Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Koko: px
Aloita esitys sivulta:

Download "Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014"

Transkriptio

1 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy

2 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa! vaihtojännitteen suunta muuttuu jatkuvasti jaksollinen vaihtojännite vaihtelee positiivisen ja negatiivisen maksimiarvon välillä 5 5 u t Vaihtosähkö peruskäsitteitä 2

3 Vaihtojännitteen määritelmä: Vaihtojännitteen käyrän ja aika-akselin rajoittamat pinta-alat ovat yhtäsuuria aika-akselin ylä- ja alapuolella A 1 = A 2 Vaihtosähkö peruskäsitteitä 3

4 Yleisin vaihtojännitteen aaltomuoto on sini Muita vaihtojännitteen aaltomuotoja ovat esim. kanttiaalto eli sakara-aalto ja kolmioaalto ei sahalaitaaalto siniaalto kanttiaalto kolmioaalto Vaihtosähkö peruskäsitteitä 4

5 Hetkellisarvo on vaihtojännitteen arvo ko. ajanhetkellä. Hetkellisarvoja merkitään pienillä kirjaimilla. jännitteen hetkellisarvo u tai u(t) virran hetkellisarvo i tai i(t) Suurinta hetkellisarvoa kutsutaan huippuarvoksi eli amplitudiksi huippuarvoa merkitään yleensä seuraavasti: u i jännitteen huippuarvo virran huippuarvo Vaihtosähkö peruskäsitteitä 5

6 Pienintä hetkellisarvoa kutsutaan negatiiviseksi huippuarvoksi ( tai pohja-arvoksi ). Positiivisen ja negatiivisen huippuarvon erotus on nimeltään huipusta-huippuun-arvo eli kokonaisvaihtelun arvo (engl. peak to peak-value) Vaihtosähkö peruskäsitteitä 6

7 jakson aikaa merkitään T:llä (engl. period) jakson ajan käänteisluku on taajuus f (engl. frequency) f 1 T f = 1/s = Hz (hertsi) Tässä opintojaksossa tarkastellaan vain jaksollisia signaaleja Vaihtosähkö peruskäsitteitä 7

8 esim. Määritä amplitudi, huipusta huippuun-arvo, jakson aika ja taajuus u / V t / ms Vaihtosähkö peruskäsitteitä 8

9 Jännitteen keskimääräistä arvoa kutsutaan aritmeettiseksi keskiarvoksi Vaihtojännitteen keskiarvo on aina nolla käyrämuodosta riippumatta. Vaihtosähkö peruskäsitteitä 9

10 Vaihtovirran tasasuunnattu keskiarvo eli tasasuuntausarvo ( U r tai u ) muodostetaan siten, että otetaan sekä aika-akselin ylä- että alapuoliset pinta-alat positiivisena Kokoaaltotasasuunnattu vaihtojännite yleismittarien toiminta perustuu yleensä tasasuunnattuun keskiarvoon Vaihtosähkö peruskäsitteitä 10

11 Verkkojännitteestä voidaan tehdä pienempää tasajännitettä seuraavasti: 1) Pienennetään jännite sopivan suuruiseksi muuntajalla 2) Tasasuunnataan jännite diodien avulla. Kokoaaltotasasuunnatun jännitteen muodostamiseen tarvitaan 4 diodia (puolijohdekomponentti). 3) Suodatetaan jännite tasaisemmaksi kondensaattorin (ks. Kpl 2.1) avulla Vaihtosähkö peruskäsitteitä 11

12 Vaihtojännitteen suuruus annetaan useimmiten tehollisarvona (U, U eff tai U rms ) Kun vaihtojännite aiheuttaa vastuksessa yhtäsuuren tehon, kun tasajännite U dc, vaihtojännitteen tehollisarvo U = U dc tehollisarvo voidaan laskea aaltomuodosta riippumatta kaavalla U 1 T T 0 ut 2 dt Vaihtosähkö peruskäsitteitä 12

13 sinimuotoisen vaihtojännitteen tehollisarvo U ^ u 2 Yleismittarit on tehty siten, että ne näyttävät jännitteen (ja virran) tehollisarvoa ainakin sinimuotoisella vaihtosähköllä. Vaihtosähkö peruskäsitteitä 13

14 Kanttiaallon tehollisarvo on huippuarvon suuruinen Kolmioaallon tehollisarvo voidaan laskea U ^ u 3 Vaihtosähkö peruskäsitteitä 14

15 Vaihtojännitteen (ja -virran) mittaaminen: Mittari kytketään AC-asentoon Mittarilla on jokin ala- ja ylärajataajuus, eli mittari näyttää oikein vain tietyllä taajuusalueella Tavallisen yleismittarin toiminta perustuu tasasuunnattuun keskiarvoon. Asteikko on laadittu siten, että mittari näyttää tehollisarvoa sinimuotoista vaihtosähköä mitattaessa. Vaihtosähkö peruskäsitteitä 15

16 Mitattaessa muuta kuin sinimuotoista vaihtosähköä, tavallinen yleismittari ei näytä tehollisarvoa aivan oikein. Virhe ei ole yleensä kovin suuri. Muuta vaihtosähköä kuin sinimuotoista mitattaessa kannattaa käyttää true RMS-mittaria. Tämä näyttää vaihtosähkön tehollisarvon oikein aaltomuodosta riippumatta. Muuta vaihtosähköä kuin sinimuotoista mitattaessa on siis tiedettävä, onko mittari true RMS-periaatteella toimiva vai perustuuko mittaus tasasuunnattuun keskiarvoon. Vaihtosähkö peruskäsitteitä 16

17 Sekajännite Sekajännite on vaihtojännitettä, joka sisältää tasakomponentin Tasakomponenttia kutsutaan myös offsetiksi tai keskiarvoksi u / V Kuvan jännitteen tasakomponentti on 5 V vaihtokomponentin amplitudi on 10 V t / ms Sekajännite 17

18 Sekajännitteen tehollisarvo voidaan laskea kaavalla: U U U 2 2 tasa vaihto jossa U tasa = tasakomponentti U vaihto = vaihtokomponentin tehollisarvo Sekajännite 18

19 Sekajännitteen mittaaminen yleismittarilla: 1) Mitataan tasakomponentti DC-asennossa 2) Mitataan vaihtokomponentti AC-asennossa 3) Lasketaan tehollisarvo em. kaavalla Sekajännitteen tasa- ja vaihtokomponentit on mitattava erikseen myös true RMS-mittareita käytettäessä On olemassa myös AC-DC-kytkettyjä true RMSmittareita, jotka näyttävät suoraan sekajännitteen tehollisarvon. Nämä mittarit ovat tosin melko harvinaisia. Sekajännite 19

20 Sinimuotoinen vaihtojännite (tai -virta) u / V / (tai rad) ut () usin Sinimuotoinen vaihtosähkö 20

21 u Vaaka-akselilla on useimmiten aika t ut () usin ut () usint 2 T = kulmanopeus = rad/s T = jakson aika f = taajuus 2f Sinimuotoinen vaihtosähkö 21

22 Aikaero ja vaihe-ero u t ut () usin( t) on aikaeroa t vastaava vaihe-ero t T 3600 tai t T 2 Sinimuotoinen vaihtosähkö 22

23 u t ut () usin( t) t T 3600 tai t T 2 Sinimuotoinen vaihtosähkö 23

24 esim. verkkojännite vaiheen ja maan välillä sin( 250t) u 325 V U = 230 V T = 20 ms t f = 50 Hz u( t) 325V sin(100t) Sinimuotoinen vaihtosähkö 24

25 2. PASSIIVISET KOMPONENTIT Vastuksen lisäksi passiivisia komponentteja ovat: kondensaattori kela eli käämi Vaihtosähkö peruskäsitteitä 25

26 2.1. Kondensaattori Kondensaattori on komponentti, jolla on kyky varastoida energiaa sähkökenttään. Tätä ominaisuutta kuvaa suure kapasitanssi C C Q U jossa Q = sähkövaraus U = jännite [C] = F (Faradi) [Q] = C (Coulombi Vaihtosähkö peruskäsitteitä 26

27 kondensaattorin piirrosmerkki Kondensaattorin virran ja jännitteeen välinen riippuvaisuus: i c i C C du dt C C u c u C 1 C idt C Vaihtosähkö peruskäsitteitä 27

28 Kondensaattorien sarjakytkentä C 1 C 2 C 3 U Kondensaattorien sarjakytkennässä jokaisen kondensaatorin varaus on sama. Kokonaiskapasitanssi lasketaan kuten vastusten rinnankytkentä. U C T C C C C T Vaihtosähkö peruskäsitteitä 28

29 Kondensaattorien rinnankytkentä U C 2 C 1 C 3 Kondensaattorien rinnankytkennässä jokaisen kondensaatorin jännite on sama. Kokonaiskapasitanssi lasketaan kuten vastusten sarjakytkentä. C T U C T = C 1 + C 2 + C 3 Vaihtosähkö peruskäsitteitä 29

30 Kondensaattori tasasähköpiirissä Jatkuvassa tilassa kondensaattori on katkos virtapiirissä Kondensaattori on varautunut kytkennän määräämään jännitteeseen Kondensaattorin varaus on Q = C U Kondensaattorin sähkökenttään on varastoitunut energiaa Vaihtosähkö peruskäsitteitä 30

31 2.2. Kela Kela on komponentti, jolla on kyky varastoida energiaa magneettikenttään. Tätä ominaisuutta kuvaa suure induktanssi L L N 2 l A jossa N = kierrosluku = sydänmateriaalin permeabiliteetti A = sydämen poikkipinta l = kelan pituus [L] = H (Henry) Vaihtosähkö peruskäsitteitä 31

32 kelan piirrosmerkki Kelan virran ja jännitteeen välinen riippuvaisuus: i L u L L di dt L u L i L 1 L u L dt Vaihtosähkö peruskäsitteitä 32

33 Kelojen sarjakytkentä L 1 L 2 L 3 Kelojen sarjakytkennässä kokonaisinduktanssi lasketaan kuten vastusten sarjakytkennässä. L T L T = L 1 + L 2 + L 3 Vaihtosähkö peruskäsitteitä 33

34 Kelojen rinnankytkentä L 1 L 2 L 3 Kelojen rinnankytkentä lasketaan samanlaisesti kuin vastusten rinnankytkentä. L T L L L L T Vaihtosähkö peruskäsitteitä 34

35 Kela tasasähköpiirissä Jatkuvassa tilassa kela on oikosulku virtapiirissä Kelan läpi kulkee kytkennän määräämä virta Kelan magneettikenttään on varastoitunut energiaa Vaihtosähkö peruskäsitteitä 35

36 3. PASSIIVISET KOMPONENTIT VAIHTOSÄHKÖPIIRISSÄ 3.1. Vaihtosuureiden positiivisen suunnan valinta Vaihtosuureet kuten jännite, virta jne. vaihtelevat positiivisen ja negatiivisen huippuarvon välillä. Jatkossa oletetaan, että vaihtosähköstä puhuttaessa kyseessä on sinimuotoinen vaihtosähkö. Jos aaltomuoto on muuta kuin siniä, se mainitaan erikseen. Passiiviset komponentit vaihtosähköpiirissä 36

37 Vaihtosuureille on laskennallista ja matemaattista käsittelyä varten valittava positiiviset suunnat. Ne valitaan piirtämällä virtapiiripiirroksiin suuntanuolet. Vaihtoehtoinen tapa on on käyttää + ja - merkkejä. Suuntanuolien suunta on plussasta miinukseen. i R u R u R Suuntien merkitseminen virtapiiripiirroksiin on välttämätöntä, jotta yhtälöistä ja osoitinpiirroksista tulisi yksikäsitteisiä. Passiiviset komponentit vaihtosähköpiirissä 37

38 3.2. Vastus vaihtosähköpiirissä i R u u R Jännitelähteen syöttämä sinimuotoisen jännitteen hetkellisarvo on: uu sin t Passiiviset komponentit vaihtosähköpiirissä 38

39 Virran hetkellisarvo on tällöin Ohmin lain mukaan: i R u,i ^ u u u ^ R sint ir sint R R R ) t u R i R Vastukseen vaikuttavat jännite ja virta ovat samanvaiheiset eli niiden välinen vaihesiirtokulma on 0. Passiiviset komponentit vaihtosähköpiirissä 39

40 Jännitteen ja virran huippuarvojen välillä vallitsee yhtälö ^ ^ u i R Jaetaan yhtälön molemmat puolet sinimuotoisen suureen huippukertoimella (2): ^ ^ i u 2 2R I U R Ohmin laki pätee myös jännitteen ja virran tehollisarvojen välillä. Passiiviset komponentit vaihtosähköpiirissä 40

41 3.3. Kela vaihtovirtapiirissä i L L u L Oletetaan kela ideaaliseksi, jolloin sen resistanssi on nolla ja siinä ei synny virtalämpöhäviöitä. Kun sinimuotoinen jännite vaikuttaa käämiin, virta on i i sint L ^ L Passiiviset komponentit vaihtosähköpiirissä 41

42 Kelan jännite u L L di dt L u L d dt ( i sin t) Li cost L L L u Li sin t90 u sin( t90) L L L Passiiviset komponentit vaihtosähköpiirissä 42

43 u,i u L i L KELAAN VAIKUTTAVA JÄNNITE ON 90 EDELLÄ VIRTAA. Vaihesiirtokulma katsotaan virtaosoittimesta jänniteosoittimeen, joten = +90. Passiiviset komponentit vaihtosähköpiirissä 43

44 Jännitteen huippuarvoon pätee edellä esitetyn mukaan yhtälö ^ u L Li ^ L Jaetaan yhtälö 2:lla, jolloin saadaan tehollisarvoille yhtälö ^ ^ u L i L L 2 2 U L = LI L = X L I L Yhtälöissä esiintyvä suure L on Ohmin lain mukaan käämin vaihtovirran kulkua vastustava ominaisuus. Sitä kutsutaan INDUKTIIVISEKSI REAKTANSSIKSI X L. Passiiviset komponentit vaihtosähköpiirissä 44

45 X L = L = 2fL Yksiköksi saadaan: [ X ] [ ] Vs V [ L] 1 L s A A Eli sama yksikkö kuin resistanssilla Passiiviset komponentit vaihtosähköpiirissä 45

46 3.4. Kondensaattori vaihtosähköpiirissä Oletus:Kondensaattori on ideaalinen eli sen eristysresistanssi on ääretön. i C C u C Kondensaattoriin, jonka kapasitanssi on C, vaikuttaa sinimuotoinen jännite u u sint C c Passiiviset komponentit vaihtosähköpiirissä 46

47 Kondensaattorin varauksen hetkellisarvo on q = Cu, joten sähkövarauksen yhtälö on: q Cusint qsint Jännite ja sähkövaraus vaihtelevat samanaikaisesti eli ne ovat samanvaiheisia. Koska varaus vaihtelee näin, kondensaattori vuoroin varautuu ja vuoroin purkautuu jännitteen vaihtelun mukaan. Virtapiirissä kulkee vaihtovirta. Passiiviset komponentit vaihtosähköpiirissä 47

48 Kondensaattorin virta: i C C du dt C C du ( t Csin ) dt i Cu cost C C i Cu sin( t90) C C Passiiviset komponentit vaihtosähköpiirissä 48

49 u C, i C t u C i C KONDENSAATTORIN JÄNNITTEEN VAIHDELLESSA SINIMUOTOISESTI, VIRTAPIIRIIN SYNTYY SINIMUOTOINEN VIRTA, JOKA ON 90 EDELLÄ JÄNNITETTÄ. Passiiviset komponentit vaihtosähköpiirissä 49

50 Virran huippuarvo on: i C Cu C Jaetaan edellinen yhtälö 2:lla. Jännitteen ja virran tehollisarvojen väliseksi yhteydeksi saadaan: ^ ^ i C u C C 2 2 I C CU C U C 1 C Passiiviset komponentit vaihtosähköpiirissä 50

51 1 C on kondensaattorin vaihtovirran kulkua vastustava ominaisuus. Suuretta kutsutaan kapasitiiviseksi reaktanssiksi X c. X C Yksiköksi saadaan: 1 1 C 2fC V C 1 s F 1 As A s V X C Eli sama yksikkö kuin resistanssilla Passiiviset komponentit vaihtosähköpiirissä 51

52 3.5. Vaihtosuureen kuvaaminen osoittimella Lasketaan yhteen jännitteet u 1 ja u 2. u 1 u 2 u T Summajännite u T saadaan laskemalla hetkellisarvoilla u T = u 1 + u 2 Passiiviset komponentit vaihtosähköpiirissä 52

53 Otetaan käyttöön osoitinlaskenta: Sinimuotoisesti vaihtelevan suureen vaihtelua voidaan kuvata päätepisteensä ympärillä pyörivällä osoittimella. Osoittimen pituus on yhtäsuuri kuin suureen huippuarvo Osoitin pyörii vastapäivään kulmanopeudella Sähkösuureen hetkellisarvo on joka hetkenä osoittimen pystykomponentti Passiiviset komponentit vaihtosähköpiirissä 53

54 Passiiviset komponentit vaihtosähköpiirissä 54

55 Passiiviset komponentit vaihtosähköpiirissä 55

56 Esim. 1 Jännite u = 100 sin ( 200t + 36 ) V voidaan antaa muodossa u = V Virta i = 2 sin ( 100t - 90) A voidaan antaa muodossa i = 2-90 A Passiiviset komponentit vaihtosähköpiirissä 56

57 Jännitteen (eikä virran) vaihekulmalla ei ole mitään absoluuttista arvoa, kulmat muuttuvat jatkuvasti taajuuden määräämällä nopeudella. Vaihekulmien erotus pysyy samana, koska molempien jännitteiden taajuus oli sama. Vaihe-eroa ei voisikaan määrittää, jos jännitteiden taajuus olisi eri. Lisäksi on hyvä huomata, että esimerkissä osoittimien suuruus oli sama kuin jännitteiden huippuarvo. JATKOSSA LASKETAAN YLEENSÄ TEHOLLISARVOILLA. Passiiviset komponentit vaihtosähköpiirissä 57

58 Seuraavilla sivuilla esitellään menetelmä, miten ratkaistaan systemaattisesti vaihtosähköpiirejä. Tämän kurssin puitteissa asioita yksinkertaistetaan voimakkaasti. Osoitinlaskentaa ei oleteta osattavan eikä sitä käytetä laskuissa. Vaihtosähkö peruskäsitteitä 58

59 Laskeminen osoitinluvuilla Osoitinsumma U U U U U U U cos ju sin U cos ju sin Osoitintulo U IZ I Z IZ( ) Osoitinosamäärä U U 1 2 U U U1 1 2 U ( ) Passiiviset komponentit vaihtosähköpiirissä 59

60 3.6. Impedanssi Vaihtosähköpiireissä ohmin laki voidaan kirjoittaa muotoon Z U I Impedanssi voidaan laskea myös itseisarvoilla Z U I Impedanssin yksiköksi tulee: Z U I V A Passiiviset komponentit vaihtosähköpiirissä 60

61 Vastus I R ) u R U R U R i R Vastuksen impedanssi on sen resistanssi. Vastuksen virta ja jännite ovat saman vaiheiset, joten resistanssin vaihekulma on 0. Z R U I R R U I R R 0 0 R 0 R Passiiviset komponentit vaihtosähköpiirissä 61

62 Kela i L u L L i L Kelan virta on 90 jäljessä jännitettä. Kelan impedanssi on sen induktiivinen reaktanssi, jonka vaihekulmaksi tulee + 90 Z L U L U 90 XL I I 90 0 L jx jl j2fl L jx L Passiiviset komponentit vaihtosähköpiirissä 62

63 Kondensaattori i C C u C u C i C Kondensaattorin virta on 90 edellä jännitettä. Kondensaattorin impedanssi on sen kapasitiivinen reaktanssi, jonka vaihekulmaksi tulee - 90 Z C U I C C U C 0 I 90 C X 90 C jx C 1 1 jx C jc j2fc Passiiviset komponentit vaihtosähköpiirissä 63

64 3.7. Vastus ja kela sarjassa vaihtosähköpiirissä U R I R U L U L Vastuksen virta ja jännite ovat samanvaiheiset => resistanssin vaihekulma on 0 R = R = R0 Kelan virta on 90 jäljessä jännitettä => induktiivisen reaktanssin vaihekulma on 90 X L = jx L = X L 90 Passiiviset komponentit vaihtosähköpiirissä 64

65 6 Osoitinpiirros: 0 U L U I U R Passiiviset komponentit vaihtosähköpiirissä 65

66 Osoitinpiirros on piirretty tehollisarvoilla. Huippuarvoilla piirrettynä muoto pysyisi samana, jokainen vektori olisi vain 2-kertaa pidempi. Kokonaisjännite on komponenttien jännitteiden geometrinen summa: U= U R + U L = I*R + I*jX L = I ( R + jl ) = I Z Z = kytkennän impedanssi Passiiviset komponentit vaihtosähköpiirissä 66

67 Osoitinpiirrosta vastaava impedanssikolmio Z X L R Resistanssin R Impedanssin Z välinen kulma on sama kulma kuin osoitinpiirroksessa virran ja kokonaisjännitteen välinen kulma! Passiiviset komponentit vaihtosähköpiirissä 67

68 3.8. Vastus ja kondensaattori sarjassa vaihtosähköpiirissä U R I R U C U C Vastuksen virta ja jännite ovat samanvaiheiset => resistanssin vaihekulma on 0 R= R = R0 Kondensaattorin virta on 90 edellä jännitettä => kapasitiivisen reaktanssin vaihekulma on - 90 X C = - jx C = X C -90 Passiiviset komponentit vaihtosähköpiirissä 68

69 6 Osoitinpiirros: 0 I U R U C U Passiiviset komponentit vaihtosähköpiirissä 69

70 Kokonaisjännite on komponenttien jännitteiden geometrinen summa: U= U R + U C = IR + I(-jX C ) = I (R jx C ) I R 1 j C = I Z Z = kytkennän impedanssi Passiiviset komponentit vaihtosähköpiirissä 70

71 Osoitinpiirrosta vastaava impedanssikolmio R Z X C Resistanssin R ja impedanssin Z ja välinen kulma on jälleen sama kulma kuin osoitinpiirroksessa virran ja kokonaisjännitteen välinen kulma! Kulma katsotaan aina virtavektorista jännitevektoriin päin, joten tässä tapauksessa kulma on negatiivinen.impedanssin itseisarvo voidaan laskea Pythagoraan lauseen avulla: 2 2 Z R X C Passiiviset komponentit vaihtosähköpiirissä 71

72 4. TEHO VAIHTOSÄHKÖPIIRISSÄ i u Z Tehon hetkellisarvo p = u i Teho vaihtosähköpiirissä 72

73 u i 0 p = ui P (pätöteho) Tehon keskiarvoa kutsutaan pätötehoksi P Teho vaihtosähköpiirissä 73

74 Pätöteho Loisteho Näennäisteho P = U I cos Q = U I sin S = U I S= UI* U = jännitteen tehollisarvo I = virran tehollisarvo = virran ja jännitteen välinen vaihekulma cos = tehokerroin I* = virran liittoluku (tehollisarvo) Teho vaihtosähköpiirissä 74

75 Pätöteho on tehon reaaliosa, loisteho on imaginääriosa ja näennäisteho on em. geometrinen summa. i Jos Z = Z u Z merkitään I = I0 U= U I U Z R X S P Q osoitinpiirros teho vaihtosähköpiirissä impedanssikolmio tehokolmio 75

76 TEHOJEN YKSIKÖT Pätöteho [P] = W (Watti) Loisteho [Q] = var (vari) Näennäisteho [S] = VA (volttiampeeri) Teho vaihtosähköpiirissä 76

77 RESISTANSSI VAIHTOSÄHKÖPIIRISSÄ i u R I U Pätöteho P UI cos UI P U R 2 2 I R Loisteho Q UIsin 0 Teho vaihtosähköpiirissä 77

78 u i p = ui P (pätöteho) Teho vaihtosähköpiirissä 78

79 INDUKTANSSI VAIHTOSÄHKÖPIIRISSÄ i U u L Pätöteho P Loisteho UI cos 0 Q UIsin UI I Q U X 2 L 2 I X L Teho vaihtosähköpiirissä 79

80 0 u i p = ui Teho vaihtosähköpiirissä 80

81 KAPASITANSSI VAIHTOSÄHKÖPIIRISSÄ i I u C U Pätöteho P Loisteho UI cos 0 Q UIsin UI Q U X 2 C 2 I X C Teho vaihtosähköpiirissä 81

82 5 u i p = ui Teho vaihtosähköpiirissä 82

83 LOISTEHO LASKUISSA Laskuissa kapasitiivinen loisteho otetaan negatiivisena (-jq) ja induktiivinen loisteho positiivisena (+jq) Usein sanotaan, että induktiivinen loisteho on loistehon kuluttamista ja kapasitiivinen loisteho on loistehon tuottamista P R L S P Q R C S Q Teho vaihtosähköpiirissä 83

84 LOISTEHON KOMPENSOINTI Monet sähköverkon kuormitukset ottavat verkosta pätötehon lisäksi induktiivista loistehoa. Tällaisia kuormituksia ovat esim. sähkömoottorit ja loistelamppuvalaisimet. Verkosta otettava induktiivinen loisteho aiheuttaa ns. loisvirran, joka summautuu pätövirtaan. Verkosta otettava virta on suurempi kuin mitä pelkän pätötehon siirtäminen edellyttäisi Sähköverkon komponentit (kaapelit, kytkinlaitteet, suojalaitteet ym.) mitoitetaan karkeasti ottaen virran perusteella. (Mitä suurempi virta, sitä paksummat piuhat) Teho vaihtosähköpiirissä 84

85 Suuret sähkönkäyttäjät joutuvat maksamaan kuluttamastaan loistehosta. Loisvirta aiheuttaa tehohäviöitä verkossa. Lisäksi loisteho pitää tuottaa jossakin voimalaitoksella. Kotitalouskuluttaja ei joudu loistehosta maksamaan Loistehon kuluttaminen ja siirtäminen verkossa ei kannata. Loistehosta kun ei ole mitään hyötyä. Teho vaihtosähköpiirissä 85

86 Loisvirta voidaan poistaa tai sitä voidaan pienentää kytkemällä induktiivisen kuormituksen rinnalle kondensaattori U C Tätä kutsutaan LOISTEHON KOMPENSOINNIKSI Teho vaihtosähköpiirissä 86

87 U C Kondensaattori mitoitetaan siten, että se tuottaa suurinpiirtein saman verran loistehoa kuin mitä kuluu laitteessa (induktanssissa) Kondensaattorin loisteho Q U X C 2 Loistehoa ei kompensoida yleensä täysin, vaan tehokerroin jätetään hieman induktiiviselle puolelle Teho vaihtosähköpiirissä 87

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA 1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,

Lisätiedot

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015 Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1 SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että

Lisätiedot

Luku 13. Vaihtovirrat Sinimuotoinen vaihtojännite

Luku 13. Vaihtovirrat Sinimuotoinen vaihtojännite Luku 13 Vaihtovirrat 13.1 Sinimuotoinen vaihtojännite Vaihtojännitegeneraattorin toimintaperiaate on esitetty kappaleessa 10.7. Sen perusteella homogeenisessa magneettikentässä pyörivään johdinsilmukkaan

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita oppia tuntemaan analogisen ja digitaalisen yleismittarin tärkeimmät erot ja niiden suorituskyvyn rajat oppia yleismittareiden oikea ja rutiininomainen

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista

Lisätiedot

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola Hakkuriteholähde Hakkuriteholähteet imo Lepola Hakkuriteholähde Lineaarinen teholähde Kookas ja painava muuntaja imo Lepola 2 Hakkuriteholähde Lineaarinen teholähde Isot kondensaattorit ja transistorit

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

S Piirianalyysi 1 2. välikoe

S Piirianalyysi 1 2. välikoe S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

RCL-vihtovirtapiiri: resonanssi

RCL-vihtovirtapiiri: resonanssi CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn

Lisätiedot

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk. TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC Induktiivisuus 1 WURTH ELEKTRONIK Induktiivisuuden ABC ESIPUHE Osa 1: ABC Osa 2: Sovellukset Osa 3: Komponentit Nämä oppaat on tehty yhteistyössä parhaiden asiantuntijoiden kanssa. 2 Induktiivisuuden ABC

Lisätiedot

Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä.

Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä. SÄHKÖJOHDOT Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä. R jx Resistanssit ja reaktanssit pituusyksikköä kohti saadaan esim. seuraavasta taulukosta. Huomaa,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Laitteita - Yleismittari

Laitteita - Yleismittari Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Sähkönjakelutekniikka osa 1. Pekka Rantala

Sähkönjakelutekniikka osa 1. Pekka Rantala Sähkönjakelutekniikka osa 1 Pekka Rantala 27.8.2015 Opintojakson sisältö 1. Johdanto Suomen sähkönjakelun rakenne Kantaverkko, suurjännite Jakeluverkot, keskijännite Pienjänniteverkot Suurjänniteverkon

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016 Sähkötekniikan perusteita Pekka Rantala Syksy 2016 Sisältö 1. Sähköasennuksia sääteleviä säännöksiä 2. Sähkötekniikan perusteita 3. 3-vaihejärjestelmä 4. Muutamia perusjuttuja 1. Sähköasennuksia sääteleviä

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen

Lisätiedot

SÄHKÖSUUREIDEN MITTAAMINEN

SÄHKÖSUUREIDEN MITTAAMINEN FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD

Lisätiedot

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Elektroniikka ja sähkötekniikka

Elektroniikka ja sähkötekniikka Elektroniikka ja sähkötekniikka Sähköisiltä ilmiöiltä ei voi välttyä, vaikka ei käsittelisikään sähkölaitteita. Esimerkiksi kokolattiamatto, muovinen penkki, piirtoheitinkalvo tai porraskaide tulevat sähköisiksi,

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

MT , Sähkökemialliset tutkimusmenetelmät

MT , Sähkökemialliset tutkimusmenetelmät MT-., Sähkökemialliset tutkimusmenetelmät Impedanssispektroskopia Sähkökemiallinen impedanssipektroskopia Electrochemical Impedance Spectroscopy, EIS Mitataan pintaa kuvaavaa sähköistä piiriä eri taajuuksilla

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot