Harjoitus 5 / viikko 7

Koko: px
Aloita esitys sivulta:

Download "Harjoitus 5 / viikko 7"

Transkriptio

1 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet kannattaa muuntaa vitalähteiksi, koska solmupistemenetelmä peustuu Kichhoffin vitalakiin. Muunnos ei ole välttämätön, mutta helpottaa usein kytkennän takastelua. Tässä tehtävässä enegialähteet ovat jo valmiiksi vitalähteitä, joten muunnosta ei tavita. Aloitetaan tehtävän atkaiseminen yhdistämällä innankytketyt 0000 ja 000. Kun yhdistettyä esistanssia mekitään :llä, saadaan: Ennen solmupisteyhtälöiden kijoittamista on selvitettävä kytkennästä löytyvien potentiaalien lukumäää. Takasteltavasta kytkennästä näitä löytyy kolme kappaletta. Kytkennän alaeuna on yhdessä potentiaalissa, ja kaksi muuta löytyvät kytkennän vasemmasta ja oikeasta yläeunasta. Tämän jälkeen valitaan yksi näistä potentiaaleista ns. efeenssipotentiaaliksi, jonka avoksi valitaan 0. Jäljelle jää siis kaksi tuntematonta potentiaalia, eli solmupisteyhtälöitä tulee kaksi kappaletta. Olkoon efeenssipotentiaali kytkennän alaeunassa. alitaan kytkennän vasemman yläkulman potentiaaliksi ja oikean yläkulman potentiaaliksi ja kijoitetaan solmupisteyhtälöt eli Kichhoffin vitalait molemmille solmupisteille.

2 Nyt kannattaa palauttaa mieleen, että kytkennän alaeunaan valittiin efeenssipotentiaali 0. Saatu tulos takoittaa siis sitä, että kytkennän vasemmassa yläkulmassa on noin 3.57 alhaisempi potentiaali kuin kytkennän alaeunassa. Edelleen kytkennän oikeassa yläkulmassa on noin alhaisempi potentiaali kuin kytkennän alaeunassa. Lasketaan kysytty jännite ja vita i. on positiivinen vasemmalta oikealle. Täten = 3.57 ( 5.857) ian i positiivinen suunta on mekitty alhaalta ylös, joten i A 3.6 ma Käytä solmupistemenetelmää atkaistaksesi jännitteet v ja v. Käytetään solmupistemenetelmää, joten aloitetaan tehtävä muuntamalla kytkennän vasemman eunan jännitelähde vitalähteeksi. Jännitelähteen kanssa sajassa oleva vastus tulee vitalähteen innalle, ja vitalähteen lähdevita saadaan Ohmin laista: = U/, jossa U on jännitelähteen lähdejännite ja jännitelähteen kanssa sajassa oleva vastus. Täten vitalähteen

3 lähdeviaksi saadaan 50 / 0 seuaavalta: 7.5 A. Lähdemuunnoksen jälkeen kytkentä näyttää A A 4 Ennen solmupisteyhtälöiden kijoittamista on selvitettävä kytkennästä löytyvien potentiaalien lukumäää. Takasteltavasta kytkennästä näitä löytyy kolme kappaletta. Kytkennän alaeuna on yhdessä potentiaalissa, ja kaksi muuta löytyvät kytkennän vasemmasta ja oikeasta yläeunasta. Tämän jälkeen valitaan yksi näistä potentiaaleista ns. efeenssipotentiaaliksi, jonka avoksi valitaan 0. Jäljelle jää siis kaksi tuntematonta potentiaalia, eli solmupisteyhtälöitä tulee kaksi kappaletta. Olkoon efeenssipotentiaali kytkennän alaeunassa. alitaan kytkennän vasemman yläkulman potentiaaliksi a ja oikean yläkulman potentiaaliksi ja kijoitetaan solmupisteyhtälöt eli Kichhoffin vitalait molemmille solmupisteille. a 0 a 0 a a a a a a a Täten tehtävänantoon mekityiksi jännitteiksi v ja v saadaan: v v a

4 5.4 Käytä silmukkavitamenetelmää laskeaksesi, miten paljon tehoa A:n vitalähde syöttää piiiin. Laske piiiin syötetty kokonaisteho. Takoituksena on laskea alasilmukan vitalähteen syöttämä teho. Teho P=U, josta nyt tiedetään, A. Pitäisi siis määittää vitalähteen yli oleva jännite. Kichhoffin jännitelain mukaan vitalähteen yli oleva jännite on samansuuuinen, kuin silmukan vastuksissa tapahtuva jännitehäviö. Jos silmukkaviat määitellään siten, että on vasemmassa yläkulmassa, kietosuunta myötäpäivään ja on oikeassa yläkulmassa, kietosuunta vastapäivään, saadaan jännitehäviöksi U 4, A A joka on siis samalla vitalähteen yli oleva jännite U A. Jotta jännite saadaan laskettua, täytyy ensin siis laskea silmukkaviat ja. Muodostetaan silmukkavitayhtälöt: A A 0 5 atkaistaan ylemmästä yhtälöstä :sen funktiona ja sijoitetaan se keskimmäiseen lausekkeeseen, jolloin :seksi saadaan: ,9 A. 5 voidaan nyt atkaista sijoittamalla alempaan yhtälöön: 54 0,9 5 6,6 A. 5

5 Nyt jännitehäviöksi, eli vitalähteen yli olevaksi jännitteeksi, saadaan: U 4 6,6 4,9 0,8. A A A Ja voidaan laskea vitalähteen syöttämä teho: P U A 0,8 A 643,36 W. A A Enegialähteiden syöttämäksi kokonaistehoksi saadaan siten: P P P P 643,36 W ,36 W. tot A Muodosta Théveninin ekvivalentti ja määitä sen avulla oheisen kuvan piiistä 0 ja 0, kun 0 saa avot 0, 6, 5, 30 ja 70. Takoitus on laskea 0 ja 0 Theveninin ekvivalentin avulla. Tämä takoittaa sitä, että muodostetaan kytkennälle Thevenin ekvivalentti vastuksen 0 napojen suhteen, eli kovataan kytkentä jännitelähteellä E Th ja sen kanssa sajassa olevalla vastuksella Th. Theveninin lähdejännite E Th on takasteltavien napojen välinen tyhjäkäyntijännite, ja Thevenin esistanssi Th on kytkennän kokonaisesistanssi takasteltavista navoista katsottuna. Muutetaan 00 :n jännitelähde vitalähteeksi. 40 :n vastus tulee nyt vitalähteen innalle, ja vitalähteen lähdeviaksi saadaan: 00/40 A = 5 A. Lähdevian suunta on ylöspäin, koska jännitelähdekin syöttää vitaa ylöspäin. Yhdistetään sitten innakkain olevat 0 :n ja 40 :n vastukset. Yhdistetyksi esistanssiksi saadaan:

6 Myös 0 A:n ja 5 A:n vitalähteet ovat innakkain. innakkain olevat vitalähteet voidaan Kichhoffin vitalain peusteella yhdistää summaamalla. Koska molemmat lähteet syöttävät vitaa ylöspäin, yhdistetyn vitalähteen ylöspäin syöttämäksi viaksi saadaan: = A = 5 A. Nyt siis kytkennässä on innakkain 5 A:n vitalähde (vita ylöspäin) ja 8 :n vastus. Tämän innankytkennän kanssa on sajassa :n vastus. Muutetaan vitalähde jännitelähteeksi. tulee jännitelähteen kanssa sajaan, ja lähdejännitteeksi E Th saadaan: E Th = 5 8 = 0. Lähteen plusnapa on ylhäällä ja miinusnapa alhaalla, jotta vian suunta säilyy muuttumattomana. Nyt ja ovat sajassa, joten niiden yhdistetyksi esistanssiksi Th saadaan Th = 8 + = 0. Th E Th Muodostettu Theveninin ekvivalentti näyttää seuaavalta. Palautetaan sitten 0 paikalleen ja lasketaan 0 ja 0. 0 ETh, 0 = 0 0 Th 0 (i) 0 = 0 0 = A, 0 = 0. (ii) 0 = 6 0 = 7.5 A, 0 = 45. (iii) 0 = 5 0 = 4.8 A, 0 = 7. (iv) 0 = 30 0 = 3 A, 0 = 90. (v) 0 = 70 0 =.5 A, 0 = Määitä alla olevan kytkennän vastuksen 3 läpi kulkeva vita käyttäen hyväksi Theveninin teoeemaa. E, E 3.8, 4, 6, 3.6

7 Muunnetaan E vitalähteeksi, jotta saataisiin vastukset ja innakkain ja yhdistettyä: J E 0,5 A 4. :n ja :n innankytkennästä saadaan nyt: 6 4,4. (6+4) Muunnetaan vitalähde jännitelähteeksi E J 0,5 A,4, ja lasketaan lähteet yhteen ETh E E (, 3,8) 5. Piiiin jää täten 5:n jännitelähde (plussa ylöspäin) ja.4 vastus sajassa 3 :n kanssa. iaksi saadaan: E Th Th 3 5 (,4,6) A.

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

Théveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2

Théveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2 Théveninin teoreema Vesa Linja-aho 3.0.204 (versio.0) Johdanto Portti eli napapari tarkoittaa kahta piirissä olevaa napaa eli sellaista solmua, johon voidaan kytkeä joku toinen piiri. simerkiksi auton

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

FysE301/A Peruskomponentit: vastus, diodi ja kanavatransistori

FysE301/A Peruskomponentit: vastus, diodi ja kanavatransistori Tiia Monto Työ tehty:.3. ja 8.3.00 tiia.monto@jyu. 040758560 FysE30/A Peruskomponentit: vastus, diodi ja kanavatransistori Assistentti: Arvostellaan: Abstract Työssä tutkittiin vastusta, diodia ja transistoria.

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Fysiikka 6. Sähkö. Kustannusosakeyhtiö Tammi Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Fysiikka 6. Sähkö. Kustannusosakeyhtiö Tammi Helsinki Tehtävien atkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen Fysiikka 6 Sähkö Kustannusosakeyhtiö Tammi Helsinki . painos Tekijät ja Kustannusosakeyhtiö Tammi, 0 ISBN: 978-95-3-5708-

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

FYSP104 / K2 RESISTANSSIN MITTAAMINEN

FYSP104 / K2 RESISTANSSIN MITTAAMINEN FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola Hakkuriteholähde Hakkuriteholähteet imo Lepola Hakkuriteholähde Lineaarinen teholähde Kookas ja painava muuntaja imo Lepola 2 Hakkuriteholähde Lineaarinen teholähde Isot kondensaattorit ja transistorit

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11

TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11 TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11 Vesa Linja-aho Metropolia 7. syyskuuta 2011 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta 2011 1 / 123 Sisällysluettelo

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015 Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

TEHTÄVÄT KYTKENTÄKAAVIO

TEHTÄVÄT KYTKENTÄKAAVIO TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4 MAB: Ympyä 4 Aluksi Tämän luvun aihe on ympyä. Ympyä on yksi geometisista peusmuodoista ja on sinulle ennestään hyvinkin tuttu. Mutta oletko tullut ajatelleeksi, että ympyää voidaan pitää säännöllisen

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D 11 2. DC-SWEEP, AC-SWEEP JA PSPICE A/D Oleellista sweep -sovelluksissa on se, että DC-sweep antaa PSpice A/D avulla graafisia esityksiä, joissa vaaka-akselina on virta tai jännite, AC-sweep antaa PSpice

Lisätiedot

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen. 25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Ledien kytkeminen halpis virtalähteeseen

Ledien kytkeminen halpis virtalähteeseen Ledien kytkeminen halpis virtalähteeseen Ledien valovoiman kasvu ja samanaikaisen voimakkaan hintojen lasku on innostuttanut monia rakentamaan erilaisia tauluja. Tarkoitan niillä erilaista muoveista tehtyjä

Lisätiedot

521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2014

521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2014 52302A PIIRITEORIA Laskuharjoitukset - syksy 204 Sisältö Kurssitietoa... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 24 Harjoitus 2... 25 LTspice-vinkkejä... 35 Harjoitus 3... 37 Harjoitus

Lisätiedot

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma.

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma. Ketaustehtäviä 1. b) Vastuksen esistanssi on U 4,5 V R 53,5714 Ω. I,84 A Vastuksen läpi kulkevan sähkövian suuuus uudessa tapauksessa on U 1 V I ma. R 53,5714 Ω. b) Koska vastukset on kytketty innan, kummankin

Lisätiedot

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004 TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 004 Tst:n labratyöt liittyvät kiinteästi fysiikan laboratoriotöihin. Tämän vuoksi tähän monisteeseen ei ole

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

SÄHKÖSUUREIDEN MITTAAMINEN

SÄHKÖSUUREIDEN MITTAAMINEN FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa

Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa Nimi: Pisteet: Koulu: Lue liitteenä jaettu artikkeli Solar Lamp (Elector Electronics 9/2005) ja selvitä itsellesi laitteen toiminta. Tätä artikkelia

Lisätiedot

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

IIZE3010 Elektroniikan perusteet Harjoitustyö. Pasi Vähämartti, C1303, IST4SE

IIZE3010 Elektroniikan perusteet Harjoitustyö. Pasi Vähämartti, C1303, IST4SE IIZE3010 Elektroniikan perusteet Harjoitustyö Pasi Vähämartti, C1303, IST4SE 2 (11) Sisällysluettelo: 1. Tehtävänanto...3 2. Peruskytkentä...4 2.1. Peruskytkennän käyttäytymisanalyysi...5 3. Jäähdytyksen

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT sivu 1 / 10 3 pistettä 1. Kuinka monta pilkkua kuvan leppäkertuilla on yhteensä? (A) 17 (B) 18 (C) 19 (D) 20 (E) 21 Ratkaisu: Pilkkuja on 1 + 1 + 1 + 2 + 2 + 1 + 3 + 2 + 3 + 3 = 19. 2. Miltä kuvan pyöreä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT 4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Tekstikoe ja Ongelmanratkaisu HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

Lisätään kuvaan muuntajan, mahdollisen kiskosillan ja keskuksen johtavat osat sekä niiden maadoitukset.

Lisätään kuvaan muuntajan, mahdollisen kiskosillan ja keskuksen johtavat osat sekä niiden maadoitukset. MUUNTAMON PE-JOHDOT Kun kuvia piirretään kaaviomaisina saattavat ne helposti johtaa harhaan. Tarkastellaan ensin TN-C, TN-C-S ja TN-S järjestelmien eroja. Suomessa käytettiin 4-johdin järjestelmää (TN-C)

Lisätiedot

Virtapiirien perusteet 5op, AUT2SN / Jaakko Kaski jaakko.kaski@oamk.fi, huone: 3354

Virtapiirien perusteet 5op, AUT2SN / Jaakko Kaski jaakko.kaski@oamk.fi, huone: 3354 1 Virtapiirien perusteet 5op, AUT2SN / Jaakko Kaski jaakko.kaski@oamk.fi, huone: 3354 https://oiva.oamk.fi/tietoa_opiskelusta/opintojen_suunnittelu/opintojen_rakenne/opas/koulutusohjelmat/?sivu=oj _kuvaus&koodi1=t170103&kieli=fi&opas=2013-2014&lk=s2013&vuosi=13s14k

Lisätiedot

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1. Verkon tiedot on annettu erillisessä Excel-tiedostossa: nimeltä CASE_03-50-prosSC.

ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1. Verkon tiedot on annettu erillisessä Excel-tiedostossa: nimeltä CASE_03-50-prosSC. ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1 Yleisiä ohjeita: Työ tehdään yhdessä laskuharjoitusten aikaan tiistaina 29.11. kello 10.15 12.00 Jos tämä aika ei sovi, voidaan järjestää toinen aika.

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen

Lisätiedot

Yksinkertainen korkolasku

Yksinkertainen korkolasku Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Kilpailijan nimi: 1) Oheisen kytkennän kokonaisresistanssi on n. 33 Ohm 150 Ohm a) 70 Ohmia b) 100 Ohmia c) 120 Ohmia 120 Ohm 2) Oheisen kytkennän

Lisätiedot