitään r = b mod a ja q = b div a Esimerkki. Olkoon jaettava b=121 ja jakaja a=19. Silloin 121 = , joten 121 mod 19 = 7 ja 121 div 19 = 6 Jos b mod a = 0 (jakojäännös on siis 0), luku a jakaa luvun b, jolloin merkitään a b. Silloin q = b div a = b/a. Tällöin sanotaan myös että b on a:n monikerta ja että a on b:n tekijä Esimerkki. 143 = 11 13, joten ja 143 mod 11 = div 11 = 143/11 = P Diskreetit rakenteet, Alkeislukuteoria 3

4 6.1 Jaollisuus (3) Olkoot a, b ja c kokonaislukuja, a 0. Seuraavat ominaisuudet ovat aina voimassa: a 0, 1 b ja a a Jos a b ja a c, niin a (b + c) sekä a (b - c) Jos a b ja b c, niin a c (transitiivisuus) Jos a b, niin (-a) b Jos a b ja b a, niin a = b tai a = b (jos tarkastellaan vain positiivisia kokonaislukuja, niin antisymmetria) Huom! Ylläolevista ominaisuuksista seuraa, että relaatio a b on osittainen järjestys positiivisten kokonaislukujen joukossa P Diskreetit rakenteet, Alkeislukuteoria 4

5 6.2 Alkuluvut Kokonaisluku p>1 on alkuluku, jos sen ainoat tekijät ovat 1 ja p Pienimpiä alkulukuja: 2,3,5,7,11,13,17,19,23,29,31, Kokonaisluku k>1 on yhdistetty luku, jos se ei ole alkuluku Alkulukujen merkitys: Jokainen ykköstä suurempi luonnollinen luku voidaan esittää alkulukujen tulona Luvun alkulukuesitys Aritmetiikan peruslause takaa, että järjestystä lukuunottamatta alkulukuesitys on yksikäsitteinen P Diskreetit rakenteet, Alkeislukuteoria 5

6 6.2 Alkuluvut (2) Aritmetiikan peruslauseesta seuraa, että jokainen ykköstä suurempi kokonaisluku k voidaan esittää yksikäsitteisesti muodossa k = p 1 a1 p 2 a2 p r ar, missä p 1 < p 2 < < p r ovat alkulukuja Esimerkki = = P Diskreetit rakenteet, Alkeislukuteoria 6

7 6.3 Eukleideen algoritmi Lukujen suurimman yhteisen tekijän etsiminen usein tarpeen kokonaislukulaskennassa Olkoot a ja b kokonaislukuja joista ainakin toinen ei ole nolla. Lukujen a ja b suurin yhteinen tekijä, syt(a,b) on suurin positiivinen kokonaisluku, joka on sekä a:n että b:n tekijä Esimerkki. a=90 ja b=78. Silloin syt(a,b) = 6 Lukujen syt voidaan hakea jakamalla luvut alkutekijöihinsä, mutta tämä on hidasta, koska nopeaa tekijöihinjakoalgoritmia ei tunneta Eukleideen algoritmi on nopea tapa löytää syt P Diskreetit rakenteet, Alkeislukuteoria 7

8 6.3 Eukleideen algoritmi (2) Eukleideen algoritmi perustuu seuraavaan tosiasiaan: Jos a,b ja k ovat kokonaislukuja, niin lukujen a ja b yhteisten tekijöiden joukko on sama kuin lukujen b ja a-k b yhteisten tekijöiden joukko Em. seuraa, että syt(a,b) = syt(b,a-k b) -> tutkittavaa lukuparia voidaan pienentää, kunnes päästään triviaaliin tapaukseen Esim. Käytetään arvoa k=1: syt(30,18) = syt(18,30-18) = syt(18,12) = syt(12,18-12) = syt(12,6) = syt(6,6) = syt(6,0) = P Diskreetit rakenteet, Alkeislukuteoria 8

9 6.3 Eukleideen algoritmi (3) x P(x) x P(x) Algoritmia voi tehostaa käyttämällä jaollisuuden perusominaisuutta: Olkoot a,b IN + ja a b > 0. Jos b a, niin syt(a,b) = b. Olet., että (b a) Jakoalgoritmi yksikäs. q 0 q 1,..., q k+1, r 0, r 1,..., r k IN +, joille (1) a = q 0 b + r 0 0 < r 0 < b (2) b = q 1 r 0 + r 1 0 < r 1 < r 0 (3) r 0 = q 2 r 1 + r 2 0 < r 2 < r 1... (k+1) r k-2 = q k r k-1 + r k 0 < r k < r k-1 (k+2) r k-1 = q k+1 r k Tällöin syt(a,b) = r k P Diskreetit rakenteet, Alkeislukuteoria 9

10 6.3 Eukleideen algoritmi. Versio I Alkuperäinen versio, k=1 Syöte: Luonnolliset luvut a ja b Tulostus: Palauttaa syt(a,b):n EUKLEIDES_I(a,b) 1. while (b!=0) do 2. if (a < b) then 3. vaihda a ja b 4. temp = a-b 5. a = b 6. b = temp 7. return a P Diskreetit rakenteet, Alkeislukuteoria 10

11 6.3 Eukleideen algoritmi. Versio II Syöte: Luonnolliset luvut a ja b Tulostus: Palauttaa syt(a,b):n EUKLEIDES_II(a,b) 1. while (b!=0) do 2. temp = b 3. b = a mod b 4. a = temp 5. return a Tehtävä 1. Kirjoita Eukleideen algoritmista rekursiivinen versio Tehtävä 2. Laske Eukleideen algoritmilla syt(264,90). Vastaus: P Diskreetit rakenteet, Alkeislukuteoria 11

12 6.4 Pienin yhteinen jaettava Positiivisten kokonaislukujen a ja b pienin yhteinen jaettava pyj(a,b) on pienin positiivinen kokonaisluku, jolla on tekijänä sekä a että b Esim. pyj(60,33) = 660 Saadaan helposti syt:n avulla: pyj(a,b) = a b/syt(a,b) Tarvitaan esimerkiksi murtolukujen yhteenlaskussa kun lavennetaan samannimisiksi P Diskreetit rakenteet, Alkeislukuteoria 12

13 6.5 Yleistetty Eukleideen algoritmi Laskettaessa Eukeleideen algoritmilla lukujen a ja b sytiä kuten diassa 9, voidaan kääntää prosessi ja esittää syt muodossa syt(a,b) = -q k r k-1 + r k-2 = q k (-q k-1 r k-2 + r k-3 ) + r k-2 = (1- q k q k-1 )r k-2 + q k r k-3 jne Lopulta saadaan syt(a,b) = x a + y b, missä x,y Z Esimerkki. syt(90,78) = 6 ja 6 = Tehtävä. Laske syt(69,55) ja esitä se muodossa x 69 + y P Diskreetit rakenteet, Alkeislukuteoria 13

14 6.6 Yhtälön x a + y b = m kokonaislukuratkaisut Olkoot a ja b kokonaislukuja, ainakin toinen 0 Tarkastellaan joukkoa S = {a x +b y IN + x, y Z } Koska syt(a,b) a ja syt(a,b) b, niin syt(a,b) on jokaisen joukon S luvun tekijä Yleistetty Eukleideen algoritmi -> syt(a,b) S Siten syt(a,b) on joukon S pienin luku Olkoon vielä m Z. Yhtälöllä x a + y b = m on kokonaislukuratkaisu (x,y) jos ja vain jos syt(a,b) m Tällöin ratkaisuja ääretön määrä Tehtävä. Etsi ratkaisut yhtälöille 15x+21y=4 ja 15x+31y= P Diskreetit rakenteet, Alkeislukuteoria 14

15 6.7 Laskemisesta jäännösluokilla Olkoon m IN +. Jos a ja b kokonaislukuja, joille m (a-b) niin sanotaan, että a ja b ovat kongruentteja modulo m ja merkitään a b(mod m) Helposti huomataan, että kongruenssi modulo m on joukon Z ekvivalenssirelaatio Edelleen a b(mod m) jos ja vain jos a mod m = b mod m -> Luvun k ekvivalenssiluokka E m (k) = {m n + k n Z} Kaikki luokat k=0,1,,m P Diskreetit rakenteet, Alkeislukuteoria 15

16 6.7 Laskemisesta jäännösluokilla (2) Seuraavat ominaisuudet takaavat, että jäännösluokilla voidaan laskea. Olkoot a, b, c, d Z ja m IN + Jos a b (mod m) ja c d (mod m), niin a + c b + d (mod m) Jos a b (mod m) ja c d (mod m), niin a c b d (mod m) Jos a b (mod m) ja c d (mod m), niin a c b d (mod m) Lisäksi pätee: Jos a c b c (mod m) niin a b (mod [m / syt(m,c)] ) P Diskreetit rakenteet, Alkeislukuteoria 16

17 6.7 Laskemisesta jäännösluokilla (3) x P(x) x P(x) Esimerkki. Yhteenlasku modulo 10: P Diskreetit rakenteet, Alkeislukuteoria 17

18 6.7 Laskemisesta jäännösluokilla (4) x P(x) x P(x) Esimerkki. Kertolasku modulo P Diskreetit rakenteet, Alkeislukuteoria 18

19 6.8 Kongruenssiyhtälöiden ratkaisuista x P(x) x P(x) Tarkastellaan kongruenssiyhtälöä a x b(mod m) missä a ja b kokonaislukuja, m positiivinen kokonaisluku Yhtälöllä on ratkaisu, jos ja vain jos b = a x + m y jollakin kokonaisluvulla y. Siten ratkaisu jos ja vain jos syt(a,m) on luvun b tekijä Tällöin ratkaisu saadaan soveltamalla yleistettyä Eukleideen algoritmia Tehtävä. Onko seuraavilla kongruenssiyhtälöillä ratkaisua? Jos on, niin etsi yksi ratkaisu x 15 (mod 91) x 1 (mod 21) P Diskreetit rakenteet, Alkeislukuteoria 19

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

2 j =

2 j = 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Lukuteorian kurssi lukioon

Lukuteorian kurssi lukioon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d.

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d. Jakoyhtälö: Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) n = d*q + r Tässä q ja r ovat kokonaislukuja ja 0 r < d. n = d * q + r number divisor quotient residue numero

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

ALKULUVUISTA (mod 6)

ALKULUVUISTA (mod 6) Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jussi Tervaniemi Primitiiviset juuret Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Heinäkuu 2006 Sisältö Johdanto 3 1 Lukuteorian peruskäsitteitä

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

LUKUTEORIAN ALKEET KL 2007

LUKUTEORIAN ALKEET KL 2007 LUKUTEORIAN ALKEET KL 2007 HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 5 2.1. Jaollisuus 6 2.2. Suurin

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

2. Eukleideen algoritmi

2. Eukleideen algoritmi 2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2 46. Väite: Luku 3 1 704 71 on jaollinen luvulla 71. Todistus: 1704 71 70 4+ 4 70 3+ 31 70 4 4 70 3 31 70 70 3 3 3 1(mod 71), 1(mod 71) 1 3 4 4 1 3 3 31 4 31 (3 ) 3 ( ) 36 40 67(mod 71) Luku 3 1 704 71

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Algebra I. Kevät 2004 Pentti Haukkanen

Algebra I. Kevät 2004 Pentti Haukkanen Algebra I Kevät 2004 Pentti Haukkanen 1 Sisällys 1 Lukuteoriaa 4 1.1 Jaollisuus...... 4 1.2 Suurin yhteinen tekijä... 5 1.3 Jakoalgoritmi.... 6 1.4 Lineaarinen Diofantoksen yhtälö... 9 1.5 Alkuluvuista.....

Lisätiedot

Diofantoksen yhtälöt Pro gradu -tutkielma Pasi Juopperi Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 2013

Diofantoksen yhtälöt Pro gradu -tutkielma Pasi Juopperi Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 2013 Diofantoksen yhtälöt Pro gradu -tutkielma Pasi Juopperi Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 2013 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis- luonnontieteellinen

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

. Silloin 1 c. Toisaalta, koska c on lukujen a d ja b d. (a 1,a 2,..., a n )

. Silloin 1 c. Toisaalta, koska c on lukujen a d ja b d. (a 1,a 2,..., a n ) Lukuteorian alkeita Matematiikkakilpailuissa on yleensä tehtäviä, joiden aiheala on alkeellinen lukuteoria. Tässä esitellään perustellen ne lukuteorian tiedot, joihin lukuteoria-aiheisissa tehtävissä yleensä

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA TAMPEREEN YLIOPISTO Pro gradu -tutkielma Ville-Matti Erkintalo Lukuteoria ja RSA Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen yhyt johdatus alkeelliseen lukuteoriaan Esa V. Vesalainen Sisällysluettelo 1 Aritmetiikan peruslause 0 Jakoyhtälö.................................. 0 Jaollisuus.................................. 0 Alkuluvut..................................

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

Algebran peruskurssi I

Algebran peruskurssi I Algebran peruskurssi I Turun yliopisto Markku Koppinen Alkusanat 8. elokuuta 2006 Algebran peruskurssit I ja II ovat jatkoa lineaarialgebran kurssille. Perehdytään erilaisiin algebrallisiin systeemeihin:

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenny Virolainen. Kongruenssista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenny Virolainen. Kongruenssista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jenny Virolainen Kongruenssista Matematiikan, tilastotieteen ja losoan laitos Matematiikka Lokakuu 007 Tampereen yliopisto Matematiikan, tilastotieteen ja losoan

Lisätiedot

4. Eulerin ja Fermat'n lauseet

4. Eulerin ja Fermat'n lauseet 4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema,

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema, Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis luonnontieteellinen tiedekunta Tekijä/Författare Author Katja Niemistö Työn nimi / Arbetets titel Title Täydelliset luvut Oppiaine /Läroämne Subject

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

Lukuteorian sovelluksia tiedon salauksessa

Lukuteorian sovelluksia tiedon salauksessa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Aki-Matti Luoto Lukuteorian sovelluksia tiedon salauksessa Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

LUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut

LUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut LUKUTEORIAN ALKEET Alkusanat Tässä on Heli Tuomisen luentomonisteeseen perustuvat muistiinpanot kevään 2013 Lukuteorian alkeet -kurssista. Kurssi on suunnattu erityisesti aineenopettajiksi opiskeleville

Lisätiedot

Modulaarisista laskutaulukoista

Modulaarisista laskutaulukoista Modulaarisista laskutaulukoista Visa Latvala ja Pekka Smolander Matematiikan laitos, Joensuun yliopisto Johdanto Artikkelin tarkoituksena on tutustuttaa lukija modulaariseen yhteen- ja kertolaskuun. Nämä

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,

Lisätiedot

Kongruenssin sovelluksia

Kongruenssin sovelluksia TAMPEREEN YLIOPISTO Filosofian maisterin tutkielma Tiina Vuorimaa Kongruenssin sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Toukokuu 006 Tampereen yliopisto Matematiikan,

Lisätiedot

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Lukuteoriaa ja salakirjoitusta, osa 1

Lukuteoriaa ja salakirjoitusta, osa 1 Solmu 3/2007 1 Lukuteoriaa ja salakirjoitusta, osa 1 Heikki Apiola Dosentti Matematiikan laitos, Teknillinen korkeakoulu Johdanto Lukuteoriaa on joskus pidetty esteettisesti kauniina, mutta käytännössä

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö

Sisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö 1 Sisällöstä Lukuteorian kurssi on ensisijaisesti tarkoitettu opettajalinjan maisterikurssiksi. Tämä näkyy mm. siten, että perinteisesti lukuteoriaan kuuluvan materiaalin lisäksi kurssi sisältää jonkin

Lisätiedot

LUONNOLLISTEN LUKUJEN JAOLLISUUS

LUONNOLLISTEN LUKUJEN JAOLLISUUS Luonnollisten lukujen jaollisuus 0 Calculus Lukion Täydentävä aineisto Alkuluv,,,,,,,..., ut 11 1 1 1 411609 -, 4 6 8 9 10 11 1 1 14 1 16 1 18 19 0 1 4 6 8 9 0 1 4 6 8 9 40 41 4 4 44 4 46 4 48 49 0 1 4

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Luentorunko ja harjoitustehtävät. SALAUSMENETELMÄT (801346A) 4 op, 2 ov

Luentorunko ja harjoitustehtävät. SALAUSMENETELMÄT (801346A) 4 op, 2 ov Luentorunko ja harjoitustehtävät SALAUSMENETELMÄT (801346A) 4 op, 2 ov Keijo Väänänen I JOHDANTO Salakirjoitukset kurssilla tarkastelemme menetelmiä, jotka mahdollistavat tiedon siirtämisen tai tallentamisen

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Matematiikan olympiavalmennus: Diofantoksen yht al oit a

Matematiikan olympiavalmennus: Diofantoksen yht al oit a Matematiikan olympiavalmennus: Diofantoksen yht al oit a Heikki M antysaari 25. helmikuuta 2007 V ah an teoriaa Diofantoksen yht al o: tuntemattomia enemm an kuin yht al oit a. Lukiossa esim. 4x + 8y =

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mikaela Hellstén. Pellin yhtälö

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mikaela Hellstén. Pellin yhtälö TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mikaela Hellstén Pellin yhtälö Luonnontieteiden tiedekunta Matematiikka Kesäkuu 017 Tampereen yliopisto Luonnontieteiden tiedekunta HELLSTÉN, MIKAELA: Pellin yhtälö

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 2. Eukleideen algoritmi à 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastelemme annettujen

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

RSA-salaus ja sen lukuteoreettinen pohja

RSA-salaus ja sen lukuteoreettinen pohja TAMPEREEN YLIOPISTO Pro gradu -tutkielma Pekka Larja RSA-salaus ja sen lukuteoreettinen pohja Informaatiotieteiden yksikkö Matematiikka Toukokuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö LARJA,

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

Matematiikkaa logiikan avulla

Matematiikkaa logiikan avulla Ralph-Johan Back Joakim von Wright Matematiikkaa logiikan avulla Lyhyt lukuteorian kurssi Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 5, Oct 2008 Matematiikkaa logiikan

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, 2.

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Koulumatematiikan perusteet P

Koulumatematiikan perusteet P Koulumatematiikan perusteet 800104P Matemaattisten tieteiden laitos Oulun yliopisto 2009 Ihmisen henkistä toimintaa ei voi sanoa taiteeksi ellei se perustu matemaattiseen ajatteluun ja todistukseen - Leonardo

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heikki Hietava. Neliöiden summat

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heikki Hietava. Neliöiden summat TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heikki Hietava Neliöiden summat Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö HIETAVA, HEIKKI: Neliöiden

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA. Jaollisuus à. Tekijöihin jako Kerrataan aluksi muutamia merkintöjä: on luonnollisten lukujen joukko, on kokonaislukujen

Lisätiedot