DEE Sähkötekniikan perusteet
|
|
- Sakari Auvinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 DEE Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä
2 Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä kerrostamismenetelmä solmupistemenetelmä Tarkoitus on oppia Kirchhoffin laeista johdettuja helppokäyttöisiä menetelmiä verkon systeemaattiseen tarkasteluun.
3 Luennon keskeinen termistö ja tavoitteet kerrostamismenetelmä lineaarisuus tarkastellaan yhden lähteen vaikutus kysyttyyn suureeseen kerrallaan silmukkavirtamenetelmä muodostetaan yhtälöitä verkon silmukoille solmupistemenetelmä muodostetaan yhtälöitä verkon solmuille Tarkoitus on oppia Kirchhoffin laeista johdettuja helppokäyttöisiä menetelmiä verkon systeemaattiseen tarkasteluun.
4 Muistutus: resistiiviset tasasähköpiirit Piirielementtien sähkösuureet ajan suhteen vakioita. Energialähteet tasajänniteja tasavirtalähteitä. Jännite ja virta siis vakioita, joten
5 Muistutus: resistiiviset tasasähköpiirit Piirielementtien sähkösuureet ajan suhteen vakioita. Energialähteet tasajänniteja tasavirtalähteitä. Jännite ja virta siis vakioita, joten I C = C du dt = 0 ja U L = L di dt = 0
6 Resistiiviset tasasähköpiirit Kondensaattori vastaa äärettömän suurta resistanssia ja käämi nollaresistanssia. Stattisessa tapauksessa kondensaatori edustaa aukaistua ja käämi oikosuljettua verkon haaraa. Virtapiiriin jää ainoastaan vastuksia ja energialähteitä tarkasteltavaksi. Laskentamenetelmät eivät kuitenkaan ole riippuvaisia siitä, minkälaisiin virtapiireihin niitä sovelletaan, kuten myöhemmin vaihtosähköpiirien analyysissä huomataan.
7 Lineaarisuus Mitä se on?
8 Lineaarisuus Additiivisuus { u 1 y 1 u 2 y 2 u 1 +u 2 y 1 +y 2 Homogeensiuus u y αu αy
9 Lineaarisuus Additiivisuus { u 1 y 1 u 2 y 2 u 1 +u 2 y 1 +y 2 Homogeensiuus Jos verkossa on useita energialähteitä, voidaan jokaisen lähteen vaikutus laskea erikseen ja summata tulokset yhteen. u y αu αy
10 Kerrostamismenetelmä Lähteet, joiden vaikutusta ei kyseisellä kerralla tarkastella
11 Kerrostamismenetelmä Lähteet, joiden vaikutusta ei kyseisellä kerralla tarkastella Virtalähteet: avoin haara
12 Kerrostamismenetelmä Lähteet, joiden vaikutusta ei kyseisellä kerralla tarkastella Virtalähteet: avoin haara Jännitelähteet: oikosulku
13 Kerrostamismenetelmä Lähteet, joiden vaikutusta ei kyseisellä kerralla tarkastella Virtalähteet: avoin haara Jännitelähteet: oikosulku Määritä ohjeisen piirin virta I. I 7Ω 15Ω 2 A 3Ω 5Ω 3.5 V +
14 Kerrostamismenetelmä Lähteet, joiden vaikutusta ei kyseisellä kerralla tarkastella Virtalähteet: avoin haara Jännitelähteet: oikosulku Määritä ohjeisen piirin virta I. I 7Ω 15Ω 2 A 3Ω 5Ω 3.5 V + Milloin kerrostamismenetelmä ei voida käyttää?
15 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) I 6 1 I 4 2 I 5 3 I 1 I 2 I 3 4
16 Verkon systemaattinen ratkaisu Muodostetaan suljettuja silmukoita siten, että jokaisessa uudessa silmukassa on vähintään yksi uusi haara mukana ja että lopulta jokainen haara kuuluu vähintän yhteen silmukkaan. U 6 3 U 4 U 5 U 1 1 U 2 2 U 3
17 Silmukkavirtamenetelmä Valitaan silmukat (b n+1 = = 3) ja muuttujiksi kuvitellut kiertävät silmukkavirrat. b n+1 yhtälöä on riittävä ja välttämätön ehto tehtävän ratkaisemiseksi. Kaikkien haarojen virrat voidaan lausua edellä mainittujen silmukkavirtojen avulla, I 4 = I γ I α. Komponenttien yhtälöistä saa haarojen jännitteet täydellinen ratkaisu. I 6 I γ I 4 I 5 I 1 I 2 I 3 I α I β
18 Esimerkki Muodosta lineaarinen yhtälöryhmä oheisen kytkennän silmukkavirroille. Kiinnitä erityisesti huomiota yhtälöiden systemaattiseen muodostustapaan. Miten silmukkavirroista ratkaistaan kuvaan merkityt haaravirrat? Iα R 1 Iβ R 3 I 3 U 1 + R 2 I δ I 1 I 2 U U 3 R4 I γ
19 Silmukkavirtamenetelmä matriisiyhtälönä RI = U R ii silmukan i resistanssien summa, kaikki positiivisina R ij simulkoiden i ja j yhteisen haaran resistanssi positiivisena, jos silmukoiden kiertosuunnat kulkevat samaan suuntaan resistanssin kautta, muutoin negatiivisena. I i silmukan i virta U i silmukkaan i kuuluvien lähdejännitteiden summa, jokaisen lähteen etumerkit katsottuna siitä tuleeko silmukkavirta ulos + vai päästä.
20 Silmukkavirtamenetelmällä tehtävän ratkaiseminen Muunnetaan virtalähteet ekvivalenttisiksi jännitelähteiksi, jos mahdollista. Poistetaan ylimääräiset rinnankytkennät. Kiinnitetään silmukat. Kirjoitetaan lineaarinen yhtälöryhmä silmukkavirroille. Ratkaistaan tehtävä. 100Ω 50Ω 10Ω 10Ω 50 ma 100Ω 1Ω 2 V + 1 V + I
21 Solmupistemenetelmä Silmukkavirtamenetelmän yhtälöt johdettiin Kirchhoffin jännitelaista. Solmupistemenetelmän yhtälöt johdetaan Kirchhoffin virtalaista.
22 Solmupistemenetelmän periaate Valitaan referenssisolmu, jonka potentiaali voidaan valita. Valitaan se nollaksi. Valitaan muuttujiksi muiden solmujen potentiaalit (suhteessa referenssiin, eli nollaan). Tuntemattomia solmupotentiaaleja on tällöin n 1 kappaletta. Kaikkien haarojen jännitteet voidaan lausua solmupotentiaalien avulla. Haaravirrat voidaan laskea, kun tiedetään komponenttien yhtälöt täydellinen ratkaisu. I 6 1 I 4 2 I 5 3 I 1 I 2 I 3 4
23 Esimerkki Muodosta lineaarinen yhtälöryhmä oheisen kytkennän solmupotentiaaleille. Kiinnitä erityistä huomiota yhtälöiden systemaattiseen muodostustapaan. Miten solmupotentiaaleista ratkaistaan kuvaan merkityt haaravirrat? I b I a V 1 R I 2 V 2 2 I 3 R 3 R 1 I1 0 I c
24 Solmupistemenetelmä matriisiyhtälönä I = GU G on konduktanssimatriisi, resistanssimatriisin käänteismatriisi. G i i solmuun i liittyvien resistanssien käänteislukujen summa, kaikki positiivisina G i j solmujen i ja j välinen resistanssin käänteisluku negatiivisenä U i solmun i potentiaali referenssisolmuun nähden I i solmun i kuuluvien lähdevirtojen summa, positiivisena, jos lähdevirta solmuun päin, muutoin negatiivisena
25 Silmukkavirtamenetelmällä tehtävän ratkaiseminen Muunnetaan jännitelähteet ekvivalenttisiksi virtalähteiksi, jos mahdollista. Poistetaan ylimääräiset sarjakytkennät. Numeroidaan solmut ja valitaan referenssisolmu. Kirjoitetaan lineaarinen yhtälöryhmä solmupotentiaaleille. Ratkaistaan tehtävä. Esimerkki: Mitoita oheisessa piirissä lähdejännite U s.e. U 2Ω on 4 V. 1 A V 2 U 2Ω V 1 2Ω 4Ω 6 A 4Ω 4Ω 4Ω 0 U +
26 Silmukkavirta- vs solmupistemenetelmä Valitaan se menetelmä, jolla työmäärä minimoituu. Verkossa on b haaraa ja n solmua. Esimerkiksi silmukkavirtamenetelmä on edullisempi, mikäli b n+1 < n 1 n > b 2 +1 Usein jos piirissä on pääasiassa jännitelähteitä, on helpompi käyttää silmukkavirtamenetelmää, jos taas virtalähteitä, niin solmupistemenetelmää.
27 Yhteenveto kerrostamismenetelmä lineaariset piirit huomioidaan laskennassa yhden lähteen vaikutus kysyttyyn suureeseen kerrallaan, virtalähde pois avoimella piirillä, jännitelähde pois oikosulkemalla silmukkavirtamenetelmä muodostetaan yhtälöitä verkon silmukoille Kirchhoffin jännitelaki: suljetun silmukan jännitteiden summa on 0 solmupistemenetelmä muodostetaan yhtälöitä verkon solmuille Kirchhoffin virtalaki: solmuun tulevat virrat = solmusta lähtevät virrat
Luento 4 / 12. SMG-1100 Piirianalyysi I Risto Mikkonen
SMG-00 Piirianalyysi I Luento 4 / Kerrostamismenetelmä Lineaarisuus = Additiivisuus u u y y u + Homogeenisuus u y y Jos verkossa on useita energialähteitä, voidaan jokaisen lähteen vaikutus laskea erikseen
Silmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2 Verkon systemaattinen ratkaisu Muodostetaan
Luento 6. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä
Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4
Luento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä
2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )
DEE- Piirianalyysi, kesäkurssi, harjoitus (3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t t () ()()
SATE1140 Piirianalyysi, osa 1 kevät /9 Laskuharjoitus 4: Kerrostamis- ja silmukkamenetelmä
ST1140 Piirianalyysi, osa 1 kevät 018 1 /9 Tehtävä 1. Määritä alla esitetyssä piirissä kuormassa (vastuksessa) R L lämmöksi kuluva teho käyttäen hyväksi kerrostamismenetelmää. 0 kω, R 5 kω, R 0 kω, 0 kω,
Sähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
DEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman
ELEC-C3230 Elektroniikka 1. Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit)
1 ELEC-C3230 Elektroniikka 1 Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit) 1 luennon pääaiheet Motivointi Piirianalyysin kertaus Vahvistinmallinnus (liuku 2. luentoon) 2 https://www.statista.com/outlook/251/100/consumer-electronics/worldwide
SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset
SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset
Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lineaarialgebra MATH.1040 / Piirianalyysiä
Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen
SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11
TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11 Vesa Linja-aho Metropolia 7. syyskuuta 2011 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta 2011 1 / 123 Sisällysluettelo
SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
SATE.1040 Piirianalyysi IB syksy /8 Laskuharjoitus 1: Ohjatut lähteet
STE. iirianalyysi syksy 6 /8 Tehtävä. Laske jännite alla olevassa kuvassa esitetyssä piirissä. Ω, Ω, Ω,, E V, E V E E Kuva. iirikaavio tehtävään. atkaisu silmukkamenetelmällä: E E Kuva. Tehtävän piirikaavio
Kirchhoffin jännitelain perusteella. U ac = U ab +U bc U ac = U ad +U dc. U ac = R 1 I 12 +R 2 I 12 U ac = R 3 I 34 +R 4 I 34, ja I 34 = U ac
1.1 a U ac b U bd c voimessa siltakytkennässä tunnetaan resistanssit,, ja sekä jännite U ac. Laske jännite U bd kun 30 Ω 40 Ω 40 Ω 30 Ω U ac 5V. d U ab U ac U bc Kirchhoffin jännitelain perusteella I 12
Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
Théveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2
Théveninin teoreema Vesa Linja-aho 3.0.204 (versio.0) Johdanto Portti eli napapari tarkoittaa kahta piirissä olevaa napaa eli sellaista solmua, johon voidaan kytkeä joku toinen piiri. simerkiksi auton
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä
DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,
SMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
S PIIRIANALYYSI 1
A! Aalto-yliopisto Sähkötekniikan korkeakoulu S-55.1210 PIIRIANALYYSI 1 Luentomoniste 2012 Martti Valtonen u i malli u i R i 7 2 Aalto ELEC, Copyright c 2012 Martti Valtonen Aalto ELEC, Copyright c 2012
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
Monisilmukkainen vaihtovirtapiiri
virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen
Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Piiriteoria Circuit Theory. Työkalut Tools Luento Oppikirja: Sähkötekniikka ja piiriteoria. Tämän viikon teoria on yleispätevää eikä rajoitu DC-analyysiin!
Harjoitus 5 / viikko 7
DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet
521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2013
52302A PIIRITEORIA Laskuharjoitukset - syksy 203 Sisältö Kuinka suoritan kurssin?... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 24 Harjoitus 2... 25 LTspice-vinkkejä... 35 Harjoitus 3...
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
521302A PIIRITEORIA 1 Laskuharjoitukset - kevät 2016
52302A PIIRITEORIA Laskuharjoitukset - kevät 206 TkT Marko Neitola marko.neitola(at)oulu.fi TS223 Sisältö Kurssitietoa... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 26 Harjoitus 2... 27
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan
521302A PIIRITEORIA 1 Laskuharjoitukset - syksy 2015
52302A PIIRITEORIA Laskuharjoitukset - syksy 205 TkT Marko Neitola marko.neitola(at)oulu.fi TS223 Sisältö Kurssitietoa... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 26 Harjoitus 2... 27
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
1. Tasavirtapiirit ja Kirchhoffin lait
Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,
SMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2014
52302A PIIRITEORIA Laskuharjoitukset - syksy 204 Sisältö Kurssitietoa... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 24 Harjoitus 2... 25 LTspice-vinkkejä... 35 Harjoitus 3... 37 Harjoitus
Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
Gaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
Omnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:
DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?
SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee
Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 205 Päivityksiä: 4.0.205 klo 5:0. Tehtävässä 3b vektorin x lauseke korjattu. 5.0.205 klo 3:20. Tehtävässä 8d viittaus väärään tehtävään
Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia
Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin
Luento 2. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,
Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen
SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)
Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015
Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä
SMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
SÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014
Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!
ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.
7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa
3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.
Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat
S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Luku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
Iteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
5 DIFFERENTIAALIYHTÄLÖRYHMÄT
5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n
S Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
FysE301/A Peruskomponentit: vastus, diodi ja kanavatransistori
Tiia Monto Työ tehty:.3. ja 8.3.00 tiia.monto@jyu. 040758560 FysE30/A Peruskomponentit: vastus, diodi ja kanavatransistori Assistentti: Arvostellaan: Abstract Työssä tutkittiin vastusta, diodia ja transistoria.
järjestelmät Luento 8
DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot
Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
SATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä
1040 Piirianalyysi B kevät 2016 1 /6 ehtävä 1. lla olevassa kuvassa esitetyssä symmetrisessä kolmivaihejärjestelmässä on kaksi konetta, joiden lähdejännitteet ovat vaihejännitteinä v1 ja v2. Järjestelmä
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit