Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)"

Transkriptio

1 Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai a on kongruentti luvun b kanssa) modulo m, jos m jakaa niiden erotuksen a - b, ts. a - b = q m, eräälle q œ. Tätä merkitään kirjoittamalla a ª b Hmod ml. Jakoalgoritmin (Lause 1.1) mukaan luvut a ja b voidaan esittää yksikäsitteisesti muodossa a = q 1 m + r 1 ja b = q 2 m + r 2, 0 r 1, r 2 < m. Tässä a - r 1 = q 1 m ja b - r 2 = q 2 m, joten Määritelmän 3.1 nojalla luku a on kongruentti jakojäännöksen r 1 kanssa ja luku b jakojäännöksen r 2 kanssa. Toisin sanoen on voimassa a ª r 1 Hmod ml ja b ª r 2 Hmod ml, missä r 1 ja r 2 ovat ko. jakojäännökset modulo m. Lisäksi (3.1) a ª b Hmod ml jos ja vain jos jakojäännökset r 1 ja r 2 ovat samat. Perustellaan (3.1) käyttäen edellä esitettyjä merkintöjä seuraavasti: a ª b Hmod ml ñ a - b = q m ñ ( q 1 m + r 1 ) ( q 2 m + r 2 ) = q m ñ r 1 r 2 = (q q 1 + q 2 ) m (tässä kerroin (q q 1 + q 2 ) œ ) ñ r 1 r 2 = 0 (koska 0 r 1, r 2 < m) ñ r 1 = r 2 Näin ollen a ª b Hmod ml täsmälleen silloin, kun luvuilla a ja b on sama jakojäännös modulo m. Mathematica-funktio md antaa jakoalgoritmin a = q 1 m + r 1 mukaisen jakojäännöksen r 1 modulo m.

2 Salakirjoitus 2 Esimerkki 3.1 a = 36; m = 17; md 2 a = 17015; m = 17; md 15 Todellakin 36 = 2* ja = 1000* Seuraavassa esimerkissä testataan ovatko kaksi suurehkoa lukua a ja b keskenään kongruentteja modulo m ( = 17): Esimerkki 3.2 m = 17; a = ; b = ; b, md == 0 H vp op palauttaa arvon True jos vp ja op ovat samat L True Vastauksena saatiin siis, että nämä luvut a = ja b = todella ovat kongruentteja keskenään modulo m = 17, ts. a ª b Hmod ml. Näin on koska jakojäännös on = 0, kun a - b jaetaan luvulla m = 17 (ks. Määritelmä 3.1). Osoittautuu, että tässä tapauksessa a - b = *17. Tarkistetaan vielä toisella tavalla, että lukujen a ja b jakojäännökset ovat samat, kun ne jaetaan luvulla m = 17: 17D 17D 9 9 Molemmat jakojäännökset ovat siis = 9. Vielä voidaan laskemalla todeta, että a = * ja b = * Yleisesti jakojäännökset (mod m) ovat 0, 1, 2,..., m - 1. Jokainen kokonaisluku on siis kongruentti (mod m) täsmälleen yhden luvun 0, 1, 2,..., m - 1 kanssa. Kuten aiemmin kohdassa (3.1) todettiin, a ª b Hmod ml täsmälleen silloin, kun luvuilla a ja b on sama jakojäännös r (mod m).

3 Salakirjoitus 3 Harjoituksia 13 Mitkä seuraavista kongruensseista ovat tosia? a) 19 ª 1 (mod 9) b) 19 ª 8 (mod 9) c) 18 ª 0 (mod 9) d) 29 ª 2 (mod 9) 14 Osoita, että a ª b Hmod ml täsmälleen silloin, kun kokonaisluvuilla a ja b on sama jakojäännös modulo m. à 3.2 Jäännösluokka Kokonaislukujen joukon alkiot jakautuvat erillisiin luokkiin siten, että samaan luokkaan kuuluvat luvut ovat kongruentteja keskenään (mod m) - toisin sanoen niillä on sama jakojäännös (mod m). Määritelmä 3.2 (Jäännösluokka) Luvun a määräämä jäännösluokka (mod m), merkitään [a], on joukko [a] = { x œ» x ª a Hmod ml } = { x œ» x - a = qm, q œ } = { x œ» x = a + qm, q œ }. Esimerkki 3.3 Jäännösluokat (mod 2) ovat [0] = { x œ» x ª 0 Hmod 2L } = { x œ» x - 0 = q 2, q œ } = { x œ» x = 2 q, q œ } = parilliset kokonaisluvut [1] = { x œ» x ª 1 Hmod 2L } = { x œ» x - 1 = q 2, q œ } = { x œ» x = 2 q + 1, q œ } = parittomat kokonaisluvut Jäännösluokkia (mod m) on m kappaletta ja ne ovat esimerkiksi [0], [1],..., [m - 1]. Huomaa, että [m] = [0], [m+1] = [1], jne. Lisäksi on voimassa: [a] = [b] ó a ª b Hmod ml. Esimerkki 3.4 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 5. Tässä tarvitsee kiinnittää huomio ainoastaan jakojäännökseen. Viidellä jaolliset luvut..., -10, -5, 0, 5, 10,... muodostavat jäännösluokan [0], koska niiden jakojäännös on nolla. Niiden lukujen esiintymistä lukusuoralla, joiden jakojäännös on 2, ts. jotka muodostavat jäännösluokan [2], on hahmoteltu alla:

4 Salakirjoitus 4..., -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, @2D.... Kaikkiaan on viisi erilaista jäännösluokkaa. Ne ovat seuraavat: [0] = {..., -10, -5, 0, 5, 10,... } [1] = {..., -9, -4, 1, 6, 11,... } [2] = {..., -8, -3, 2, 7, 12,... } [3] = {..., -7, -2, 3, 8, 13,... } [4] = {..., -6, -1, 4, 9, 14,... } Määritelmä 3.3 Jäännösluokkien (mod m) muodostamasta joukkosta käytetään merkintää m. Esimerkki = {[0], [1]} jakojäännökset (mod 2) ovat 0 ja 1 3 = {[0], [1], [2]} jakojäännökset (mod 3) ovat 0, 1 ja 2 4 = {[0], [1], [2], [3]} jakojäännökset (mod 4) ovat 0, 1, 2 ja 3 Harjoituksia 15 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 4, ts. tarkastellaan joukkoa 4 = {[0], [1], [2], [3]}. Esitä Esimerkin 3.4 tavalla, mitkä luvut kuuluvat seuraaviin jäännösluokkiin. a) [0] b) [1] c) [2] d) [3]. à 3.3 Täydellinen jäännössysteemi Määritelmä 3.4 Kokonaislukujen joukko {a 1, a 2,,a m } (m kpl) on täydellinen jäännössysteemi (complete residue system) modulo m, jos jokainen kokonaisluku on kongruentti täsmälleen yhden alkion a i, 1 i m, kanssa modulo m. Toisisin sanoen, joukko {a 1, a 2,,a m } on saatu ottamalla yksi luku kustakin jäännösluokkien (mod m) muodostaman joukkon m alkiosta. Muistin virkistämiseksi kerrataan vielä, että m = 1 2 m D}. Yleisimmin käytettyjä täydellisiä jäännössysteemejä modulo m ovat joukot 80, 1,, m - 1< ja 81, 2,, m<. Yhtä hyvin voitaisiin valita esim. 8m, m + 1,, 2 m - 1<. Selvästi m kokonaislukua a i, 1 i m, muodostavat täydellisen jäännössysteemin modulo m jos ja vain jos jokaista paria (i, j), 1 i, j m, kohti pätee (3.2) a i ª a j Hmod ml ï i = j. Kongruenssirelaatio ª (modulo m) määrittelee ekvivalenssirelaation (refleksiivinen, symmetrinen ja transitiivinen relaatio) kokonaislukujen joukossa. Täydellinen jäännössysteemi on ekvivalenssiluokkien (m kpl) edustajien muodostama joukko.

5 Salakirjoitus 5 Lemma 3.1 Olkoon kaª kbhmod ml ja sythk, ml = d (> 0), missä k, m > 0. Tällöin a ª b Hmod m ê dl. Todistus: Kirjoitetaan k = k ' d ja m = m' d, missä d = syt(k, m) ja siis sythk ', m'l = 1. Oletuksesta kaª kbhmod ml seuraa Määritelmän 3.1 nojalla, että ka-kb= xm, jollekin x œ. Toisin sanoen Hk ' dl a - Hk ' dl b = x Hm' dl. Ottamalla d puolittain tekijäksi, saadaan d Hk ' a - k ' bl = d Hxm'L, ts. k ' Ha - bl = xm'. Koska sythm', k 'L = 1, seuraa Lemmasta 1.5, että m'»ha-bl, ts. a ª b Hmod m'l. Lemma 3.2 Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. Todistus: Käytetään kriteeriä (3.2). Lemman 3.1 nojalla ehdosta ka i ª ka j Hmod ml seuraa, että a i ª a j Hmod ml, josta edelleen seuraa, että i = j. Harjoituksia 16 Kertaa Lemman 3.1 todistus: Olkoon kaª kbhmod ml ja sythk, ml = d. Tällöin a ª b Hmod m ê dl. 17 Kertaa Lemman 3.2 todistus: Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä. Erityisesti kohtaa 4) tarvitaan hyvin usein tässä kurssissa. Lause 3.3 Olkoon m annettu positiivinen kokonaisluku. Kongruenssi (mod m) toteuttaa seuraavat ehdot: 1) a ª a (mod m) (refleksiivisyys) 2) Jos a ª b (mod m), niin b ª a (mod m) (symmetrisyys) 3) Jos a ª b (mod m) ja b ª c (mod m), niin a ª c (mod m) (transitiivisuus) 4) Jos a ª b (mod m), c ª d (mod m), r œ ja n œ +, niin seuraavat kongruenssit ovat voimassa: (i) (a c) ª (b d) (mod m) (ii) r a ª r b (mod m) (iii) a c ª b d (mod m) (iv) a n ª b n (mod m) 5) Jos k a ª k b (mod m) ja syt(k, m) = 1, niin a ª b (mod m). Todistus: 1) Koska a a = 0 = 0 ÿ m, niin määritelmän nojalla a ª a (mod m).

6 Salakirjoitus 6 2) Jos a ª b (mod m), niin m» a b, ts. a b = k ÿ m Hk œ L. Siis b a = H kl ÿ m, ts. m» b a, ts. b ª a (mod m). 3) Jos a ª b (mod m) ja b ª c (mod m), niin eräille k, l œ pätee a b = k ÿ m ja b c = l ÿ m. Nyt a c = (a b) + (b c) = H k + l L ÿ m, jossa ( k + l ) œ. Siis a ª c (mod m). 4) Olkoon a ª b (mod m), c ª d (mod m), r œ ja n œ +. Tällöin eräille k, l œ pätee a b = k ÿ m ja c d = l ÿ m. (i) Meillä on Ha cl Hb dl = Ha bl Hc dl = k ÿ m l ÿ m = H k l L ÿ m, missä ( k ± l ) œ. Siis Ha cl ª Hb dl (mod m). (ii) Tässä ra rb = r ÿ Ha bl = r ÿ Hk ÿ ml = Hr ÿ kl ÿ m, ja siis ra ª rb (mod m). (iii) Luvut a ja c voidaan kirjoittaa myös muotoon a = b + k ÿ m ja c = d + l ÿ m. Näin ollen ac = Hb + k ÿ ml Hd + l ÿ ml = bd + Hbl + kd + klml ÿ m, joten ac bd = Hbl + kd + klml ÿ m, ja siis ac ª bd (mod m). (iv) Kun n = 1, on oletuksen a ª b (mod m) nojalla a n = a 1 = a ª b = b 1 = b n (mod m). Tehdään induktio-oletus, että a k ª b k (mod m), ts. oletetaan, että väite on tosi, kun n = k. Valitaan nyt kohdassa (iii) c = a k ja d = b k. Tällöin kohdan (iii) ja induktio-oletuksen nojalla saadaan: a k+1 = a(a k ) = ac ª bd = b(b k ) = b k+1 (mod m). Näin ollen väite on induktioperiaatteen nojalla tosi aina kun n œ +. 5) Tulos seuraa suoraan Lemmasta 3.1, koska tässä tapauksessa on d = sythk, ml = 1. Kun [a] ja [b] œ m, voidaan määritellä (3.3) [a] + [b] = [a+b] [a]ÿ[b] = [a ÿ b] Osoitetaan, että nämä yhteen- ja kertolaskuoperaatiot ovat hyvin määriteltyjä, toisin sanoen laskutoimitukset kohdassa (3.3) ovat riippumattomia jäännösluokkien edustajista. Todistus: Edustakoot a 1 ja a keskenään samaa jäännösluokkaa, samoin b 1 ja b. Tällöin siis [a 1 ] = [a] ja [b 1 ] = [b], ts. a 1 ª a (mod m) ja b 1 ª b (mod m). Lauseen 3.3 (kohta 4) nojalla a 1 + b 1 ª a + b (mod m) a 1 ÿ b 1 ª a ÿ b (mod m). Näin 1 + b 1 D + 1 ÿ b 1 D ÿ bd

7 Salakirjoitus 7 ja siis HMäär. 3.3L HMäär. 1 D 1 D + b 1 D + bd HMäär. 3.3L HMäär. 1 D 1 D ÿ b 1 D ÿ bd Täten laskutoimitukset kohdassa (3.3) ovat riippumattomia jäännösluokkien edustajista ja määritely (3.3) on ristiriidattomasti tehty. Esimerkki 3.6 Esitetään jäännösluokkien avulla joukkojen 2 ja 5 yhteen- ja kertolaskutaulut: 2 -» @1D -» 5 @4D -» » Esimerkki 3.7 Ratkaise joukossa 5 = {[0], [1], [2], [3], [4]} yhtälö [3] x + [2] = [4]. Ratkaisu: [3] x + [2] = [4] + [3] ó [3] x + [2] + [3] = [4] + [3] Tässä [2] + [3] = [5] = [0] ja [4] + [3] = [7] = [2]. ó [3] x + [0] = [2] ó [3] x = [2] Edellisen Esimerkin 3.6 kertotaulun neljännen rivin mukaisesti on jäännösluokalla [3] kerrottaessa @4D -» Näin ollen [3] ÿ[4] = [2], toisin sanoen [3] x = [2] täsmälleen silloin kun x = [4].

8 Salakirjoitus 8 Huomautus Olkoon m anettu positiivinen kokonaisluku. Kirjallisuudessa luvun a œ edustamasta jäänösluokasta [a] œ m käytetään myös m. Usein käytetään myös lyhyempiä alle- tai päälleviivausmerkintöjä a tai ā ( modulo m). Kun jäännösluokilla lasketaan jatkuvasti, eikä sekaannuksen vaaraa ole, voidaan pelkällä luvulla merkitä sen edustamaa jäännösluokkaa. Siis esimerkiksi näin: (3.4) = 3 (mod 5). Tämän salakirjoituskurssin Osassa 2 onkin usein käytännöllistä laskea kuten kohdassa (3.4). Tässä osassa kuitenkin merkitsemme mieluummin näin: = 8 ª 3 (mod 5) tai näin: [4] + [4] = [8] = [3] (mod 5). Esimerkki 3.8 Etsi jakojäännös, kun a) jaetaan luvulla 5 b) jaetaan luvulla 11 c) jaetaan luvulla 6 d) 44( ) jaetaan luvulla 7 Ratkaisu: Käytetään Lauseen 3.3 kohtaa 4). Usein on mahdollista laskea myös hieman eri tavoilla. a) 2 2 ª 1 (mod 5) Siis = H2 2 L 1001 ª H 1L 1001 = 1 ª 4 (mod 5). Jakojäännös on 4. Huomaa, että jakojäännös ei määritelmän mukaan ole koskaan negatiivinen, b) 2 2 = 4 (mod 11) 2 3 = 8 ª 3 (mod 11) 2 4 = 2 ÿ 2 3 ª 2 ( 3) ª 6 ª 5 (mod 11) Huom: = = 2 ÿ 2 4 ª 2 5 = 10 ª 1 (mod 11) Siis = 2 5ÿ401+2 = 2 2 ÿh2 5 L 401 ª 4 ÿ H 1L 401 = 4 ( 1) = 4 ª 7 (mod 5). Huom: = 7. Jakojäännös on 7. c) 3 2 = 9 ª 3 (mod 6) 3 3 = 3 ÿ 3 2 ª 3ÿ3 ª 3 (mod 6)

9 Salakirjoitus 9 Koska 3 n = 3 ÿ 3 n-1, näemme induktiivisesti, että 3 n ª 3 (mod 6). Siis ª 3 (mod 6). Jakojäännös on 3. d) Tässä siis 44( ) jaetaan luvulla = 6ÿ7 + 2 ª 2 (mod 7) 2 3 ª 1 (mod 7) = 2 2 ÿ2 3ÿ66 = 2 2 ÿ H2 3 L 66 ª 4ÿ1 = 4 (mod 7) 3 3 = 27 ª 6 ª 1 (mod 7) = H3 3 L 1111 ª H 1L 1111 ª 1 (mod 7) Siis 44( ) ª 2(4 1) = 2ÿ3 = 6 (mod 7). Jakojäännös on 6. Harjoituksia 18 Kertaa Lauseen 3.3 kohdan 4 (iii) todistus: Olkoon m annettu positiivinen kokonaisluku, a ª b (mod m) ja c ª d (mod m). Tällöin a c ª b d (mod m). 19 Esitä joukkojen 8 ja 9 yhteen- ja kertolaskutaulut. 20 Ratkaise joukossa 7 = {[0], [1], [2], [3], [4], [5], [6]} yhtälö [2] x + [3] = [4]. 21 Etsi jakojäännös, kun a) jaetaan luvulla 7 (5) b) jaetaan luvulla 5 (2) c) jaetaan luvulla 11 (9) d) jaetaan luvulla 7 (5) e) 127 ÿ H L jaetaan luvulla 7(3) Laske sopivasti jakojäännöksillä ja merkitse kaikki välivaiheet näkyviin. Oikea vastaus on merkitty valmiiksi sulkeiden sisään. 22 Etsi jakojäännös, kun a) jaetaan luvulla 5 (3) b) jaetaan luvulla 6 (3) c) 55 ÿ H L jaetaan luvulla 7(0) Laske sopivasti jakojäännöksillä ja merkitse välivaiheet näkyviin. Oikea vastaus on tässäkin merkitty valmiiksi sulkeiden sisään. 23 Oletetaan tunnetuksi tulos P(b) ª P(c) (mod m), kun P(x) = a 0 x n + a 1 x n a n-1 x + a n ; a i œ ; ja b ª c (mod m). Olkoon lisäksi q n-numeroinen kokonaisluku ja sen peräkkäiset numerot

10 Salakirjoitus 10 a 1, a 2,..., a n ; a i œ {0, 1,..., 9}. Osoita, että 9» q jos ja vain jos 9» (a 1 + a a n ). Onko luku jaollinen 9:llä? Kaikki etätehtävät kappaleeseen 3 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi 13 Mitkä seuraavista kongruensseista ovat tosia? a) 19 ª 1 (mod 9) b) 19 ª 8 (mod 9) c) 18 ª 0 (mod 9) d) 29 ª 2 (mod 9) 14 Osoita, että a ª b Hmod ml täsmälleen silloin, kun kokonaisluvuilla a ja b on sama jakojäännös modulo m. 3.2 Jäännösluokka 15 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 4, ts. tarkastellaan joukkoa 4 = {[0], [1], [2], [3]}. Esitä Esimerkin 3.4 tavalla, mitkä luvut kuuluvat seuraaviin jäännösluokkiin. a) [0] b) [1] c) [2] d) [3]. 3.3 Täydellinen jäännössysteemi 16 Kertaa Lemman 3.1 todistus: Olkoon kaª kbhmod ml ja sythk, ml = d. Tällöin a ª b Hmod m ê dl. 17 Kertaa Lemman 3.2 todistus: Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. 3.4 Kongruenssien laskusääntöjä 18 Kertaa Lauseen 3.3 kohdan 4 (iii) todistus: Olkoon m annettu positiivinen kokonaisluku, a ª b (mod m) ja c ª d (mod m). Tällöin a c ª b d (mod m). 19 Esitä joukkojen 8 ja 9 yhteen- ja kertolaskutaulut. 20 Ratkaise joukossa 7 = {[0], [1], [2], [3], [4], [5], [6]} yhtälö [2] x + [3] = [4].

11 Salakirjoitus Etsi jakojäännös, kun a) jaetaan luvulla 7 (5) b) jaetaan luvulla 5 (2) c) jaetaan luvulla 11 (9) d) jaetaan luvulla 7 (5) e) 127 ÿ H L jaetaan luvulla 7(3) Laske sopivasti jakojäännöksillä ja merkitse kaikki välivaiheet näkyviin. Oikea vastaus on merkitty valmiiksi sulkeiden sisään. 22 Etsi jakojäännös, kun a) jaetaan luvulla 5 (3) b) jaetaan luvulla 6 (3) c) 55 ÿ H L jaetaan luvulla 7(0) Laske sopivasti jakojäännöksillä ja merkitse välivaiheet näkyviin. Oikea vastaus on tässäkin merkitty valmiiksi sulkeiden sisään. 23 Oletetaan tunnetuksi tulos P(b) ª P(c) (mod m), kun P(x) = a 0 x n + a 1 x n a n-1 x + a n ; a i œ ; ja b ª c (mod m). Olkoon lisäksi q n-numeroinen kokonaisluku ja sen peräkkäiset numerot a 1, a 2,..., a n ; a i œ {0, 1,..., 9}. Osoita, että 9» q jos ja vain jos 9» (a 1 + a a n ). Onko luku jaollinen 9:llä?

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 4. Eulerin a Fermat'n lauseet à 4.1 Alkuluokka a Eulerin -funktio Yleensä olemme kiinnostuneita vain niistä äännösluokista

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 2. Eukleideen algoritmi à 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastelemme annettujen

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus

Lisätiedot

2 j =

2 j = 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).

Lisätiedot

4. Eulerin ja Fermat'n lauseet

4. Eulerin ja Fermat'n lauseet 4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

2. Eukleideen algoritmi

2. Eukleideen algoritmi 2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA. Jaollisuus à. Tekijöihin jako Kerrataan aluksi muutamia merkintöjä: on luonnollisten lukujen joukko, on kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA TAMPEREEN YLIOPISTO Pro gradu -tutkielma Ville-Matti Erkintalo Lukuteoria ja RSA Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

TIETOTEKNIIKAN MATEMATIIKKA

TIETOTEKNIIKAN MATEMATIIKKA TIETOTEKNIIKAN MATEMATIIKKA Harjoitus 4 syksy 2016 Ratkaisut 1. Mitä ehtoja joukkojen M ja N tulee täyttää (kussakin kohdassa erikseen), jotta seuraavat väittämät olisivat tosia a) M = b) N \ M = c) M

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema,

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema, Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis luonnontieteellinen tiedekunta Tekijä/Författare Author Katja Niemistö Työn nimi / Arbetets titel Title Täydelliset luvut Oppiaine /Läroämne Subject

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d.

Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) Tässä q ja r ovat kokonaislukuja ja 0 r < d. Jakoyhtälö: Jokainen kokonaisluku n voidaan esittää muodossa (missä d on positiivinen kok.luku) n = d*q + r Tässä q ja r ovat kokonaislukuja ja 0 r < d. n = d * q + r number divisor quotient residue numero

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

Primitiiviset juuret: teoriaa ja sovelluksia

Primitiiviset juuret: teoriaa ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot