TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11

Koko: px
Aloita esitys sivulta:

Download "TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11"

Transkriptio

1 TA00AB71 Tasasähköpiirit (3 op) Syksy 2011 / Luokka AS11 Vesa Linja-aho Metropolia 7. syyskuuta 2011 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Sisällysluettelo Klikkaamalla luennon nimeä pääset hyppäämään luennon ensimmäiselle kalvolle viikko 2 2. viikko 3 3. viikko 4 4. viikko 5 5. viikko 6 6. viikko 7 7. viikko Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

2 1. viikko Kurssin perustiedot Opettaja: DI Vesa Linja-aho, Tunnit ma klo (luentopainotteinen) ja to (harjoituspainotteinen), luokka P506 Suorittaminen: Loppukoe, johon saa hyvitystä harjoitustehtävistä. Koe on ti klo Kurssilla ei ole pakollista oppikirjaa, mutta halukkaat voivat ostaa (tai lainata) itseopiskelua varten kirjan: Kimmo Silvonen: Sähkötekniikka ja piiriteoria. Kirjan hinta (tarkistettu ) 29, ,20 2 Kirjasta opiskellaan tällä kurssilla luku 1. Kirjaa on saatavilla myös Metropolian, kaupungin ja TKK:n kirjastosta. Kirja kelpaa oppikirjaksi myös kurssille Vaihtosähköpiirien perusteet (syksy 2011). Kaikista muutoksista tiedotetaan Tuubi-portaalissa! Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Harjoitustehtävät 1. viikko Joka viikolla annetaan viisi harjoitustehtävää. Torstain tunnit on varattu tehtävien ohjattua laskemista varten. Tehtävien laskemisesta saa bonusta kokeeseen: jos lasket yli 50 % tehtävistä, saat jättää yhden tehtävän kokeessa tekemättä. Jos lasket yli 80 % tehtävistä, saat jättää kaksi tehtävää tekemättä. Aikaa tehtäväsarjojen laskemiseen on kaksi viikkoa. Esimerkiksi ensimmäisen viikon tehtävät on oltava laskettuna toisen viikon torstaina (sen jälkeen niistä ei saa enää bonuspisteitä). Lasketut tehtävät näytetään opettajalle, joka kirjaa suoritukset listaan. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

3 Kurssin oppimistavoitteet Opinto-oppaasta: Tavoitteet 1. viikko Kyky yksinkertaisten lineaaristen tasasähköpiirien laskemiseen peruslakeja hyödyntäen ja kyky riippumattomia lähteitä sisältävien verkkojen analysointiin. Tasavirtapiirien analysoinnin ja laskemisen perusteet ja eri sähkösuureiden laskeminen. Opittu on jatkossa tärkeänä pohjana käsiteltäessä vaihtosähköpiirejä. Kyky ymmärtää ja laskea myös laskukoneella perustasasähköpiirejä. Kyky lukea ja analysoida piirikaavioita sekä kyky ymmärtää virtojen että jännitteiden suunnat ja näiden merkitys. Sisältö Perussuureet, yksiköt ja virtapiirin osat. Ohmin laki, sähköteho, Kirchoffin jänniteja virtalait, sarja- ja rinnakkaispiirit, Theveninin ja Nortonin teoreemat. Laskuesimerkit ja laskuharjoitukset myös kerrostamismenetelmän avulla. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Alustava viikkoaikataulu 1. viikko 1 Sähkötekniikan perussuureet ja yksiköt. Jännitelähde, virtalähde ja vastus. Kirchhoffin lait ja Ohmin laki. Sarjaan- ja rinnankytkentä. 2 Sähköteho. (Maa)solmu. Solmujännitemenetelmä. 3 Konduktanssi. Solmujännitemenetelmän harjoittelua. 4 Lähdemuunnos. Théveninin ja Nortonin teoreemat. 5 Kerrostamismenetelmä. 6 Jännitteenjako- ja virranjakosäännöt. Ohjatut lähteet. Kela ja kondensaattori tasasähköpiirissä. 7 Kertaus. 8 Koe. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

4 1. viikko Kurssi muodostaa pohjan sähkötekniikan opiskelulle Kurssin tietoja tarvitaan kursseilla Vaihtosähköpiirien perusteet, Mittaustekniikka ja sähköturvallisuus, Autosähkötekniikka, Autosähkölaboraatiot, Elektroniikan perusteet 1 & 2... Tärkeää! Opiskelemalla tämän kurssin asiat kunnolla helpotat omaa työtäsi jatkossa! Tasasähkötekniikan perusteiden osaaminen on autosähköinsinöörille yhtä tärkeää kuin kirjanpidon perusteiden osaaminen tilintarkastajalle, lujuusopin perusteiden osaaminen sillanrakennusinsinöörille jne. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Mitä kurssilla ei käsitellä 1. viikko Tällä kurssilla ei käsitellä sähkön fysikaalista olemusta. Kysymykseen "mitä sähkö on?"perehdytään kursseilla Pyörimisliike ja sähkömagnetismi sekä Sähkömagneettinen induktio ja värähtelyt. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

5 1. viikko Opiskelusta Oppitunneilla tarjotaan mahdollisuus oppia - oppiminen on kuitenkin sinusta itsestäsi kiinni. Enemmän vastuuta itsellä kuin ammattikoulussa ja lukiossa. 1 op 26,7 tuntia työtä. 3 op = 80 tuntia työtä. Tästä lähiopetusta on 39 tuntia. Eli opiskelua oletetaan tapahtuvan myös omalla ajalla! Tämä kalvosarja sopii hyvin asioiden kertaamiseen. Jos joudut olemaan paljon pois tunneilta, itseopiskelua varten kannattaa ostaa Silvosen kirja. Jos tunneilla edetään liian nopeasti tai liian hitaasti, sanokaa siitä (joko tunnilla tai kahden kesken [esim. sähköpostitse])! Kyselkää paljon, myös tyhmiä kysymyksiä. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Mikä on vaikeaa ja mikä helppoa? Eri asiat ovat helppoja eri ihmisille. Oma kokemukseni on kuitenkin, että Tasavirtapiirianalyysi on helppoa, koska siinä pärjää perusmatematiikalla. Tasavirtapiirianalyysi on vaikeaa, koska virtapiirit eivät ole samalla tavalla intuitiivisia kuin mekaaniset järjestelmät. Matematiikan opiskelu on tärkeää jatkon kannalta vaihtosähköpiirien analysoinnissa on tärkeää, että osaat laskea kompleksiluvuilla. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

6 1. viikko Sähkövirta Sähkövirta on varauksenkuljettajien liikettä. Yksikkö on ampeeri (A). Suureen lyhenne on I. Sähkövirtaa voidaan verrata letkussa kulkevaan veteen. Virta kiertää aina jossain silmukassa (se ei puristu kasaan eikä häviä olemattomiin). Virtapiirissä virta merkitään nuolella johtimeen: I = 2 ma Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Kirchhoffin virtalaki 1. viikko Kuten edellä todettiin, sähkövirta ei häviä mihinkään. Kirchhoffin virtalaki (myös: Kirchhoffin ensimmäinen laki) Virtapiirin jollekin alueelle tulevien virtojen summa on yhtä suuri kuin sieltä lähtevien virtojen summa. I 1 = 3 ma I 3 = 1 ma I 2 = 2 ma Piirsitpä ympyrän mihin tahansa kohtaan piiriä, ympyrän sisään menee yhtä paljon virtaa kuin mitä tulee sieltä ulos! Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

7 1. viikko Ole tarkka etumerkkien kanssa! Voidaan sanoa: "pankkitilin saldo on -50 euroa"tai "olen 50 euroa velkaa pankille". Voidaan sanoa: "Yrityksen tilikauden tulos oli euroa"tai "firma teki tappiota euroa". Jos mittaat johtimen virtaa virtamittarilla ja se näyttää 15 ma, niin kääntämällä mittarin toisin päin se näyttää 15 ma. Aivan samalla tavalla voidaan virran suunta ilmoittaa etumerkillä. Alla on kaksi täysin samanlaista piiriä. I 1 = 3 ma I 3 = 1 ma I 2 = 2 ma I a = 3 ma I 3 = 1 ma I b = 2 ma Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Jännite 1. viikko Jännite on kahden pisteen välinen potentiaaliero. Suureen lyhenne on U. Virtapiirianalyysissä ei oteta kantaa siihen, miten potentiaaliero on luotu. Jännitteen yksikkö on voltti (V). Jännitettä voi verrata paine-eroon putkessa tai korkeuseroon. Jännitettä merkitään pisteiden välille piirretyllä nuolella. 12 V U = 12 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

8 1. viikko Kirchhoffin jännitelaki Kahden pisteen välillä vaikuttaa sama jännite tarkastelureitistä riippumatta. Tämä on helpoin hahmottaa rinnastamalla jännite korkeuseroihin. Kirchhoffin jännitelaki (myös: Kirchhoffin toinen laki) Silmukan jännitteiden summa on etumerkit huomioon ottaen nolla. 4,5 V ,5 V 1,5 V 1,5 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Ohmin laki 1. viikko Mitä suurempi virta, sitä suurempi jännite ja päinvastoin. Resistanssilla tarkoitetaan kappaleen kykyä vastustaa sähkövirran kulkua. Resistanssi on jännitteen ja virran suhde. Resistanssin tunnus on R ja yksikkö ohmi ( Ω). U = RI I U R Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

9 1. viikko Käsitteitä Virtapiiri Elektronisista komponenteista koostuva järjestelmä, jossa sähkövirta kulkee. Tasasähkö Sähköiset suureet (jännite, virta) eivät muutu - tai muuttuvat vain vähän - ajan kuluessa. Tasasähköpiiri Virtapiiri, jossa jännitteet ja virrat ovat ajan suhteen vakioita. Esimerkki Taskulampussa on tasasähköpiiri (paristo, kytkin ja polttimo). Polkupyörän dynamo ja lamppu puolestaan muodostavat vaihtosähköpiirin. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Vaihtoehtoinen tasasähkön määritelmä Tasajännitteellä ja -virralla voidaan tarkoittaa myös jännitettä ja virtaa, jonka suunta (etumerkki) pysyy samana, mutta suuruus voi vaihdella. Esimerkiksi tavallinen lyijyakkujen laturi tuottaa yleensä nk. sykkivää tasajännitettä, jonka suuruus vaihtelee välillä 0 V V. Tätäkin kutsutaan yleensä tasajännitteeksi. Sopimus Tällä kurssilla tasajännitteellä (virralla) tarkoitetaan vakiojännitettä (virtaa). Sekä suunta että suuruus pysyvät ajan suhteen vakiona. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

10 1. viikko Yksinkertainen virtapiiri Akkuun kiinnitetty hehkulamppu. Hehkulangan resistanssi on 10 Ω. I =? 12 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Yksinkertainen virtapiiri 1. viikko Akkuun kiinnitetty hehkulamppu. Hehkulangan resistanssi on 10 Ω. I =? 12 V 10 Ω Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

11 1. viikko Yksinkertainen virtapiiri Akkuun kiinnitetty hehkulamppu. Hehkulangan resistanssi on 10 Ω. I =? 12 V 10 Ω 12 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Yksinkertainen virtapiiri 1. viikko Akkuun kiinnitetty hehkulamppu. Hehkulangan resistanssi on 10 Ω. + I = 1,2 A 12 V 10 Ω 12 V U = RI I = U R = 12 V 10 Ω = 1,2 A Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

12 1. viikko Sarjaankytkentä ja rinnankytkentä Määritelmä: sarjaankytkentä Piirielementit ovat sarjassa, jos niiden läpi kulkee sama virta. Määritelmä: rinnankytkentä Piirielementit ovat rinnan, jos niiden yli on sama jännite. Sama tarkoittaa samaa, ei samansuuruista. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Sarjaankytkentä ja rinnankytkentä Sarjaankytkentä I I Rinnankytkentä U U Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

13 1. viikko Vastusten sarjaankytkentä ja rinnankytkentä Sarjaankytkentä Rinnankytkentä R 1 R 2 R = R 1 + R 2 R 2 R 1 R = 1 1 R R 2 Tai sama kätevämmin konduktansseilla G = G 1 + G 2. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Vastusten sarjaankytkentä ja rinnankytkentä Edellisen kalvon kaavat soveltuvat myös mielivaltaisen monelle vastukselle. Esimerkiksi viiden resistanssin sarjaankytkennän resistanssi on R = R 1 + R 2 + R 3 + R 4 + R 5. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

14 1. viikko Jännitelähteiden sarjaankytkentä Jännitelähteiden sarjaankytkennässä jännitteet voidaan laskea yhteen (mutta etumerkeissä pitää olla tarkkana). Jännitelähteiden rinnankytkentä on piiriteoriassa kielletty (kahden pisteen välillä ei voi olla yhtäaikaa kaksi eri jännitettä) E 1 E 2 + E = E 1 E 2 + E 3 E 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Mitä sarjaan- ja rinnankytkentä eivät ole Pelkkä se, että komponentit "näyttävät olevan vierekkäin"ei tarkoita, että kyseessä on rinnankytkentä. Pelkkä se, että komponentit "näyttävät olevan peräkkäin"ei tarkoita, että kyseessä on sarjaankytkentä. Mitkä kuvan vastuksista ovat keskenään sarjassa ja mitkä rinnan? E 1 R 1 R 2 R 3 E 2 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

15 1. viikko Mitä sarjaan- ja rinnankytkentä eivät ole Pelkkä se, että komponentit "näyttävät olevan vierekkäin"ei tarkoita, että kyseessä on rinnankytkentä. Pelkkä se, että komponentit "näyttävät olevan peräkkäin"ei tarkoita, että kyseessä on sarjaankytkentä. Mitkä kuvan vastuksista ovat keskenään sarjassa ja mitkä rinnan? E 1 R 1 R 2 R 3 E 2 Vastaus Eivät mitkään! E 1 ja R 1 ovat sarjassa keskenään, samoin E 2 ja R 2. Nämä sarjaankytkennät ovat puolestaan molemmat rinnan R 3 :n kanssa. Sen sijaan mitkään vastukset eivät ole keskenään rinnan eivätkä sarjassa. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Virtalähde 1. viikko Puhekielessä sanaa virtalähde käytetään varsin monimerkityksellisesti. Esimerkiksi tietokoneen virtalähde hajosi. Virtalähteellä tarkoitetaan piiriteoriassa elementtiä, jonka läpi kulkee jokin tietty virta (se voi olla vakio tai muuttua jonkin säännön mukaan). Aivan kuten jännitelähteenkin napojen välillä on aina sama jännite. J R Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

16 1. viikko Virtalähde Kun jossain johtimen haarassa on virtalähde, tiedät johtimen virran. I = 1 A J = 1 A R1 R 2 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Esimerkki Ratkaise jännite E. 1,5 V E R = 20 Ω I = 50 ma Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

17 1. viikko Ratkaisu Ratkaise jännite E. 1,5 V E R = 20 Ω I = 50 ma Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Ratkaisu Ratkaise jännite E. 1,5 V U UR E E R = 20 Ω I = 50 ma E + U U R = 0 U R = E + U U R = RI = 20 Ω 50 ma = 1 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

18 1. viikko Ratkaisu Ratkaise jännite E. 1,5 V U UR E E R = 20 Ω I = 50 ma E + U U R = 0 U R = E + U U R = RI = 20 Ω 50 ma = 1 V U R = E + U 1 V = E + 1,5 V E = 0,5 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Konduktanssi 2. viikko Resistanssilla tarkoitetaan kappaleen kykyä vastustaa sähkövirran kulkua. Resistanssin käänteislukua kutsutaan konduktanssiksi. Konduktanssin tunnus on G ja yksikkö Siemens (S). Konduktanssi kertoo kappaleen kyvystä johtaa sähköä. Esimerkiksi jos R = 10 Ω niin G = 0,1 S. G = 1 R U = RI GU = I I U G = 1 R Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

19 2. viikko Sähköteho Teho tarkoittaa tehtyä työtä aikayksikköä kohti. Tehon tunnus on P ja yksikkö watti (W). U Elementin kuluttama teho on P = UI I Jos kaava antaa positiivisen tehon, elementti kuluttaa tehoa. Jos kaava antaa negatiivisen tehon, elementti luovuttaa tehoa. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Sähköteho 2. viikko Energia ei häviä piirissä Piirielementtien kuluttama teho = piirielementtien luovuttama teho. I E R I I = U R P R = UI = U U R = U2 R P E = U (I) = U U R = U2 R Kuvassa vastus kuluttaa yhtä paljon tehoa kuin jännitelähde luovuttaa. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

20 2. viikko Napa ja portti Piirissä olevaa johdon liitäntäkohtaa nimitetään navaksi tai nastaksi. Kaksi napaa muodostavat portin eli napaparin. Helpoin esimerkki: auton akku, jolla sisäistä resistanssia. R S E Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Solmu 2. viikko Solmulla tarkoitetaan virtapiirin aluetta, jonka sisällä on sama potentiaali. Palikkamenetelmä: laske kynä johonkin kohtaan johdinta. Ala värittää johdinta, ja aina kun tulee vastaan komponentti, käänny takaisin. Väritetty alue on yksi solmu. Montako solmua on kuvan piirissä? I R 1 R 3 R 5 E R 2 R 4 R 6 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

21 2. viikko Maa Yksi solmuista voidaan nimetä maasolmuksi. Maasolmu-merkinnän käyttö säästää piirtämisvaivaa. Auton akun miinusnapa on kytketty auton runkoon; näin muodostuu suuri maasolmu. Sanonta "tämän solmun jännite on (esim.) 12 volttia"tarkoittaa, että sen solmun ja maan välinen jännite on (esim.) 12 volttia. I R 1 R 3 R 5 E R 2 R 4 R 6 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Maa 2. viikko Maasolmu voidaan kytkeä laitteen runkoon tai olla kytkemättä (symboli ei siis tarkoita, että laite on "maadoitettu"). Edellisen kalvon piiri voidaan piirtää myös näin: I R 1 R 3 R 5 E R 2 R 4 R 6 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

22 2. viikko Esimerkki Ratkaise virta I. I R 1 R 3 R 5 E R 2 R 4 R 6 R 1 = R 2 = R 3 = R 4 = R 5 = R 6 = 1 Ω E = 9 V Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Ratkaisu Ratkaise virta I. I R 1 R 3 R 5 E R 2 R 4 R 6 R 1 = R 2 = R 3 = R 4 = R 5 = R 6 = 1 Ω E = 9 V R 5 ja R 6 ovat sarjassa. Tämän sarjaankytkennän resistanssi on R 5 + R 6 = 2 Ω. Tämä sarjaankytkentä puolestaan on rinnan R 4 :n kanssa. Tämän 1 rinnankytkennän resistanssi on 1 Ω = Ω. 2 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

23 2. viikko Ratkaisu jatkuu R 3 taas on sarjassa edellisen kanssa. Sarjaankytkennän resistanssi on R Ω = 5 3 Ω. Ja tämä sarjaankytkentä on rinnan R 2 :n kanssa. Tämän 1 rinnankytkennän resistanssi on = 5 ( 5 3 ) Ω. 1 Ja tämän kanssa on sarjassa vielä R 1. Jännitelähteen E näkemä kokonaisresistanssi on siis 5 8 Ω + R 1 = 13 8 Ω. Virta I on Ohmin lain mukaan I = E = Ω 13 A 5,5 A. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Kirchhoffin lakien systemaattinen soveltaminen Virtapiiriyhtälöt kannattaa kirjoittaa systemaattisesti, ettei sekoa omaan näppäryyteensä. Yksi tapa on solmujännitemenetelmä: 1 Valitse joku solmuista maasolmuksi 2 Nimeä jännitteet maasolmua vasten eli piirrä jännitenuoli jokaisesta solmusta maasolmuun. 3 Lausu vastusten jännitteet nimettyjen jännitteiden avulla (piirrä jokaisen vastuksen yli jännitenuoli). 4 Kirjoita virtayhtälö jokaiselle solmulle, jossa on tuntematon jännite. 5 Ratkaise jännitteet virtayhtälöistä. 6 Ilmoita kysytty jännite/jännitteet ja/tai virta/virrat. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

24 2. viikko Esimerkki Ratkaise virta I. E 1 R 1 R 2 R 3 I E 2 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki Ratkaise virta I. 2. viikko E 1 R 1 R 2 R 3 I E 2 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

25 2. viikko Esimerkki Ratkaise virta I. E 1 R 1 R 2 R 3 U 3 E 2 I Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki Ratkaise virta I. 2. viikko E 1 E 1 U 3 E 2 U 3 R 1 R 2 R 3 U 3 E 2 I Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

26 2. viikko Esimerkki Ratkaise virta I. E 1 E 1 U 3 E 2 U 3 R 1 R 2 U 3 R 3 = E 1 U 3 R 1 + E 2 U 3 R 2 R 3 U 3 E 2 I Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki Ratkaise virta I. 2. viikko E 1 E 1 U 3 E 2 U 3 R 1 R 2 R 3 U 3 E 2 I U 3 R 3 = E 1 U 3 R 1 + E 2 U 3 R 2 = U 3 = R 3 R 2 E 1 + R 1 E 2 R 1 R 2 + R 2 R 3 + R 1 R 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

27 2. viikko Esimerkki Ratkaise virta I. E 1 E 1 U 3 E 2 U 3 R 1 R 2 R 3 U 3 E 2 I U 3 R 3 = E 1 U 3 R 1 + E 2 U 3 R 2 = U 3 = R 3 R 2 E 1 + R 1 E 2 R 1 R 2 + R 2 R 3 + R 1 R 3 I = U 3 R 3 = R 2 E 1 + R 1 E 2 R 1 R 2 + R 2 R 3 + R 1 R 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Huomautuksia 2. viikko Yhtälöt voi kirjoittaa monella eri logiikalla, ei ole yhtä oikeaa menetelmää. Vaatimuksena ainoastaan a) Kirchhoffin lakien noudattaminen b) Ohmin lain 3 noudattaminen sekä se, että yhtälöitä on yhtä monta kuin tuntemattomia. Jos piirissä on virtalähde, se säästää (yleensä) laskentatyötä, koska silloin tuntemattomia virtoja on yksi vähemmän. Käyttämällä konduktansseja yhtälöt näyttävät siistimmiltä. 3 Ohmin lakia voi käyttää vain vastuksille. Jos piirissä on muita komponentteja, tulee tietää niiden virta-jänniteyhtälö eli tietää, miten komponentin virta riippuu jännitteestä. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

28 2. viikko Toinen esimerkki E 1 R 1 R 2 R 3 U 3 R 5 R 4 U 4 E 2 E 1 U 3 R 1 = U 3 U 4 R 2 + U 3 R 3 ja U 3 U 4 R 2 = U 4 R 4 + U 4 E 2 R 5 G 1 (E 1 U 3 ) = G 2 (U 3 U 4 ) + G 3 U 3 ja G 2 (U 3 U 4 ) = G 4 U 4 + G 5 (U 4 E 2 ) Kaksi yhtälöä, kaksi tuntematonta, voidaan ratkaista. Lopputulos on sama, käytitpä konduktansseja tai resistansseja! Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Huomattavaa 2. viikko Virtapiirin ratkaisemiseksi on useita muitakin menetelmiä kuin solmujännitemenetelmä: haaravirtamenetelmä, silmukkamenetelmä, solmumenetelmä, modifioitu solmupistemenetelmä... Mikäli piirissä on ideaalisia jännitelähteitä (=jännitelähteitä, jotka liittyvät suoraan solmuun ilman että välissä on vastus), yhtälöihin tulee yksi tuntematon arvo lisää (=jännitelähteen virta) sekä yksi yhtälö lisää (jännitelähde määrää solmujen jännite-eron). Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

29 2. viikko Esimerkki a) Ratkaise virta I 4. Esimerkki 3b) Tarkista tuloksesi siten, että merkitset kuvaan kaikki jännitteet ja virrat ja toteat, että tuloksesi ei ole ristiriidassa Kirchhoffin lakien kanssa. R + 1 R 4 E J R 2 R 3 R 5 I 4 R 1 = R 2 = R 3 = R 4 = R 5 = 1 Ω E = 9 V J = 1 A Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Ratkaisu a) Ratkaise virta I 4. Ratkaisu b) Tarkista tuloksesi siten, että merkitset kuvaan kaikki jännitteet ja virrat ja toteat, että tuloksesi ei ole ristiriidassa Kirchhoffin lakien kanssa. R + 1 R 4 E J R 2 R 3 R 5 I 4 R 1 = R 2 = R 3 = R 4 = R 5 = 1 Ω E = 9 V J = 1 A Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

30 Ratkaisu 2. viikko R + I 1 R 4 E J R 2 U 2 R 3 U 3 R 5 I 4 R 1 = R 2 = R 3 = R 4 = R 5 = 1 Ω E = 9 V J = 1 A Kirjoitetaan kaksi virtayhtälöä ja yksi jänniteyhtälö. Merkitään vastusten R 4 ja R 5 sarjaankytkennän konduktanssia symbolilla G 45. J = U 2 G 2 + I I = U 3 G 3 + U 3 G 45 U 2 + E = U 3 Sijoittamalla toisesta yhtälöstä I:n ensimmäiseen yhtälöön ja sijoittamalla tähän kolmannesta yhtälöstä saatavan U 2 :n, saadaan J = (U 3 E)G 2 + U 3 (G 3 + G 45 ) Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Sijoitetaan yhtälöön lukuarvot ja ratkaistaan: U 3 = 4 V Joten kysytty virta on 4 V 1 S = 4 A. Jänniteyhtälöstä U 2 + E = U 3 ratkeaa U 2 = 5 V, siispä vastuksen R 2 virta on 5 A alhaalta ylöspäin. Virraksi I saadaan 1 A + 5 A = 6 A, josta 4 A kulkee R 3 :n läpi ja loput 2 A vastusten R 4 ja R 5 läpi. Jännitteet ja virrat täsmäävät Kirchhoffin lakien kanssa, joten piiri on laskettu oikein. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

31 3. viikko Esimerkki 1 Ratkaise I ja U. + E 3 E 1 I R 1 E 2 R 2 U J Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Esimerkki 1 Ratkaise I ja U. I 3 + E 3 E 1 I R 1 E 2 R 2 U J J = UG 2 + I 3 I 3 = I + (E 1 E 2 )G 1 U = E 1 + E 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

32 3. viikko Esimerkki 2 Ratkaise U 2 ja I 1. R E 1 U 2 J 1 E 2 J 2 E 3 I 1 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki 2 Ratkaise U 2 ja I 1. R E 1 3. viikko U 2 J 1 E 2 J 2 E 3 I 1 I 1 = (E 1 E 3 )G + J 1 E 2 + U 2 = E 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

33 3. viikko Mistä lisäharjoitusta? Silvosen kirjaan on lisämateriaalia osoitteessa fi/~ksilvone/lisamateriaali/lisamateriaali.htm Sieltä löytyy tasavirtapiiritehtäviä 175 kappaletta http: //users.tkk.fi/~ksilvone/lisamateriaali/teht100.pdf Tehtäviin on pdf:n lopussa myös ratkaisut, joten saat välittömän palautteen osaamisestasi! Jos intoa riittää, voi opetella käyttämään piirisimulaattoria. Sillä on helppo mm. tarkistaa kotitehtävät: Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki 3 Ratkaise U viikko R 1 R 3 E R 2 R 4 U 4 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

34 3. viikko Esimerkki 3 Ratkaise U 4. R 1 R 3 E R 2 U 2 R 4 U 4 (E U 2 )G 1 = U 2 G 2 + (U 2 U 4 )G 3 (U 2 U 4 )G 3 = G 4 U 4 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Esimerkki Ratkaise jännite U 1. Kaikki vastukset ovat 10 Ω vastuksia, E = 10 V ja J = 1 A. J R 2 R1 U 1 R 3 R 4 E Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

35 3. viikko Esimerkki Ratkaise jännite U 1. Kaikki vastukset ovat 10 Ω vastuksia, E = 10 V ja J = 1 A. U 1 U 2 R 2 J R1 U R U R 4 U3 I U 2 U 3 E J = U 1 G 1 + (U 1 U 2 )G 2 (U 1 U 2 )G 2 = (U 2 U 3 )G 3 + I G 3 (U 2 U 3 ) + I = U 3 G 4 U 2 U 3 = E Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Ratkaisu jatkuu 3. viikko J = U 1 G 1 + (U 1 U 2 )G 2 (U 1 U 2 )G 2 = EG 3 + I G 3 E + I = U 3 G 4 U 2 U 3 = E Ratkaistaan kolmannesta yhtälöstä I ja sijoitetaan se toiseen yhtälöön. Ratkaistaan viimeisestä yhtälöstä U 3 ja sijoitetaan se paikalleen. J = U 1 G 1 + (U 1 U 2 )G 2 (U 1 U 2 )G 2 = EG 3 + (U 2 E)G 4 G 3 E 1 = 0,2U 1 0,1U 2 0,1U 1 0,1U 2 = 0,1U 2 1 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

36 3. viikko Ratkaisu jatkuu 1 = 0,2U 1 0,1U 2 0,1U 1 0,1U 2 = 0,1U 2 1 Jonka ratkaisu on U 1 = 10 U 2 = 10 Eli kysytty jännite U 1 on 10 volttia. Tämän voi vielä tarkistaa simulaattorilla. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Piirimuunnokset 4. viikko 1 Piirimuunnoksella tarkoitetaan toimenpidettä, jonka avulla piiri tai piirin osa muunnetaan esitystavaltaan erilaiseksi mutta ulospäin samalla tavalla käyttäytyväksi piiriksi. 2 Jo kurssilla käsitellyt jännitelähteiden sarjaankytkentä, vastusten rinnankytkentä sekä vastusten sarjaankytkentä ovat piirimuunnoksia. 3 Tällä tunnilla käsitellään virtalähteiden rinnankytkentä sekä jännitelähde-virtalähdemuunnos. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

37 4. viikko Esimerkki piirimuunnoksesta Kaksi (tai useampi) vastusta muunnetaan yhdeksi, samalla tavalla käyttäytyväksi vastukseksi. Sarjaankytkentä Rinnankytkentä R 1 R 2 R = R 1 + R 2 R 2 R 1 R = 1 1 R R 2 Tai sama kätevämmin konduktansseilla G = G 1 + G 2. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Virtalähteiden rinnankytkentä Kaksi (tai useampi) virtalähdettä muunnetaan yhdeksi, samalla tavalla käyttäytyväksi virtalähteeksi. Virtalähteet rinnan J 1 J 2 J 3 J = J1 + J 2 J 3 Kuten jännitelähteiden rinnankytkentä, myös virtalähteiden sarjaankytkentä on määrittelemätön (arkikielellä: kielletty) asia piiriteoriassa, aivan kuten nollalla jakaminen matematiikassa. Johtimessa ei voi samaan aikaan olla kahta erisuuruista virtaa! Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

38 4. viikko Jännitelähde-virtalähdemuunnos Jännitelähteen ja vastuksen sarjaankytkentä käyttäytyy kuten virtalähteen ja vastuksen rinnankytkentä. Lähdemuunnos + E R J R E = RJ Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Tärkeää muistettavaa 4. viikko Huomaa, että ideaalista jännite- tai virtalähdettä ei voi muuntaa yllä olevalla tavalla. Jännitelähteellä on oltava sarja- ja virtalähteellä rinnakkaisresistanssa. Vastuksen arvo pysyy samana, jännite- ja virtalähteen arvo saadaan kaavasta E = RJ, joka perustuu Ohmin lakiin. Lähdemuunnos ei ole vain piiriteoreettinen kuriositeetti. Lähdemuunnos sopivassa paikassa säästää monen rivin kaavanpyörittelyltä, esimerkiksi transistorivahvistimien analyysissä. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

39 4. viikko Muunnoksen perustelu Lähdemuunnos R E I U E R R I U Vasen kuva Oikea kuva: I = E U R I = E R U R = E U R U = E RI U = ( E R Molemmat piirit käyttäytyvät samalla tavalla. I)R = E RI Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123 Esimerkki Ratkaise U. Muunnetaan piiri 4. viikko R 1 R 2 E 1 R 3 U E J 1 R1 R 2 R 3 J 2 Ja ei muuta kuin vastaus pöytään: U = J 1 + J 2 G 1 + G 2 + G 3 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

40 4. viikko Erittäin tärkeä huomio Vaikka vastuksen arvo pysyy samana muunnoksessa, vastus ei ole sama vastus! Esimerkiksi edellisessä esimerkissä muuntamattoman vastuksen virta ei ole sama kuin muunnetun vastuksen virta! Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Esimerkki Ratkaise virta I muuntamalla virtalähteet jännitelähteiksi. J 1 = 10 A, J 2 = 1 A, R 1 = 100 Ω, R 2 = 200 Ω ja R 3 = 300 Ω. I R 2 J 1 R1 R 3 J 2 Tämä on helppo ja nopea lasku; jos huomaat kirjoittavasi toista sivullista yhtälöitä, olet tehnyt jotain väärin. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

41 4. viikko Ratkaisu Ratkaise virta I muuntamalla virtalähteet jännitelähteiksi. J 1 = 10 A, J 2 = 1 A, R 1 = 100 Ω, R 2 = 200 Ω ja R 3 = 300 Ω. I R 2 J 1 R1 R 3 J 2 R R 1 I R 2 3 R 1 J 1 R 3 J 2 I = R 1J 1 R 3 J 2 R 1 + R 2 + R 3 = 1000 V 300 V 600 Ω = 7 A 1,17 A. 6 Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / viikko Théveninin ja Nortonin teoreemat Olemme käsitelleet seuraavat piirimuunnokset: jännitelähteiden sarjaankytkentä, virtalähteiden rinnankytkentä, vastusten rinnankytkentä sekä vastusten sarjaankytkentä sekä jännitelähde-virtalähdemuunnos. Théveninin ja Nortonin teoreemat liittyvät nekin piirimuunnoksiin. Théveninin ja Nortonin teoreemojen nojalla mikä tahansa jännitelähteistä, virtalähteistä ja vastuksista koostuva piiri voidaan esittää jännitelähteen ja vastuksen sarjaankytkentänä tai virtalähteen ja vastuksen rinnankytkentänä. Vesa Linja-aho (Metropolia) TA00AB71 Tasasähköpiirit (3 op) 7. syyskuuta / 123

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Silmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen

Silmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2 Verkon systemaattinen ratkaisu Muodostetaan

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

TEHTÄVÄT KYTKENTÄKAAVIO

TEHTÄVÄT KYTKENTÄKAAVIO TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

5. Sähkövirta, jännite

5. Sähkövirta, jännite Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Sähköopin mittauksia 1

Sähköopin mittauksia 1 Sähköopin mittauksia 1 Sisällysluettelo Pikaohje LoggerPro mittausohjelma... 2 Pikaohje sähköopin anturit... 3 Kytkentäalusta... 4 Sähkövirran perusominaisuudet... 6 Jännitteen perusominaisuudet... 8 Virtapiirin

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Van der Polin yhtälö

Van der Polin yhtälö Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen

Lisätiedot

TASONSIIRTOJEN ja VAHVISTUKSEN SUUNNITTELU OPERAATIOVAHVISTINKYTKENNÖISSÄ

TASONSIIRTOJEN ja VAHVISTUKSEN SUUNNITTELU OPERAATIOVAHVISTINKYTKENNÖISSÄ TSONSTOJEN ja VHVSTKSEN SNNTTEL OPETOVHVSTKYTKENNÖSSÄ H. Honkanen. SMMMEN KÄYTTÖ - Summaimelle voidaan erikseen määrittää, omaan tuloonsa: - Signaalin jännitevahvistus ja - Tasonsiirto - Mahdollisuus kytkeä

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Neljännen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Edellisellä luennolla tarkasteltiin aurinkokennon toimintaperiaatetta kennon sisäisten tapahtumisen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

MIKROAALTOMITTAUKSET 1

MIKROAALTOMITTAUKSET 1 MIKROAALTOMITTAUKSET 1 1. TYÖN TARKOITUS Tässä harjoituksessa tutkit virran ja jännitteen käyttäytymistä gunn-oskillaattorissa. Piirrät jännitteen ja virran avulla gunn-oskillaattorin toimintakäyrän. 2.

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2013

521302A PIIRITEORIA 1. Laskuharjoitukset - syksy 2013 52302A PIIRITEORIA Laskuharjoitukset - syksy 203 Sisältö Kuinka suoritan kurssin?... 3 LTspice-vinkkejä... 7 Harjoitus... 9 LTspice-vinkkejä... 24 Harjoitus 2... 25 LTspice-vinkkejä... 35 Harjoitus 3...

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua: DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot